
Bisubmodular Function Minimization

Satoru Fujishige
� Satoru Iwata

y

October 2000

Abstract

This paper presents the �rst combinatorial, polynomial-time algorithm

for minimizing bisubmodular functions, extending the scaling algorithm for

submodular function minimization due to Iwata, Fleischer, and Fujishige.

A bisubmodular function arises as a rank function of a delta-matroid.

The scaling algorithm naturally leads to the �rst combinatorial polynomial-

time algorithm for testing membership in delta-matroid polyhedra. Unlike

the case of matroid polyhedra, it remains open to develop a combinatorial

strongly polynomial algorithm for this problem.

�Division of Systems Science, Graduate School of Engineering Science, Osaka University, Toyo-

naka, Osaka 560-8531, Japan (fujishig@sys.es.osaka-u.ac.jp). Research partly carried out

while at Forschungsinstut f�ur Diskrete Mathematik, Universit�at Bonn.
yDepartment of Mathematical Engineering and Information Physics, University of Tokyo,

Tokyo 113-8656, Japan (iwata@sr3.t.u-tokyo.ac.jp).

1

1 Introduction

Let V be a �nite nonempty set of cardinality n and 3V denote the set of ordered

pairs of disjoint subsets of V . Two binary operations t and u on 3V are de�ned

by

(X1; Y1) t (X2; Y2) = ((X1 [X2)n(Y1 [Y2); (Y1 [Y2)n(X1 [X2))

(X1; Y1) u (X2; Y2) = (X1 \X2; Y1 \ Y2):

A function f : 3V ! R is called bisubmodular if it satis�es

f(X1; Y1) + f(X2; Y2) � f((X1; Y1) t (X2; Y2)) + f((X1; Y1) u (X2; Y2))

for any (X1; Y1) and (X2; Y2) in 3V . This paper presents the �rst combinatorial

polynomial-time algorithm for minimizing bisubmodular functions.

A bisubmodular function generalizes a submodular function as follows. Let

2V denote the family of all the subsets of V . A function g : 2V ! R is called

submodular if it satis�es

g(Z1) + g(Z2) � g(Z1 [Z2) + g(Z1 \ Z2)

for any Z1; Z2 � V . For a submodular function g, we de�ne a bisubmodular

function f : 3V ! R by

f(X; Y) = g(X) + g(V nY)� g(V):

If (X; Y) is a minimizer of f , then both X and V nY are minimizers of g. Thus,

bisubmodular function minimization is a generalization of submodular function

minimization.

The �rst polynomial-time algorithm for submodular function minimization is

due to Gr�otschel{Lov�asz{Schrijver [16]. They also give the �rst strongly polyno-

mial algorithms in [17]. Their algorithms rely on the ellipsoid method, which is not

eÆcient in practice. Recently, two combinatorial strongly polynomial algorithms

are devised independently by Schrijver [22] and Iwata{Fleischer{Fujishige [18].

Both of these new algorithms are based on a combinatorial pseudopolynomial-time

algorithm of Cunningham [8]. The algorithm of Schrijver [22] directly achieves

the strongly polynomial bound, whereas Iwata{Fleischer{Fujishige [18] develop a

scaling algorithm with weakly polynomial time complexity and then convert it to

a strongly polynomial one.

In the present paper, we extend the scaling algorithm of Iwata{Fleischer{

Fujishige [18] to solve the minimization problem for integer-valued bisubmodular

functions. The resulting algorithm runs in O(n5 logM) time, where M designates

the maximum value of f . This bound is weakly polynomial, and it remains open

to develop a combinatorial strongly polynomial algorithm.

2

2 Delta-Matroids

A bisubmodular function arises as a rank function of a delta-matroid introduced

independently by Bouchet [3] and Chandrasekaran{Kabadi [6]. A delta-matroid is

a set system (V;F) with F being a nonempty family of subsets of V that satis�es

the following exchange property:

8F1; F2 2 F ; 8v 2 F14F2; 9u 2 F14F2 : F14fu; vg 2 F ;

where 4 denotes the symmetric di�erence. A slightly restricted set system with an

additional condition ; 2 F had been introduced by Dress{Havel [11]. A member

of F is called a feasible set of the delta-matroid. Note that the base and the

independent-set families of a matroid saitisfy this exchange property. Thus, a

delta-matroid is a generalization of a matroid.

Chandrasekaran{Kabadi [6] showed that the rank function % : 3V ! Z de�ned

by

%(X; Y) = maxfjX \ F j � jY \ F j j F 2 Fg

is bisubmodular. The convex hull of the characteristic vectors of the feasible sets

is described by

P(%) = fx j x 2 RV ; 8(X; Y) 2 3V : x(X)� x(Y) � %(X; Y)g;

which is called the delta-matroid polyhedron. This fact follows from the greedy

algorithm [3, 6] for optimizing a linear function over the feasible sets.

Given a vector x 2 RV , one can test if x belongs to P(%) by minimizing a bisub-

modular function f(X; Y) = %(X; Y)� x(X) + x(Y). Even for such a special case

of bisubmodular function minimization, no combinatorial algorithm was known to

run in polynomial time. This is in contrast with the matroid polyhedron, for which

Cunningham [7] devised a combinatorial strongly polynomial algorithm for testing

membership.

A simple example of a delta-matroid is a matching delta-matroid [4], whose

feasible sets are the perfectly matchable vertex subsets of an undirected graph.

The delta-matroid polyhedron is the matchable set polytope [2]. For this special

case, Cunningham{Green-Kr�otki [10] developed an augmenting path algorithm for

solving the separation problem in polynomial time with the aid of the scaling

technique.

3 Bisubmodular Polyhedra

As a generalization of the delta-matroid polyhedron, a bisubmodular polyhedron

P(f) = fx j x 2 RV ; 8(X; Y) 2 3V : x(X)� x(Y) � f(X; Y)g

3

is associated with a general bisubmodular function f : 3V ! R, where we assume

f(;; ;) = 0. For a vector x 2 RV , we denote kxk =
P

v2V jx(v)j. The following

min-max relation characterizes the minimum value of f .

Theorem 3.1 ([15]) For any bisubmodular function f ,

minff(X; Y) j (X; Y) 2 3V g = maxf�kxk j x 2 P(f)g:

The linear optimization problem over the bisubmodular polyhedron can be

solved by the following greedy algorithm, which was �rst introduced by Dunstan{

Welsh [12].

Let � : V ! f+;�g be a sign function. For any subset U � V , we denote by

U j� the pair (X; Y) 2 3V with X = fu j u 2 U; �(u) = +g and Y = fu j u 2

U; �(u) = �g. We also write f(U j�) = f(X; Y) for any function f : 3V ! R, and

x(U j�) = x(X)� x(Y) for any vector x 2 RV .

Let L = (v1; � � � ; vn) be a linear ordering of V . For each j = 1; � � � ; n, let

L(vj) = fv1; � � � ; vjg. The greedy algorithm with respect to L and a sign function

� assigns y(v) := �(v)ff(L(v)j�) � f(L(v)nfvgj�)g for each v 2 V . Then the

resulting vector y 2 RV is an extreme point of the bisubmodular polyhedron P(f).

Given a linear ordering L = (v1; � � � ; vn) and a sign function �, for a weight

function w : V ! R that satis�es jw(v1)j � � � � � jw(vn)j and w(v) = �(v)jw(v)j

for each v 2 V , the vector y generated by the greedy algorithm with respect

to L and � maximizes the linear function
P

v2V w(v)y(v) over the bisubmodular

polyhedron P(f). See [14, x3.5 (b)] for a survey on bisubmodular polyhedron

including the validity of the greedy algorithm (also see [1]).

Based on the validity of this greedy algorithm, Qi [21] established a connection

between bisubmodular functions and their convex extensions. This is a gener-

alization of a result of Lov�asz [19] on submodular functions, and it leads to a

polynomial-time algorithm for bisubmodular function minimization using the el-

lipsoid method.

The concept of bisubmodular polyhedron is extended to that of jump system

by Bouchet{Cunningham [5]. A jump system is a set of lattice points satisfying

a certain axiom. Examples include the set of degree sequences of a graph [9].

The lattice points contained in an integral bisubmodular polyhedron form a jump

system, called a convex jump system, and conversely the convex hull of a jump

system is an integral bisubmodular polyhedron. Recently, Lov�asz [20] investigated

the membership problem in jump systems and proved a min-max theorem for a

fairly wide class of jump systems. This result contains many interesting combina-

torial theorems including Theorem 3.1. The present paper provides an algorithmic

approach to this membership problem in convex jump systems.

4

4 Scaling Algorithm

This section presents a scaling algorithm for minimizaing an integer-valued bisub-

modular function f : 3V ! Z, provided that an oracle for evaluating the function

value is available.

The scaling algorithm works with a positive parameter Æ. The algorithm keeps

a vector x 2 P(f) as a convex combination of extreme points of P(f). Namely,

x =
P

i2I �iyi with �i > 0 for each i 2 I and
P

i2I �i = 1. Each extreme point

yi is generated by the greedy algorithm with respect to Li and �i. It also keeps

a pair of functions ' : V � V ! R and : V � V ! R. The function ' is

skew-symmetric, i.e., '(u; v) + '(v; u) = 0 for any u; v 2 V , while is symmetric,

i.e., (u; v) = (v; u) for any u; v 2 V . These functions are called Æ-feasible if they

satisfy �Æ � '(u; v) � Æ and �Æ � (u; v) � Æ for any u; v 2 V . The boundaries

@' and @ are de�ned by @'(u) =
P

v2V '(u; v) and @ (u) =
P

v2V (u; v).

The algorithm starts with an extreme point x 2 P(f) generated by the greedy

algorithm with respect to a linear ordering L and a sign function �. The initial

value of Æ is given by Æ := kxk=n2.

Each scaling phase starts by cutting the value of Æ in half. Then it modi�es

' and to make them Æ-feasible. This can be done by setting each '(u; v) and

 (u; v) to the closest values in the interval [�Æ; Æ]. The rest of the scaling phase

aims at decreasing kzk for z = x+ @' + @ .

Given Æ-feasible ' and , the algorithm constructs an auxiliary directed graph

G(';) as follows. Let V + and V � be the copies of V . For each v 2 V , we denote

its copies by v+ 2 V + and v� 2 V �. The vertex set of G(';) is V + [V �. The

arc set A(';) = A(') [A() of G(';) is de�ned by

A(') = f(u+; v+) j u 6= v; '(u; v) � 0g [f(u�; v�) j u 6= v; '(u; v) � 0g;

A() = f(u+; v�) j (u; v) � 0g [f(u�; v+) j (u; v) � 0g:

Let S = fv j v 2 V; z(v) � �Æg and T = fv j v 2 V; z(v) � Æg. A sim-

ple directed path in G(';) from S+ [T� to S� [T+ is called a Æ-augmenting

path. If there exists a Æ-augmenting path P , the algorithm applies the following

Æ-augmentation to ' and .

Augment(Æ; P; ';):

� For each (u+; v+) in P , '(u; v) := '(u; v)+ Æ=2 and '(v; u) := '(v; u)� Æ=2.

� For each (u�; v�) in P , '(u; v) := '(u; v)� Æ=2 and '(v; u) := '(v; u)+ Æ=2.

� For each (u+; v�) in P , (u; v) := (u; v)+ Æ=2 and (v; u) := (v; u)+ Æ=2.

� For each (u�; v+) in P , (u; v) := (u; v)� Æ=2 and (v; u) := (v; u)� Æ=2.

5

As a result of a Æ-augmentation, kzk decreases by Æ.

After each Æ-augmentation, the algorithm computes an expression of x as a

convex combination of aÆnely independent extreme points of P(f) chosen from

among fyi j i 2 Ig. This can be done by a standard linear programming technique

using Gaussian elimination.

If there is no Æ-augmenting path, let X+ � V + and Y � � V � be the sets

of vertices reachable by directed paths from S+ [T�. Then we have S � X,

T � Y , and X \ Y = ;. For each i 2 I, consider a pair of disjoint subsets

Wi = fu j u
�i(u) 2 X+ [Y �g and Ri = fu j u

�i(u) 2 X� [Y +g. We now introduce

two procedures Double-Exchange and Tail-Exchange.

Procedure Double-Exchange(i; u; v) is applicable if u immediately succeeds v in

Li and either u 2 Wi and v =2 Wi or u =2 Ri and v 2 Ri hold. Such a triple (i; u; v)

is called active. The �rst step of the procedure is to compute

� := �i(u)ff(Li(u)nfvgj�i)� f(Li(u)j�i) + yi(v)g:

Then it interchanges u and v in Li and updates yi as yi := yi+�(�i(u)�u��i(v)�v).

The resulting yi is an extreme point generated by the new linear ordering Li and

sign function �i.

If �i� � Æ, Double-Exchange(i; u; v) is called saturating. Otherwise, it is called

nonsaturating. In the nonsaturating case, the procedure adds to I a new index k

with yk, �k and Lk being the previous yi, �i and Li, and assigns �k := �i � Æ=�

and �i := Æ=�. In both cases, x moves to x := x + �(�i(u)�u � �i(v)�v) with

� = minfÆ; �i�g. In order to keep z invariant, the procedure �nally modi�es ' or

appropriately. If �i(u) = �i(v), it updates '(u; v) := '(u; v)��i(u)� and '(v; u) :=

'(v; u) + �i(u)�. On the other hand, if �i(u) 6= �i(v), then (u; v) := (u; v) �

�i(u)� and (v; u) := (v; u)� �i(u)�. A formal description of Double-Exchange

is given in Figure 1.

Procedure Tail-Exchange(i; v) is applicable if v is the last element in Li and

v 2 Ri. Such a pair (i; v) is also called active. The �rst step of the procedure is to

reverse the sign �i(v). It then computes

� := f(V j�i)� f(V nfvgj�i)� �i(v)yi(v)

and updates yi := yi + �i(v)��v. The resulting yi is an extreme point generated

by Li and the new �i.

If �i� � Æ, Tail-Exchange(i; v) is called saturating. Otherwise, it is called nonsat-

urating. In the nonsaturating case, the procedure adds to I a new index k with yk,

�k and Lk being the previous yi, �i and Li, and assigns �k := �i�Æ=� and �i := Æ=�.

In both cases, x moves to x := x + �i(v)��v with � = minfÆ; �i�g. In order to

keep z invariant, the procedure �nally modi�es as (v; v) := (v; v)��i(v)�. A

formal description of Tail-Exchange is given in Figure 2.

6

Double-Exchange(i; u; v);

� := �i(u)ff(Li(u)nfvgj�i)� f(Li(u)j�i) + yi(v)g;

� := minfÆ; �i�g;

If � < �i� then

k a new index;

I := I [fkg;

�k := �i � �=�;

�i := �=�;

yk := yi;

Lk := Li;

Update Li by interchanging u and v;

yi := yi + �(�i(u)�u � �i(v)�v);

x := x + �(�i(u)�u � �i(v)�v);

If �i(u) = �i(v) then

'(u; v) := '(u; v)� �i(u)�;

'(v; u) := '(v; u) + �i(u)�;

Else

 (u; v) := (u; v)� �i(u)�;

 (v; u) := (v; u)� �i(u)�.

Figure 1: Algorithmic description of Procedure Double-Exchange(i; u; v).

If there is no Æ-augmenting path and neither Double-Exchange nor Tail-Exchange

is applicable, the algorithm terminates the Æ-scaling phase by cutting the value of

Æ in half.

A formal description of our scaling algorithm BFM is now given in Figure 3.

5 Validity and Complexity

This section is devoted to the analysis of our scaling algorithm. We �rst discuss

the validity.

Lemma 5.1 At the end of the Æ-scaling phase, the current (X; Y) 2 3V and z =

x+ @' + @ satisfy kzk � 2nÆ � f(X; Y).

Proof. At the end of the Æ-scaling phase, we have yi(X) � yi(Y) = f(X; Y) for

each i 2 I. Hence, x satis�es x(X)�x(Y) = f(X; Y). By the de�nition of (X; Y),

we immediately have @'(X) > 0, @'(Y) < 0, @ (X) > 0, and @ (Y) < 0, where

7

Tail-Exchange(i; v);

�i(v) := ��i(v);

� := f(V j�i)� f(V nfvgj�i)� �i(v)yi(v);

� := minfÆ; �i�g;

If � < �i� then

k a new index;

I := I [fkg;

�k := �i � �=�;

�i := �=�;

yk := yi;

Lk := Li;

yi := yi + �i(v)��v;

x := x + �i(v)��v;

 (v; v) := (v; v)� �i(v)�.

Figure 2: Algorithmic description of Procedure Tail-Exchange(i; v).

note that @'(X) =
P
f'(u; v) j u 2 X; v 2 V nXg with '(u; v) > 0 (u 2 X; v 2

V n X) and similarly the other inequalities. Since S � X and T � Y , we have

z(v) � �Æ for v 2 V nX and z(v) � Æ for v 2 V nY and . Therefore, we have

kzk � �z(X) + z(Y) + 2nÆ � �x(X) + x(Y) + 2nÆ = �f(X; Y) + 2nÆ.

Theorem 5.2 The algorithm obtains a minimizer of f at the end of the Æ-scaling

phase with Æ < 1=3n2.

Proof. Since j@'(v)j � (n � 1)Æ and j@ (v)j � nÆ for each v 2 V , it follows from

Lemma 5.1 that kxk � (2n2+n)Æ�f(X; Y) < 1�f(X; Y). For any (X 0; Y 0) 2 3V ,

we have f(X 0; Y 0) � �kxk > f(X; Y) � 1. Hence (X; Y) is a minimizer of the

integer-valued function f .

We now give a running time bound of our algorithm.

Lemma 5.3 Each scaling phase performs O(n2) augmentations.

Proof. At the beginning of the Æ-scaling phase, the algorithm modi�es ' and

 to make them Æ-feasible. This changes kzk by at most 2n2Æ. Therefore, by

Lemma 5.1, the pair (X; Y) must satisfy kzk � 2n2Æ+4nÆ�f(X; Y) after updating

' and at the beginning of the Æ-scaling phase. On the other hand, we have

kzk � �z(X) + z(Y) � �x(X) + x(Y) � 2n2Æ = �f(X; Y) � 2n2Æ. Thus kzk

8

decreases by at most 4nÆ + 4n2Æ until the end of the Æ-scaling phase. Since each

Æ-augmentation decreases kzk by Æ, the number of Æ-augmentations in the Æ-scaling

phase is at most 4n2 + 4n, which is O(n2).

Lemma 5.4 The algorithm performs Procedure Double-Exchange O(n3) times and

Tail-Exchange O(n2) times between Æ-augmentations.

Proof. Procedure Double-Exchange moves a vertex of Wi towards the head of Li

and/or a vertex in Ri towards the tail of Li. Procedure Tail-Exchange changes a

vertex of Ri to Wi. No vertex goes out of Wi. A vertex of Ri can be switched

to Wi by Tail-Exchange. However, it does not go out of Ri [Wi. Thus, for each

i 2 I, after at most O(n2) applications of Double-Exchange and O(n) applications

of Tail-Exchange to i 2 I, the subset Ri is empty and W = L(w) holds for some

w 2 V . At this point, neither Double-Exchange nor Tail-Exchange is applicable to

i 2 I.

After each Æ-augmentation, the algorithm updates the convex combination

x =
P

i2I �iyi so that jIj � n + 1. A new index is added to I as a result of

nonsaturating Double-Exchange(i; u; v) and Tail-Exchange(i; v). In both cases, v

joins Wi. This can happen at most n � 1 times before the algorithm �nds a Æ-

augmenting path or �nishes the Æ-scaling phase. Hence, jIj is always O(n), and the

algorithm performs Double-Exchange O(n3) times and Tail-Exchange O(n2) times

between Æ-augmentations.

Let M be the maximum value of f . Since f(;; ;) = 0, the maximum value M

is nonnegative.

Theorem 5.5 The scaling algorithm �nds a minimizer of f in O(n5 logM) time.

Proof. For the initial x 2 P(f), let B = fv j x(v) > 0g and C = fv j x(v) < 0g.

Then we have kxk = x(B)� x(C) � f(B;C) �M . Hence the algorithm performs

O(logM) scaling phases. It follows from Lemmas 5.3 and 5.4 that each scaling

phase performs O(n5) function evaluations and arithmetic operations. Therefore

the total running time is O(n5 logM).

6 Conclusion

We have described a polynomial-time algorithm for minimizing integer-valued

bisubmodular functions. If we are given a positive lower bound � for the di�erence

between the minimum and the second minimum value of f , a variant of the present

algorithm works for any real-valued bisubmodular function f . The only required

modi�cation is to change the stopping rule Æ < 1=3n2 to Æ < �=3n2. The running

time is O(n5 log(M=�)). Thus we obtain a polynomial-time algorithm for testing

membership in delta-matroid polyhedra. One can make this algorithm strongly

9

polynomial with the aid of a generic preprocessing technique of Frank{Tardos [13]

using simultaneous Diophantine approximation. However, a more natural strongly

polynomial algorithm is desirable.

References

[1] K. Ando and S. Fujishige: On structures of bisubmodular polyhedra, Math.

Programming, 74 (1996), 293{317.

[2] E. Balas and W. R. Pulleyblank: The perfectly matchable subgraph polytope

of an arbitrary graph, Combinatorica, 9 (1989), 321{337.

[3] A. Bouchet: Greedy algorithm and symmetric matroids, Math. Programming,

38 (1987), 147{159.

[4] A. Bouchet: Matchings and 4-matroids, Discrete Appl. Math., 24 (1989),

55{62.

[5] A. Bouchet and W. H. Cunningham: Delta-matroids, jump systems and bisub-

modular polyhedra, SIAM J. Discrete Math., 8 (1995), 17{32.

[6] R. Chandrasekaran and S. N. Kabadi: Pseudomatroids, Discrete Math., 71

(1988), 205{217.

[7] W. H. Cunningham: Testing membership in matroid polyhedra, J. Combin.

Theory, B36 (1984), 161{188.

[8] W. H. Cunningham: On submodular function minimization, Combinatorica,

5 (1985), 185{192.

[9] W. H. Cunningham and J. Green-Kr�otki: b-matching degree sequence poly-

hedra, Combinatorica, 11 (1991), 219{230.

[10] W. H. Cunningham and J. Green-Kr�otki: A separation algorithm for the

matchable set polytope, Math. Programming, 65 (1994), 139{150.

[11] A. Dress and T. F. Havel: Some combinatorial properties of discriminants in

metric vector spaces, Adv. Math., 62 (1986), 285{312.

[12] F. D. J. Dunstan and D. J. A. Welsh: A greedy algorithm solving a certain

class of linear programmes, Math. Programming, 5 (1973), 338{353.

[13] A. Frank and �E. Tardos: An application of simultaneous Diophantine approx-

imation in combinatorial optimization, Combinatorica, 7 (1987), 49{65.

10

[14] S. Fujishige: Submodular Functions and Optimization, North-Holland, 1991.

[15] S. Fujishige: A min-max theorem for bisubmodular polyhedra, SIAM J. Dis-

crete Math., 10 (1997), 294{308.

[16] M. Gr�otschel, L. Lov�asz, and A. Schrijver: The ellipsoid method and its con-

sequences in combinatorial optimization, Combinatorica, 1 (1981), 169{197.

[17] M. Gr�otschel, L. Lov�asz, and A. Schrijver: Geometric Algorithms and Com-

binatorial Optimization, Springer-Verlag, 1988.

[18] S. Iwata, L. Fleischer, and S. Fujishige: A combinatorial strongly polynomial

algorithm for minimizing submodular functions, J. ACM, submitted.

[19] L. Lov�asz: Submodular functions and convexity. Mathematical Programming

| The State of the Art, A. Bachem, M. Gr�otschel and B. Korte, eds., Springer-

Verlag, 1983, 235{257.

[20] L. Lov�asz: The membership problem in jump systems, J. Combin. Theory,

Ser. B, 70 (1997), 45{66.

[21] L. Qi: Directed submodularity, ditroids and directed submodular ows, Math.

Programming, 42 (1988), 579{599.

[22] A. Schrijver: A combinatorial algorithm minimizing submodular functions in

strongly polynomial time, J. Combin. Theory, Ser. B, to appear.

11

BFM(f):

Initialization:

L a linear ordering on V ;

� a sign function on V ;

x an extreme vector in P(f) generated by L and �;

I := f`g, y` := x, �` := 1, L` := L;

' := 0, := 0;

Æ kxk=n2;

While Æ � 1=3n2 do

Æ := Æ=2;

For (u; v) 2 V � V do

Change '(u; v) and (u; v) to the closest values in the interval [�Æ; Æ];

S := fv j x(v) + @'(v) + @ (v) � �Æg;

T := fv j x(v) + @'(v) + @ (v) � Æg;

X+ the set of vertices in V + reachable from S+ [T� in G(';);

Y � the set of vertices in V � reachable from S+ [T� in G(';);

Q the set of active triples and active pairs;

While 9Æ-augmenting path or Q 6= ; do

If 9P : Æ-augmenting path then

Augment(Æ; P; ';);

Update S, T , X+, Y �, Q;

Express x as x =
P

i2I �iyi by possibly smaller aÆnely independent

subset I and positive coeÆcients �i > 0 for i 2 I;

Else

While 6 9Æ-augmenting path and Q 6= ; do

Find an active (i; u; v) 2 Q or active (i; v) 2 Q;

Apply Double-Exchange(i; u; v) or Tail-Exchange(i; v);

Update X+, Y �, Q;

Return (X; Y);

End.

Figure 3: A scaling algorithm for bisubmodular function minimization.

12

