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Abstract

This paper presents a strongly polynomial algorithm for submodular

function minimization using only additions, subtractions, comparisons, and

oracle calls for function values.

1 Introduction

Let U be a �nite nonempty set of cardinality n. A function f de�ned on the subsets

of U is submodular if it satisi�es

f(X) + f(Y ) � f(X \ Y ) + f(X [ Y ); 8X; Y � U:

Examples of submodular functions include cut capacity functions, matroid rank

functions, and entropy functions.

Gr�otschel{Lov�asz{Schrijver [8, 9] showed that submodular functions can be

minimized in strongly polynomial time by the ellipsoid method. Combinatorial

strongly polynomial algorithms are developed independently by Iwata{Fleischer{

Fujishige (IFF) [11] and Schrijver [15]. Both of these algorithms are based on the

�rst combinatorial pseudopolynomial-time algorithm due to Cunningham [2]. The

IFF algorithm employs a scaling scheme for submodular functions developed in the

design of capacity scaling algorithms for submodular 
ows [4, 10], while Schrijver's

algorithm builds more directly on Cunningham's algorithm.

These combinatorial algorithms perform multiplications and divisions, despite

the problem of submodular function minimization does not involve multiplications

nor divisions. Schrijver [15] asks if one can minimize submodular functions in

strongly polynomial time using only additions, subtractions, comparisons, and the
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oracle calls for function values. Such an algorithm is called `fully combinatorial.'

The present paper settles this problem by developing a fully combinatorial variant

of the IFF algorithm.

A fully combinatorial algorithm consists of oracle calls for function evaluation

and fundamental operations including additions, subtractions, and comparisons.

Such an algorithm is strongly polynomial if the total number of oracle calls and

fundamental operations is bounded by a polynomial in the dimension n of the

problem. In the design of a fully combinatorial, strongly polynomial algorithm, we

are allowed to multiply an integer which is bounded by a polynomial in n. We are

also allowed to compute an integer rounding of a ratio of two numbers, provided

that the answer is bounded by a polynomial in n.

Fully combinatorial, strongly polynomial algorithms are known for quite a few

combinatorial optimization problems, e.g., the minimum spanning tree, shortest

path, maximum 
ow, and assignment problems. For the minimum cost 
ow

problem, the �rst strongly polynomial algorithm due to Tardos [17] is not fully

combinatorial because it uses the Gaussian elimination. However, its variant by

Fujishige [6] provides a fully combinatorial implementation. For the problem of

testing membership in matroid polyhedra, which is a special case of submodular

function minimization, Cunningham [1] devised a strongly polynomial algorithm

and its fully combinatorial implementation. For �nding a proper nonempty sub-

set minimizing a symmetric submodular function, Queyranne [14] presented a fully

combinatorial, strongly polynomial algorithm, extending a minimum cut algorithm

of Nagamochi{Ibaraki [13] for undirected graphs.

An advantage of fully combinatorial algorithms is that they are easily extended

to solve the problem over any totally ordered additive group. In fact, our algorithm

as well as its analysis can be applied to submodular functions over an arbitrary

totally ordered additive group.

This paper is organized as follows. Section 2 provides preliminaries on base

polyhedra. In Section 3, we decribe an outline of our algorithm. The algorithm

repeatedly applies a procedure Fix, which will be described in Section 4. Finally,

in Section 5, we discuss the time complexity to show that the algorithm is strongly

polynomial.

2 Base Polyhedra

This section provides preliminaries on submodular functions and base polyhedra.

See [5, 7, 12] for more details and general background.

For a vector x 2 RU and a subset X � U , we denote x(X) =
P

u2X x(u). We

also denote by x� a vector inRU de�ned by x�(u) = minfx(u); 0g. For each u 2 U ,

we denote by �u the vector in RU with �u(u) = 1 and �u(v) = 0 for v 2 Unfug.
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For a submodular function f : 2U ! R with f(;) = 0, we consider the base

polyhedron

B(f) = fx j x 2 RU ; x(U) = f(U); 8X � U : x(X) � f(X)g:

A vector in B(f) is called a base. In particular, an extreme point of B(f) is called

an extreme base. An extreme base can be computed by the greedy algorithm of

Edmonds [3] and Shapley [16] as follows.

Let L = (v1; � � � ; vn) be a linear ordering of U . For any vj 2 U , we denote

L(vj) = fv1; � � � ; vjg. The greedy algorithm with respect to L generates an extreme

base y 2 B(f) by

y(u) := f(L(u))� f(L(u)nfug):

Conversely, any extreme base can be obtained by this way with an appropriate

linear ordering.

Suppose u immediately succeeds v in a linear ordering L that generates an ex-

treme base y 2 B(f). Let L0 be a linear ordering obtained from L by interchanging

u and v. Then the extreme base y0 2 B(f) generated by L0 can di�er from y only

at u and v. More precisely, it satis�es y0 = y + �(�u � �v) with

� = f(L(u)nfvg)� y(L(u)nfvg) � 0:

This quantity � is called an exchange capacity.

We now introduce the size �(f) of B(f) by

�(f) = maxff(fug) + f(Unfug)� f(U) j u 2 Ug:

Since any base y 2 B(f) must satisfy f(U)� f(Unfug) � y(u) � f(fug) for each

u 2 U , the size �(f) serves as an upper bound on exchange capacities.

3 A Fully Combinatorial Algorithm

This section presents an outline of our fully combinatorial algorithm for minimizing

a submodular function f : 2U ! R. The algorithm consists of iterations. Each

iteration calls a procedure Fix described in Section 4.

The algorithm works with a directed acyclic graph D = (V; F ) and a subset

Z � U that is included in every minimizer of f . The vertex set V of D corresponds

to a partition of UnZ. For a subset Y � V , we denote by �(Y ) the union of the

subsets of U represented by the vertices in Y . Each arc (u; v) 2 F re
ects an

implication that a minimizer of f including �(fug) must include �(fvg) as well. A

subset Y � V is called an ideal of D if no arc leaves Y in D. Thus any minimizer

W of f is in the form of W = �(Y )[Z for some ideal Y . Initially, Z := ;, V := U

and F := ;, which apparently satisfy the above properties.
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The set D of all the ideals of D forms a distributive lattice. We now consider a

function bf de�ned by bf(Y ) = f(�(Y ) [ Z)�minff(Z); f(U)g for Y 2 Dnf;; V g

and bf(;) = bf(V ) = 0. It is easy to verify that bf is submodular on D.

For each vertex v 2 V , we denote by R(v) the set of vertices reachable from v

in D. Let h be a vector in RV de�ned by h(v) = maxf0; bf(R(v))� bf(R(v)nfvg)g,
and consider � = maxfh(v) j v 2 V g.

In each iteration, the algorithm deals with a function g : 2V ! R introduced

as follows. For each subset X � V , we denote by X the unique maximal member

of D included in X. The function g is now de�ned by

g(X) = bf(X)� h(X) + h(X) (X � V ):

Note that h(v) = g(fvg) for v 2 V , and hence � = maxfg(fvg) j v 2 V g.

Lemma 1 The function g is submodular, and �(g) � n�.

Proof. For any X 2 D and v 2 V nX with X [ fvg 2 D, we have

bf(X [ fvg)� h(X [ fvg) = bf(X [ fvg)� bf(R(v)) + bf(R(v)nfvg)� h(X)

� bf(X)� h(X):

Thus the function bf � h is monotone nonincreasing in D. For any X; Y � V , we

have X \ Y = X \ Y and X [ Y � X [ Y . Therefore,

bf(X)� h(X) + bf(Y )� h(Y ) � bf(X [ Y )� h(X [ Y ) + bf(X \ Y )� h(X \ Y )

� bf(X [ Y )� h(X [ Y ) + bf(X \ Y )� h(X \ Y ):

Since h(X) + h(Y ) = h(X [ Y ) + h(X \ Y ), this implies the submodularity of g.

Recall that g(V ) = 0 and g(fvg) � � for each v 2 V . By the submodularity of g,

we have g(V nfvg) � (jV j�1)�. Thus we obtain g(fvg)+g(V nfvg)�g(V ) � jV j�,

which implies �(g) � jV j� � n�.

Lemma 2 Any minimizer W � U of f is represented as W = �(Y ) [ Z by a

minimizer Y � V of g.

Proof. Recall that any minimizer W of f is represented as W = �(Y ) [ Z by

some Y 2 D. Then bf(Y ) = f(W ) � minff(Z); f(U)g � 0 and bf(Y ) � bf(X) for

any X 2 DnfV; ;g. Thus Y is a minimizer of bf . By the de�nition of g, we have

g(X) � bf(X) = g(X) for any X � V . Therefore, Y must be a minimizer of g.

Lemma 3 If � = 0, then U or Z is a minimizer of f .
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Proof. Let X be the unique maximal minimizer of g in D. If X 6= V , by the

submodularity of g, we have g(X [ fvg)� g(X) � g(fvg) � 0 for v 2 V nX, which

contradicts the de�nition of X. Thus V is a minimizer of g, and hence g(X) � 0

for X � V , which implies bf(Y ) � 0 for Y 2 D.

Any minimizer W of f is represented as W = �(Y ) [ Z by some Y 2 D. It

follows from bf(Y ) � 0 that f(W ) = f(�(Y ) [ Z) � minff(U); f(Z)g. Thus U or

Z is a minimizer of f .

We now describe the outline of our fully combinatorial algorithm for submodular

function minimization. At the beginning of each iteration, the algorithm computes

�. If � = 0, then the algorithm �nds a minimizer of f by Lemma 3.

If � > 0, let u be the vertex that attains the maximum of h. Since � =
bf(R(u))� bf(R(u)nfug), either 2 bf(R(u)) � � or 2 bf(R(u)nfug) < ��.

If 2 bf(R(u)nfug) < �� < 0, the algorithm applies a procedure Fix(g; �) to �nd

a vertex w 2 V that is contained in every minimizer of g. Since �(fwg) must be

included in every minimizer of f by Lemma 2, the algorithm adds �(fwg) to Z

and deletes w from D. The resulting Z and D continues to satisfy the required

properties.

If 2 bf(R(u)) � � > 0, the algorithm applies a procedure Fix(gu; �) to �nd a

vertex w 2 V nR(u) that is contained in every minimizer of gu de�ned by

gu(X) = g(X [ R(u))� g(R(u)) (X � V nR(u)):

Note that gu is submodular, �(gu) � �(g) � n�, and 2gu(V nR(u)) � ��. A subset

X � V nR(u) is a minimizer of gu if and only if X [ R(u) minimizes g among

those subsets that contains u. Therefore, any minimizer of g containing u must

contain w. This implies by Lemma 2 that any minimizer of f including �(fug)

must include �(fwg). Then the algorithm adds a new arc (u; w) to F . If this yields

a directed cycle Q, any minimizer of f must include all or none of the elements

represented by the vertices in Q, and hence the algorithm contracts Q to a single

vertex. The resulting Z and D continues to satisfy the required properties.

As a result of each iteration with � > 0, the algorithm deletes a vertex from

D or adds a new arc to D. Therefore, after at most n2 iterations, the algorithm

terminates with � = 0, which provides a minimizer of f by Lemma 3.

4 The Fixing Procedure

This section describes the procedure Fix(g; �) for �nding a vertex w 2 V that is

contained in every minimizer of a submodular function g : 2V ! R with �(g) � n�.

We denote � = jV j and assume � � n. We also assume that there is a subset

Y � V such that 2g(Y ) � �. Whenever the algorithm calls Fix, these conditions

are satis�ed.
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The procedure consists of scaling phases with a scale parameter p 2 Z, which is

initially set as p := 1. It keeps a set of linear orderings fLi j i 2 Ig of the vertices

in V . Each linear ordering Li generates an extreme base yi 2 B(g) by the greedy

algorithm. The procedure also keeps a set of nonnegative integral coeÆcients

f�i j i 2 Ig such that
P

i2I �i = p. Initially, I = f0g with an arbitrary linear

ordering L0 and �0 = 1.

Furthermore, the procedure works with a 
ow in the complete directed graph

with the vertex set V . The 
ow is represented as a skew-symmetric function

' : V � V ! R. Each arc capacity is equal to n�. Namely, '(u; v) + '(v; u) = 0

and �n� � '(u; v) � n� hold for any pair of vertices u; v 2 V . The boundary

@' is de�ned by @'(u) =
P

v2V '(u; v) for u 2 V . Initially, '(u; v) = 0 for any

u; v 2 V .

Each scaling phase aims at increasing z�(V ) for z = @' +
P

i2I �iyi. Given

a 
ow ', the procedure constructs an auxiliary directed graph G(') = (V;A('))

with arc set A(') = f(u; v) j u 6= v; '(u; v) � 0g. Let S = fv j z(v) � �n�g and

T = fv j z(v) � n�g. A directed path in G(') from S to T is called an augmenting

path.

Let W be the set of vertices reachable from S in G('). A triple (i; u; v) of

i 2 I, u 2 W , and v 2 V nW is called active if u immediately succeeds v in Li. We

now describe an operation Double-Exchange that is applicable to an active triple

(i; u; v). See Figure 1 for the formal description.

The �rst step of Double-Exchange(i; u; v) is to compute the exchange capacity

� = g(Li(u)nfvg)� yi(Li(u)nfvg):

Recall that the exchange capacity � satis�es � � �(g) � n�. If '(u; v) � �i�,

Double-Exchange(i; u; v) is called saturating. Otherwise, it is called nonsaturating.

In the nonsaturating Double-Exchange(i; u; v), a new index k is added to I. The

associated yk and Lk are the previous yi and Li, respectively. Then it computes

q := d'(u; v)=�e by repeatedly subtracting � from '(u; v). Since '(u; v) < �i�, the

number of required subtractions is at most �i � p. More eÆciently, we can carry

out this computation of q by O(log2 p) fundamental operations. The associated

coeÆcient �k is given by �k := �i � q, and then �i is replaced by �i := q. Note

that the new �i satis�es '(u; v) � �i� � '(u; v) + �.

Whether saturating or nonsaturating, Double-Exchange(i; u; v) interchanges u

and v in Li and updates yi as yi := yi+�(�u��v). The resulting yi is an extreme

base generated by the new linear ordering Li. The �nal step of Double-Exchange is

to adjust ' so that z = @'+
P

i2I �iyi is invariant. Namely, '(u; v) := '(u; v)� �

and '(v; u) := '(v; u) + � with � = �i�. The resulting ' satis�es �n� � �� �

'(u; v) � n�. If Double-Exchange(i; u; v) is nonsaturating, it satis�es '(u; v) � 0,

which implies that v is now reachable from S in G(').

We are now ready to describe the procedure Fix.
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Double-Exchange(i; u; v);

� := g(Li(u)nfvg)� yi(Li(u)nfv)g);

If '(u; v) < �i� then

q := d'(u; v)=�e

k  a new index;

I := I [ fkg;

�k := �i � q;

�i := q;

yk := yi;

Lk := Li;

Update Li by interchanging u and v;

yi := yi + �(�u � �v);

'(u; v) := '(u; v)� �i�;

'(v; u) := '(v; u) + �i�.

Figure 1: Algorithmic description of Double-Exchange(i; u; v).

Procedure Fix(g; �):

Step 0: Let L0 be an arbitrary linear ordering. Compute an extreme base y0 by

the greedy algorithm with respect to L0. Put p := 1, �0 := 1, I := f0g, and

'(u; v) := 0 for u; v 2 V .

Step 1: While there is an augmenting path or an active triple, repeat the following

(1-1) If there is an augmenting path P , then augment the 
ow ' along P

by updating '(u; v) := '(u; v)+n� and '(v; u) := '(v; u)�n� for each

arc (u; v) in P .

(1-2) Otherwise, apply Double-Exchange to an active triple (i; u; v).

Step 2: If x(w) < �n2�� for some w 2 V , then return w.

Step 3: Put p := 2p and �i := 2�i for each i 2 I. Go to Step 1.

One execution of Step 1 is referred to as a scaling phase in the following analysis.

Lemma 4 At the end of a scaling phase, z�(V ) � pg(W )� n�� holds.

Proof. Since there is no active triple, we have yi(W ) = g(W ) for each i 2 I,

and hence x(W ) =
P

i2I �iyi(W ) = pg(W ). Note that z(v) < n� for v 2 W and
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z(v) > �n� for v 2 V nW . Therefore, we have z�(V ) = z�(W ) + z�(V nW ) �

z(W )� n�jW j � n�jV nW j = x(W ) + @'(W ) � pg(W )� n��.

Theorem 5 If x(w) < �n�2� at the end of a scaling phase, w is contained in

every minimizer of g.

Proof. By Lemma 4, the set W satis�es z�(V ) � pg(W ) � n��. Since '(v) �

(� � 1)n� for each v 2 V , we have x�(V ) � z�(V )� �(� � 1)n� � pg(W )� n�2�.

For any minimizer X of g, we have pg(W ) � pg(X) � x(X) � x�(X). Thus we

obtain x�(V ) � x�(X)� n�2�, which implies w 2 X if x(w) < �n�2�.

5 Complexity

This section is devoted to complexity analysis of our fully combinatorial algorithm.

Lemma 6 The procedure Fix consists of O(logn) scaling phases.

Proof. Recall that there is a subset Y � U such that 2g(Y ) � �. After 2+blog
2
n�3c

scaling phases, the scale parameter p satis�es p > 2n�3. Therefore, we have x(Y ) =P
i2I �iyi(Y ) � pg(Y ) < �n�3�, which implies there exists a vertex w 2 Y such

that x(w) < �n�2�. Thus the procedure terminates after O(logn) scaling phases.

Lemma 7 The procedure Fix performs O(�2 logn) augmentations.

Proof. At the beginning of each scaling phase, the set W obtained by the previous

scaling phase satis�es z�(V ) � pg(W ) � n�� by Lemma 4. For the �rst scaling

phase, we have the same inequality by takingW = V . Note that z�(V ) � pg(X)+

�(��1)n� for any X throughout the procedure. Thus each scaling phase increases

z�(V ) by at most n�2�. Since each augmentation increases z�(V ) by n�, each

scaling phase performs at most �2 augmentations. Then it follows from Lemma 6

that the total number of augmentations in Fix is O(�2 logn).

Lemma 8 The procedure Fix performs nonsaturating Double-Exchange O(�3 logn)

times.

Proof. If Double-Exchange(i; u; v) is nonsaturating, the vertex v becomes reachable

from S in G('), which means the set W is enlarged. Thus there are at most �

applications of nonsaturating Double-Exchange between augmentations. Since Fix

performs O(�2 logn) augmentations by Lemmas 7, the number of nonsaturating

applications of Double-Exchange is O(�3 logn).

Lemma 9 The procedure Fix maintains O(�3 logn) extreme bases.
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Proof. A new index k is added to I only as a result of nonsaturatingDouble-Exchange.

Hence, it follows from Lemma 8 that jIj is O(�3 logn).

Lemma 10 The procedure Fix performs Double-Exchange O(�7 log2 n) times.

Proof. Once the procedure applies Double-Exchange(i; u; v), the vertices u and v

are interchanged in Li, and the triple (i; u; v) never becomes active again until the

next augmentations or the end of the phase. Hence, for each i 2 I, the procedure

applies Double-Exchange O(�2) times between augmentations. Then it follows from

Lemmas 6 and 9 that the procedure performs Double-Exchange O(�7 log2 n) times.

Theorem 11 The fully combinatorial algorithm �nds a minimizer of f by O(n9 log2 n)

oracle calls of the function values of f and O(n11 log2 n) fundamental operations.

Proof. The fully combinatorial algorithm calls the procedure Fix O(n2) times.

Each application of Double-Exchange requires a function evaluation of g, which

requires an O(n2) steps and an oracle call for the value of f . Thus, by Lemma 10,

the algorithm performs O(n9 log2 n) oracle calls of the function values of f and

O(n11 log2 n) fundamental operations.
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