Bisubmodular Function Minimization

Satoru FUJISHIGE * Satoru IwaTA T

October 2000

Abstract

This paper presents the first combinatorial, polynomial-time algorithm
for minimizing bisubmodular functions, extending the scaling algorithm for
submodular function minimization due to Iwata, Fleischer, and Fujishige.

A bisubmodular function arises as a rank function of a delta-matroid.
The scaling algorithm naturally leads to the first combinatorial polynomial-
time algorithm for testing membership in delta-matroid polyhedra. Unlike
the case of matroid polyhedra, it remains open to develop a combinatorial
strongly polynomial algorithm for this problem.

*Division of Systems Science, Graduate School of Engineering Science, Osaka University, Toyo-
naka, Osaka 560-8531, Japan (fujishig@sys.es.osaka-u.ac.jp). Research partly carried out
while at Forschungsinstut fiir Diskrete Mathematik, Universitdt Bonn.

'Department of Mathematical Engineering and Information Physics, University of Tokyo,
Tokyo 113-8656, Japan (iwata®@sr3.t.u-tokyo.ac.jp).

1 Introduction

Let V be a finite nonempty set of cardinality n and 3" denote the set of ordered
pairs of disjoint subsets of V. Two binary operations LI and M on 3" are defined
by

(X1, Y1) U (X5, Y2) = (X1 UX2)\(Y1UY2), (Y1 UY2)\(X7 U X3))
(XL V)N (Xs,Ys) = (X1NXeY;NYs).

A function f : 3V — R is called bisubmodular if it satisfies
X1, 1) + F(X2, Ya) > F((X1, Y1) U (X, V) + (X1, V1) 1(X, 1))

for any (X1,Y7) and (X5, Y3) in 3V, This paper presents the first combinatorial
polynomial-time algorithm for minimizing bisubmodular functions.

A bisubmodular function generalizes a submodular function as follows. Let
2V denote the family of all the subsets of V. A function ¢ : 2" — R is called
submodular if it satisfies

9(Z1) + 9(Z2) > g(Z1 U Za) + g(Z1 N Zy)

for any 71,7, C V. For a submodular function ¢, we define a bisubmodular
function f : 3V — R by

FX,Y) = g(X) +g(V\Y) = g(V).

If (X,Y) is a minimizer of f, then both X and V\Y are minimizers of g. Thus,
bisubmodular function minimization is a generalization of submodular function
minimization.

The first polynomial-time algorithm for submodular function minimization is
due to Grotschel-Lovéasz—Schrijver [16]. They also give the first strongly polyno-
mial algorithms in [17]. Their algorithms rely on the ellipsoid method, which is not
efficient in practice. Recently, two combinatorial strongly polynomial algorithms
are devised independently by Schrijver [22] and Iwata—Fleischer—Fujishige [18].
Both of these new algorithms are based on a combinatorial pseudopolynomial-time
algorithm of Cunningham [8]. The algorithm of Schrijver [22] directly achieves
the strongly polynomial bound, whereas Iwata—Fleischer-Fujishige [18] develop a
scaling algorithm with weakly polynomial time complexity and then convert it to
a strongly polynomial one.

In the present paper, we extend the scaling algorithm of Iwata—Fleischer—
Fujishige [18] to solve the minimization problem for integer-valued bisubmodular
functions. The resulting algorithm runs in O(n’log M) time, where M designates
the maximum value of f. This bound is weakly polynomial, and it remains open
to develop a combinatorial strongly polynomial algorithm.

2

2 Delta-Matroids

A bisubmodular function arises as a rank function of a delta-matroid introduced
independently by Bouchet [3] and Chandrasekaran-Kabadi [6]. A delta-matroid is
a set system (V, F) with F being a nonempty family of subsets of V' that satisfies
the following exchange property:

\V/Fl,FQ € :F,VU € FlAFQ,El’LL € FIAFQ . Flﬂ{u,l)} € f,

where A denotes the symmetric difference. A slightly restricted set system with an
additional condition () € F had been introduced by Dress—Havel [11]. A member
of F is called a feasible set of the delta-matroid. Note that the base and the
independent-set families of a matroid saitisfy this exchange property. Thus, a
delta-matroid is a generalization of a matroid.

Chandrasekaran—Kabadi [6] showed that the rank function g : 3" — Z defined
by

o X,Y)=max{|XNF|—-|YNF||FeF}

is bisubmodular. The convex hull of the characteristic vectors of the feasible sets
is described by

Plo)={z |z e R",V(X,Y)€3":2(X) —z(Y) < o(X,Y)},

which is called the delta-matroid polyhedron. This fact follows from the greedy
algorithm [3, 6] for optimizing a linear function over the feasible sets.

Given a vector x € RY, one can test if x belongs to P(p) by minimizing a bisub-
modular function f(X,Y) = o(X,Y) — 2(X) + 2(Y). Even for such a special case
of bisubmodular function minimization, no combinatorial algorithm was known to
run in polynomial time. This is in contrast with the matroid polyhedron, for which
Cunningham [7] devised a combinatorial strongly polynomial algorithm for testing
membership.

A simple example of a delta-matroid is a matching delta-matroid [4], whose
feasible sets are the perfectly matchable vertex subsets of an undirected graph.
The delta-matroid polyhedron is the matchable set polytope [2]. For this special
case, Cunningham-Green-Krétki [10] developed an augmenting path algorithm for
solving the separation problem in polynomial time with the aid of the scaling
technique.

3 Bisubmodular Polyhedra

As a generalization of the delta-matroid polyhedron, a bisubmodular polyhedron
P(f)={r|zeR",V(X,Y) €3V :2(X) —z(Y) < f(X,Y)}

3

is associated with a general bisubmodular function f : 3V — R, where we assume
f(0,0) = 0. For a vector z € RY, we denote ||z|| = S,ev |z(v)]. The following
min-max relation characterizes the minimum value of f.

Theorem 3.1 ([15]) For any bisubmodular function f,
min f(X,¥) | (X,¥) € 3"} = max{|}z]| | = € P(f)}.
|

The linear optimization problem over the bisubmodular polyhedron can be
solved by the following greedy algorithm, which was first introduced by Dunstan—
Welsh [12].

Let 0 : V — {4+, —} be a sign function. For any subset U C V', we denote by
Ulo the pair (X,Y) € 3V with X = {u |u € Uyo(u) = +} and Y = {u | u €
U,o(u) = —}. We also write f(Ulo) = f(X,Y) for any function f : 3V — R, and
r(Ulo) = z(X) — z(Y) for any vector z € RV.

Let L = (vy,---,v,) be a linear ordering of V. For each j = 1,---,n, let
L(vj) = {vi,---,v;}. The greedy algorithm with respect to L and a sign function
o assigns y(v) := o(v){f(L(v)|o) — f(L(v)\{v}|o)} for each v € V. Then the
resulting vector y € RY is an extreme point of the bisubmodular polyhedron P(f).

Given a linear ordering L = (vy,---,v,) and a sign function o, for a weight
function w : V' — R that satisfies |w(vy)| > --- > |w(v,)| and w(v) = o(v)|w(v)|
for each v € V, the vector y generated by the greedy algorithm with respect
to L and o maximizes the linear function Y,y w(v)y(v) over the bisubmodular
polyhedron P(f). See [14, §3.5 (b)] for a survey on bisubmodular polyhedron
including the validity of the greedy algorithm (also see [1]).

Based on the validity of this greedy algorithm, Qi [21] established a connection
between bisubmodular functions and their convex extensions. This is a gener-
alization of a result of Lovédsz [19] on submodular functions, and it leads to a
polynomial-time algorithm for bisubmodular function minimization using the el-
lipsoid method.

The concept of bisubmodular polyhedron is extended to that of jump system
by Bouchet-Cunningham [5]. A jump system is a set of lattice points satisfying
a certain axiom. Examples include the set of degree sequences of a graph [9].
The lattice points contained in an integral bisubmodular polyhedron form a jump
system, called a convex jump system, and conversely the convex hull of a jump
system is an integral bisubmodular polyhedron. Recently, Lovasz [20] investigated
the membership problem in jump systems and proved a min-max theorem for a
fairly wide class of jump systems. This result contains many interesting combina-
torial theorems including Theorem 3.1. The present paper provides an algorithmic
approach to this membership problem in convex jump systems.

4

4 Scaling Algorithm

This section presents a scaling algorithm for minimizaing an integer-valued bisub-
modular function f : 3V — Z, provided that an oracle for evaluating the function
value is available.

The scaling algorithm works with a positive parameter §. The algorithm keeps
a vector x € P(f) as a convex combination of extreme points of P(f). Namely,
T = Yer Ny with A; > 0 for each ¢ € I and > ;c; \; = 1. Each extreme point
y; is generated by the greedy algorithm with respect to L; and o;. It also keeps
a pair of functions ¢ : V. xV — R and ¢ : V x V — R. The function ¢ is
skew-symmetric, i.e., p(u,v) + p(v,u) = 0 for any u,v € V, while ¢ is symmetric,
i.e., ¥(u,v) = (v, u) for any u,v € V. These functions are called J-feasible if they
satisfy —0 < p(u,v) < 6 and —6 < Y(u,v) < ¢ for any u,v € V. The boundaries
J¢ and 0 are defined by dp(u) =X, ¢(u,v) and 0P (u) = 3 ,cv ¥ (u, v).

The algorithm starts with an extreme point € P(f) generated by the greedy
algorithm with respect to a linear ordering L and a sign function o. The initial
value of ¢ is given by ¢ := [|z||/n>.

Each scaling phase starts by cutting the value of § in half. Then it modifies
¢ and 1) to make them J-feasible. This can be done by setting each ¢(u,v) and
(u,v) to the closest values in the interval [—d,6]. The rest of the scaling phase
aims at decreasing ||z|| for z = z + dp + 0.

Given o-feasible ¢ and 1, the algorithm constructs an auxiliary directed graph
G(p,) as follows. Let V't and V'~ be the copies of V. For each v € V', we denote
its copies by v € V™ and v~ € V™. The vertex set of G(p,) is VT UV ™. The
arc set A(p, 1) = A(p) U A(y) of G(p, 1) is defined by

2=
3
I

{(w07) [u# v, o(u,v) <O}U{(u™,07) [u# v, o(u,v) > 0},
A@) = {@W"v) [¥(u,0) <0}U{(u,0") [¢(u,v) = 0},

Let S ={v|veVzv) <—=6}andT ={v|veVzw) > Asm-
ple directed path in G(p,1) from ST UT~ to S~ UTT is called a §-augmenting
path. If there exists a d-augmenting path P, the algorithm applies the following
d-augmentation to ¢ and .

Augment(, P, ¢, 1):
e For each (u*,v*) in P, p(u,v) = o(u,v) +6/2 and (v, u) == o(v,u) — 6/2.
e For each (u=,v™) in P, p(u,v) == p(u,v) — 6/2 and (v, u) = (v, u) +6/2.
o For each (u*,v") in P, ¥(u, v) 1= tb(u, v) +6/2 and (v, u) 1= (v, u) +6/2.
e For each (u~,vt) in P, ¢(u,v) = (u, v) — 6/2 and (v, u) == (v, u) — /2.

5

As a result of a d-augmentation, ||z|| decreases by .

After each d-augmentation, the algorithm computes an expression of x as a
convex combination of affinely independent extreme points of P(f) chosen from
among {y; | 7 € I}. This can be done by a standard linear programming technique
using Gaussian elimination.

If there is no d-augmenting path, let X* C V™ and Y~ C V™~ be the sets
of vertices reachable by directed paths from S* U T~. Then we have S C X,
T CY,and XNY = (. For each ¢« € I, consider a pair of disjoint subsets
Wi ={u|u™ec XtuY~}and R; = {u | u”®™ € X~ UY*+}. We now introduce
two procedures Double-Exchange and Tail-Exchange.

Procedure Double-Exchange(i, u, v) is applicable if « immediately succeeds v in
L; and either uw € W; and v ¢ W; or u ¢ R; and v € R; hold. Such a triple (i, u, v)
is called active. The first step of the procedure is to compute

B = oi(uw){f(Li(u)\{v}|o:) — f(Li(u)loi) + yi(v)}.

Then it interchanges v and v in L; and updates y; as y; := y;+ 3(0;(v) xu —0: (V) X0)-
The resulting y; is an extreme point generated by the new linear ordering L; and
sign function o;.

If \;3 < 6, Double-Exchange(i, u, v) is called saturating. Otherwise, it is called
nonsaturating. In the nonsaturating case, the procedure adds to I a new index k
with yx, or and Ly being the previous y;, o; and L;, and assigns A\, := \; — ¢/
and \; := §/F. In both cases, x moves to z := x + a(o;(u)x, — 0i(v)x,) with
a = min{d, \;#}. In order to keep z invariant, the procedure finally modifies ¢ or 1)
appropriately. If o;(u) = 0;(v), it updates ¢(u, v) := p(u,v)—0o;(u)a and p(v,u) :=
o(v,u) + o;(u)a. On the other hand, if o;(u) # o;(v), then ¢ (u,v) := (u,v) —
oi(u)a and (v, u) = Y(v,u) — o;(u)a. A formal description of Double-Exchange
is given in Figure 1.

Procedure Tail-Exchange(i,v) is applicable if v is the last element in L; and
v € R;. Such a pair (i,v) is also called active. The first step of the procedure is to
reverse the sign o;(v). It then computes

= f(V]ei) = F(VA\{viloi) — oi(v)yi(v)

and updates y; := y; + 0;(v)Bx,. The resulting y; is an extreme point generated
by L; and the new o;.

If \;8 < 4, Tail-Exchange(i, v) is called saturating. Otherwise, it is called nonsat-
urating. In the nonsaturating case, the procedure adds to I a new index k with y,
or and Ly being the previous y;, 0; and L;, and assigns A, := \;—d/F and \; :== /.
In both cases, x moves to = := = + 0;(v)ax, with o = min{J, \;3}. In order to
keep z invariant, the procedure finally modifies 1) as (v, v) := ¥ (v,v) — o;(v)a. A
formal description of Tail-Exchange is given in Figure 2.

6

Double-Exchange(i, u, v);
8 = aa(w) {(f (LaCu)\ [} o) — F(Liwlow) + (o)
« := min{d, \;(};
If < \;3 then
k <— a new index;

I:=TU{k};
Ak o= A — a/ B
i =B

Yk = Yi;

Lk = Lz;

Update L; by interchanging u and v;
yi =Y + Bloi(u)xu — 0i(v)x0);
T=r+ a(ai(u)Xu - Ui(v)Xv);
If 0;(u) = 0;(v) then
o(u,v) := p(u,v) — o;(u)a;
o(v,u) = p(v,u) + o;(u)a;
Else
Y(u,v) = P(u,v) — o;(u)a;
(v, u) = P(v,u) — o;(u)a.

Figure 1: Algorithmic description of Procedure Double-Exchange(i, u, v).

If there is no d-augmenting path and neither Double-Exchange nor Tail-Exchange
is applicable, the algorithm terminates the d-scaling phase by cutting the value of

0 in half.
A formal description of our scaling algorithm BFM is now given in Figure 3.

5 Validity and Complexity

This section is devoted to the analysis of our scaling algorithm. We first discuss
the validity.

Lemma 5.1 At the end of the §-scaling phase, the current (X,Y) € 3V and 2z =
x4 0p + 0y satisfy ||z]] < 2nd — f(X,Y).

Proof. At the end of the d-scaling phase, we have y;(X) — y;(Y) = f(X,Y) for
each i € I. Hence, x satisfies 2(X) —z(Y) = f(X,Y). By the definition of (X,Y),
we immediately have dp(X) > 0, dp(Y') < 0, 0(X) > 0, and 0¢¥(Y) < 0, where

7

Tail-Exchange(i, v);
oi(v) == —0;(v);
B = fVlei) = F(V\{v}loi) — oi(v)yi(v);
« := min{d, \;0};
If a < \;0 then
k <— a new index;

I:=T1TU{k};
A= N — /B
Ai = aff3;

Yk = Yi;

Yi = Yi + 0i(v) Bx;
T =T + 0;(v)axy;

Y(v,v) :=Y(v,v) — o;(v) .

Figure 2: Algorithmic description of Procedure Tail-Exchange(i, v).

note that dp(X) = Y{¢(u,v) | u € X,v € V\X} with p(u,v) >0 (u € X,v €
V'\ X) and similarly the other inequalities. Since S C X and 7' C Y, we have
z(v) > —=§ for v € V\X and z(v) < 0 for v € V\Y and . Therefore, we have
2] < —2(X) +2(Y) +2n6 < —2(X) +2(Y) +2nd = —f(X,Y) + 2nd. [

Theorem 5.2 The algorithm obtains a minimizer of f at the end of the §-scaling
phase with 6 < 1/3n?.

Proof. Since [0p(v)| < (n — 1) and |9y (v)| < nd for each v € V, it follows from

Lemma 5.1 that [|z|| < (2n2+n)d— f(X,Y) < 1— f(X,Y). For any (X', Y’) € 3V,

we have f(X",Y') > —|jz|| > f(X,Y) — 1. Hence (X,Y) is a minimizer of the

integer-valued function f. [|
We now give a running time bound of our algorithm.

Lemma 5.3 Each scaling phase performs O(n?) augmentations.

Proof. At the beginning of the d-scaling phase, the algorithm modifies ¢ and
¢ to make them Jd-feasible. This changes ||z|| by at most 2n?§. Therefore, by
Lemma 5.1, the pair (X, Y') must satisfy ||z]| < 2n?5+4nd— f(X,Y) after updating
¢ and ¢ at the beginning of the d-scaling phase. On the other hand, we have
2] > —2(X) + 2(Y) > —z(X) + 2(Y) — 2n?0 = —f(X,Y) — 2n%5. Thus ||z||

8

decreases by at most 4nd + 4n2§ until the end of the d-scaling phase. Since each
d-augmentation decreases ||z|| by d, the number of §-augmentations in the d-scaling
phase is at most 4n? + 4n, which is O(n?). [|

Lemma 5.4 The algorithm performs Procedure Double-Exchange O(n?) times and
Tail-Exchange O(n?) times between §-augmentations.

Proof. Procedure Double-Exchange moves a vertex of W, towards the head of L;
and/or a vertex in R; towards the tail of L;. Procedure Tail-Exchange changes a
vertex of R; to W;. No vertex goes out of W;. A vertex of R; can be switched
to W; by Tail-Exchange. However, it does not go out of R; UW;. Thus, for each
i € I, after at most O(n?) applications of Double-Exchange and O(n) applications
of Tail-Exchange to i € I, the subset R; is empty and W = L(w) holds for some
w € V. At this point, neither Double-Exchange nor Tail-Exchange is applicable to
e 1.

After each d-augmentation, the algorithm updates the convex combination
T = Yier Ay so that [I| < n+ 1. A new index is added to I as a result of
nonsaturating Double-Exchange(i, u,v) and Tail-Exchange(i,v). In both cases, v
joins W;. This can happen at most n — 1 times before the algorithm finds a §-
augmenting path or finishes the d-scaling phase. Hence, |I| is always O(n), and the
algorithm performs Double-Exchange O(n?) times and Tail-Exchange O(n?) times
between J-augmentations. |

Let M be the maximum value of f. Since f(, () = 0, the maximum value M
is nonnegative.

Theorem 5.5 The scaling algorithm finds a minimizer of f in O(n°log M) time.

Proof. For the initial x € P(f), let B = {v | z(v) > 0} and C' = {v | z(v) < 0}.
Then we have ||z|]| = z(B) —x(C) < f(B,C) < M. Hence the algorithm performs
O(log M) scaling phases. It follows from Lemmas 5.3 and 5.4 that each scaling
phase performs O(n®) function evaluations and arithmetic operations. Therefore
the total running time is O(n°log M).]

6 Conclusion

We have described a polynomial-time algorithm for minimizing integer-valued
bisubmodular functions. If we are given a positive lower bound e for the difference
between the minimum and the second minimum value of f, a variant of the present
algorithm works for any real-valued bisubmodular function f. The only required
modification is to change the stopping rule § < 1/3n? to § < ¢/3n?. The running
time is O(n®log(M/€)). Thus we obtain a polynomial-time algorithm for testing
membership in delta-matroid polyhedra. One can make this algorithm strongly

9

polynomial with the aid of a generic preprocessing technique of Frank—Tardos [13]
using simultaneous Diophantine approximation. However, a more natural strongly
polynomial algorithm is desirable.

References

[1] K. Ando and S. Fujishige: On structures of bisubmodular polyhedra, Math.
Programming, 74 (1996), 293-317.

2] E. Balas and W. R. Pulleyblank: The perfectly matchable subgraph polytope
of an arbitrary graph, Combinatorica, 9 (1989), 321-337.

(3] A. Bouchet: Greedy algorithm and symmetric matroids, Math. Programming,
38 (1987), 147-150.

[4] A. Bouchet: Matchings and A-matroids, Discrete Appl. Math., 24 (1989),
55-62.

(5] A.Bouchet and W. H. Cunningham: Delta-matroids, jump systems and bisub-
modular polyhedra, SIAM J. Discrete Math., 8 (1995), 17-32.

[6] R. Chandrasekaran and S. N. Kabadi: Pseudomatroids, Discrete Math., 71
(1988), 205-217.

[7] W. H. Cunningham: Testing membership in matroid polyhedra, J. Combin.
Theory, B36 (1984), 161-188.

8] W. H. Cunningham: On submodular function minimization, Combinatorica,
5 (1985), 185-192.

9] W. H. Cunningham and J. Green-Kro6tki: b-matching degree sequence poly-
hedra, Combinatorica, 11 (1991), 219-230.

[10] W. H. Cunningham and J. Green-Krétki: A separation algorithm for the
matchable set polytope, Math. Programming, 65 (1994), 139-150.

[11] A. Dress and T. F. Havel: Some combinatorial properties of discriminants in
metric vector spaces, Adv. Math., 62 (1986), 285-312.

[12] F. D. J. Dunstan and D. J. A. Welsh: A greedy algorithm solving a certain
class of linear programmes, Math. Programming, 5 (1973), 338—-353.

[13] A. Frank and E. Tardos: An application of simultaneous Diophantine approx-
imation in combinatorial optimization, Combinatorica, 7 (1987), 49-65.

10

[14]

[15]

[16]

[17]

18]

[19]

S. Fujishige: Submodular Functions and Optimization, North-Holland, 1991.

S. Fujishige: A min-max theorem for bisubmodular polyhedra, STAM J. Dis-
crete Math., 10 (1997), 294-308.

M. Grotschel, L. Lovasz, and A. Schrijver: The ellipsoid method and its con-
sequences in combinatorial optimization, Combinatorica, 1 (1981), 169-197.

M. Grotschel, L. Lovéasz, and A. Schrijver: Geometric Algorithms and Com-
binatorial Optimization, Springer-Verlag, 1988.

S. Iwata, L. Fleischer, and S. Fujishige: A combinatorial strongly polynomial
algorithm for minimizing submodular functions, J. ACM, submitted.

L. Lovasz: Submodular functions and convexity. Mathematical Programming
— The State of the Art, A. Bachem, M. Grotschel and B. Korte, eds., Springer-
Verlag, 1983, 235-257.

L. Lovéasz: The membership problem in jump systems, J. Combin. Theory,
Ser. B, 70 (1997), 45-66.

L. Qi: Directed submodularity, ditroids and directed submodular flows, Math.
Programming, 42 (1988), 579-599.

A. Schrijver: A combinatorial algorithm minimizing submodular functions in
strongly polynomial time, J. Combin. Theory, Ser. B, to appear.

11

BFM(f):
Initialization:
L < a linear ordering on V;
0 < a sign function on V/;
x < an extreme vector in P(f) generated by L and o;
I={}, yp:=x, \p:=1, Ly := L;
p:=0,v:=0;
0 « ||zl /n*;
While § > 1/3n? do
§:=0/2;
For (u,v) € V xV do
Change ¢(u,v) and ¢ (u, v) to the closest values in the interval [—4, d];
S :={v|z(v)+ 0p(v) + 0(v) < —6};
T :={v]|z(v)+ 0p(v) + 0Y(v) > 6};
X « the set of vertices in V' reachable from ST UT™ in G(¢, ¥);
Y~ « the set of vertices in V'~ reachable from ST UT™ in G(y, ¢);
R < the set of active triples and active pairs;
While 35-augmenting path or Q # 0 do
If 9P: f-augmenting path then
Augment(d, P, ¢, 1);
Update S, T, X*, Y, Q;
Express z as x = ;<1 Ajy; by possibly smaller affinely independent
subset I and positive coefficients \; > 0 for ¢ € I;
Else
While Af-augmenting path and Q # () do
Find an active (i,u,v) € @ or active (i,v) € Q;
Apply Double-Exchange(i, u, v) or Tail-Exchange(i, v);
Update X+, Y, Q;
Return (X,Y);
End.

Figure 3: A scaling algorithm for bisubmodular function minimization.

12

