0.863-Approximation Algorithm for MAX DICUT

Shiro Matuura! and Tomomi Matsui?

! Graduate School of Information Science and Technology,
University of Tokyo, Tokyo, Japan
shiro@misojiro.t.u-tokyo.ac.jp
2 Graduate School of Information Science and Technology,
University of Tokyo, Tokyo, Japan
tomomi@misojiro.t.u-tokyo.ac.jp

Abstract

In this paper, we propose 0.863-approximation algorithm for MAX
DICUT. The approximation ratio is better than the previously known
result by Zwick, which is equal to 0.8596434254.

The algorithm solves the SDP relaxation problem proposed by Goe-
mans and Williamson for the first time. We do not use the ‘rotation’
technique proposed by Feige and Goemans. We improve the approx-
imation ratio by using hyperplane separation technique with skewed
distribution function on the sphere. We introduce a class of skewed
distribution functions defined on the 2-dimensional sphere satisfying
that for any function in the class, we can design a skewed distribution
functions on any dimensional sphere without decreasing the approxi-
mation ratio. We also searched and found a good distribution function
defined on the 2-dimensional sphere numerically.

1 Introduction

In this paper we propose an approximation algorithm for the optimization
problem called MAX DICUT. Let D = (V, A) be a complete directed graph
with vertex set V' = {1,2,...,n} and arc set A = {(i,7) e VxV | i # j}.
For each arc (i,7) € A, we associate the non-negative arc weight w;;. An
arc subset A’ C A is called a dicut if and only if there exists a vertex subset
U C V satisfying that A’ = {(i,j) € A|i € U and j € V\U}. The weight
of an arc-subset A’ is the sum total of the weights of arcs in A’. The MAX
DICUT is the problem for finding a dicut which maximizes its weight. The



MAX DICUT is formulated as follows;

(DI) maximize Z w;; subject toU C V.
i€U, jEV\U

This problem is NP-Hard and so there are some algorithms for finding
an approximate solution. As known well, Goemans and Williamson [5] pro-
posed a randomized polynomial time algorithm for MAX CUT, MAX 2SAT
and MAX DICUT. Their algorithm is based on Semi-Definite Program-
ming (SDP) relaxation and random hyperplane separation technique. The
approximation ratio of their algorithm for MAX DICUT is 0.79607. More
precisely, their algorithm finds a dicut whose weight is at least 0.79607 times
the optimal value.

In the paper [4], Feige and Goemans proposed an approximation algo-
rithm for MAX DICUT which achieves 0.859387 of approximation ratio.
Their algorithm based on two ideas. First, they added some constraints in-
troduced by Feige and Lovész in [3] to SDP relaxation problem. Next, they
proposed the ‘rotation’ technique which modifies the solution obtained by
SDP relaxation. They calculated the approximation ratio of their algorithm
numerically.

Recently, Zwick refined the rotation technique and proposed an algo-
rithm whose approximation ratio is 0.8596434254 in [8]. He also showed
that the approximation ratio of his algorithm almost completely matches
upper bounds that we can obtain by any rotation technique.

As a related work, in the APPROX 2000, Ageev, Hassin and Sviridenko
proposed an approximation algorithm for MAX DICUT with given sizes of
parts [1].

In this paper, we propose an approximation algorithm without rotation
technique whose approximation ratio is 0.863. Owur algorithm solves the
SDP relaxation problem by Goemans and Williamson with the constraints
used in Feige and Goemans’ algorithm. We improve the approximation ratio
by using hyperplane separation technique with skewed distribution function
on the sphere. Although, the use of hyperplane separation technique with
skewed distribution is suggested by Feige and Goemans in the paper [4],
there is a non-trivial problem to design a good distribution function. More
precisely, the performance of skewed distribution functions depends on the
dimension of the corresponding sphere. First, we show a non-trivial rela-
tion between the skewed distribution functions on the 2-dimensional sphere
and the n-dimensional sphere. We introduce a class of skewed distribution



functions defined on the 2-dimensional sphere satisfying that for any distri-
bution function in the class, we can design a skewed distribution function
defined on any dimensional sphere without decreasing the approximation
ratio. Second, we searched and found a good distribution function on the
2-dimensional sphere numerically. By using the above results, we can design
a good skewed distribution function on any dimensional sphere. It means
that the distribution function of our algorithm changes with respect to the
dimension of the corresponding sphere.

In Section 2, we review the SDP relaxation and hyperplane separation
technique briefly. In Section 3, we describe the outline of our algorithm. In
Section 4, we discuss some relations between the skewed distribution func-
tions on the 2-dimensional sphere and the n-dimensional sphere. In Sec-
tion 5, we describe a numerical method used for finding a good distribution
function defined on the 2-dimensional sphere.

2 Semi-Definite Programming Relaxation

Here we describe a SDP relaxation of MAX DICUT and review the hyper-
plane separation technique. First, we formulate the MAX DICUT problem
as an integer programming problem as follows;

(DI’) maximize (1/4) Z wij(l + vov; — Vv — 'UZ"Uj),
(i,j)€A
subject to vy =1, v; € {-1,1} (VieV).

The above problem is equivalent to the original problem (DI). In the pa-
per [5], Goemans and Williamson relaxed this problem by replacing each
variable v; € {—1,1} with a vector on the n-dimensional unit sphere v; €

S, where S, {v € R"" | ||v|]| = 1}. This relaxation is proposed
by Lovéasz [6] originally. And We add some valid constraints used in pa-
pers [3, 4], and obtain the following relaxation problem;

(DI) maximize (1/4) Z wii (1 +vg-v; —vo - v —v; - vj),
(3,j)€eA
subject to wvg = (1,0,...,0)", v; €8, (VieV)
vo-v; +vo-v;+v;-v; > —1 (V(i,5) € A),
—vo-v; —vo-v; +v;-v; > —1 (V(i,j) € A),
—vo - v; +vg-v; —v;-v; > —1 (V(i,7) € A).



It is well-known that we can transform the above problem to semidefinite
programming problem [5] and so we can solve the problem in polynomial
time by using an interior point method [2, 7].

Next, we describe the hyperplane separation technique proposed by Goe-
mans and Williamson. Let (v, vs,...,9,) be an optimal solution of DI.
We generate a vector r € S, uniformly and construct the vertex-subset
U = {i € V| sign(r - vg) = sign(r - 9;)} and the corresponding dicut
A={(i,j) € A]i€Uandj¢gU}. We denote the expected weight of the
dicut A by E(U). Then the linearity of the expectation implies that;

B(T) - Z w arccos(v; - U;) + arccosé:o -0;) — arccos(vg - T;)

(i,5)€A

Then we can estimate the approximation ratio of the algorithm by cal-

culating « defined by;

o 4t min (1/2m)(arccos(v; - v;) + arccos(vg - v;) — arccos(vg - v;))
(vi, v5) € Q (1/4)(1 + vo - vi — vo - vj — v; - v;) ’
where
def. vy v; + VoV + Vv > —1,

Q="( (vi,v§) € S x So| —vg-v; —vo-v;+vi-v; > -1, 5,
—’UO"UZ'-F’U()-'U]'—’UZ'-’UJ'Z—I

and vy = (1,0,0) ". Clearly, the following inequalities hold;
E(U) > a(optimal value of (DI)) > a(optimal value of (DI)).

So, the expected weight E(U) is greater than or equal to a times the optimal
value of (DI). It is known that « > 0.79607 [5].

Feige and Goemans’ algorithm solves the problem (DI) and modifies the
obtained optimal solution by using rotation technique. The approximation
ratio is 0.859387. Zwick refined the rotation technique and proposed an
algorithm whose approximation ratio is equal to 0.8596434254. Our algo-
rithm does not use the rotation technique and so we will not describe the
technique here.

3 Hyperplane Separation by Skewed Distribution
on Sphere

Goemans and Williamson’s algorithm generates a separating hyperplane at
random. Our algorithm generates a separating hyperplane with respect to



a distribution function defined on S, which is skewed towards vg but is
uniform in any direction orthogonal to vg. Given the n-dimensional sphere
S, we define the class of skewed distribution function F,, by;

def.

Fn = {f:Sn—>[O,1]

Jg F@)ds=1, f(v) = f(-v) (w € S, }
: f(@")] (Yo,Y0' € 8y)

[vo-v=vp v — f(v)

Let f € F, be a skewed distribution function defined on S,,. Now consider

the probability that arc (7, j) are contained in a dicut obtained by hyperplane
separation technique based on f. For any pair (v;,v;) € S,, we define

(vi,0; | f) def. 1 sign(r - vg) = sign(r - v;) and

Pivs, N sign(r - vo) # sign(r - v;) '

Then the expectation of the weight of the dicut with respect to a feasi-
ble solution (v1,Vs,...,D,) of DI based on the distribution function f is
> (i,5)ea wij P(V3, 75 | f).

When we use a skewed distribution function f € F, defined on S,,,
the approximation ratio can be estimated by the distribution function f
defined by projection of a vector on S, to the linear subspace spanned by
{vo,vi,v;}. We define f more precisely. Let H be the 3-dimensional linear
subspace including {v¢,v;,v;}. The distribution function f € Fo is defined
as follows;

F) = | flo)ds,
T(v')
where

T(v') def. {v € 8, | the projection of v to H is parallel to v'}.

Here we note that the distribution function f is invariant with respect to the
3-dimensional subspace H including vg, since f is uniform in any directions
orthogonal to vg. For any distribution function f’ € F» we define

('vi,vj) €N (1/4)(1 +vo-rv; — Vg vV — V" 'Uj)

bl

here we note that p(v;,v; | f') is defined on S = H N S,. Then the
approximation ratio of the algorithm using skewed distribution function f €
Fpn is bounded by ap from below.



For constructing a good skewed distribution function, we need to find a
function f’ € F, such that the value ap is large. In Section 5, we describe
a numerical method for finding a good skewed distribution function in F».

Even if we have a good distribution function in 75, a non-trivial problem
still remains. For applying hyperplane separation technique, we need a
skewed distribution function on the n-dimensional sphere. However, when
n > 2, not every distribution function f’ € Fy has a distribution function
f € F, satisfying f = f'. For example, it is easy to show that there does
not exists any distribution function f € Fj3 satisfying the conditions that

> ] 1/(2v21) (—0.5 < wp-wv <0.5),
flv) = 0 (otherwise).

In Section 4, we propose a class of functions in F» such that a corresponding
skewed distribution function exists for any sphere S, with n > 3.

4 Main Theorem

For any function f € F,, we can characterize f by the function Py :
[0,7/2] — [0, 1] defined by

Pf(o) = f(v)|c0s0:|’vo-v|-

The following theorem gives a class of permitted skewed distribution function
in F,.

Theorem 1 Let f € F,, be a skewed distribution function with n > 2 satis-
fying

1 o
Ps(0) = - Z ay cos”® 6.
a
k=0
Then the function Pf(gb) can be described as

1. & sktn)(q

ay, cos® @,
% k=0

where a is a coefficient used for normalizing the total probability to 1 and

S (r) is the area of the n dimensional sphere whose radius is equal to T.



Proof. First, we notate some well-known formulae;

o) =1, F() v, T(z al(z),

1)
/0 sin? z cos? dm:ﬁ, S (T):F(nTH)'

When we fix ¢ and d¢, we have the following;
27 sin ngf(qﬁ)dqﬁ
1
/ Py (arccos(r cos ¢))(27r sin @) (S("_?’) (\/ 1- 7"2))
0

V1 — 12 cos? ¢r d¢ cos ¢ d
VvV1—1r2 cos ¢ V1 —712cos? ¢

T.

Thus we have

Pf(qb) = /01 Py(arccos(r cos $))s™=3) (ﬂ) 2 1d7" .

-T

When we replace r by sina and Py(6) by (1/a) S5 ax cos* 8, we can de-
scribe Pf(qﬁ) as;

_[? T 3 a2
Pf(qﬁ) = /0 ( Zak sin” a cos ¢) cos"? a sin® a do

k=0 r("3%)

n-2
1 X 2
= _ZF 2akcos ¢/ sinf*t? o cos™ ? a de
a = _<
2
2

And so we have done. I
The above theorem directly implies the following.

Corollary 1 Let f' € Fy be a distribution function satisfying

1 k
Py = gkz:‘;bkcos ¢



with the condition that by > 0. Then, for any n > 2, there exists a distribu-
tion function f € F, satisfying f = f' and

1 X Ssk+2)(1)

k
Py = 5 Z S (1) by, cos™ 0,

where b is a coefficient used for normalizing the total probability to 1.

The following theorem extends the class of tractable distribution func-
tions.

Theorem 2 Let f € F, be a distribution function satisfying that Pf(0) =
(1/a) X pex apcosP @ and X is a finite set of non-negative real numbers.
Then the distribution function f satisfies P}/,{qﬁ) = (1/a) ¥ pex cpap cos? ¢,

n—2
2m 2

us

2 . _
ﬂ/ sin?t? o cos™ % o da
I'(%5=) Jo

where a is a normalization coefficient and c, =
for each p € X.

Proof. We can prove in a similar way with the proof of Theorem 1 and so
proof is omitted. 1
This theorem implies the following.

Corollary 2 Let f' € Fy be a distribution function satisfying Pp(¢p) =
(1/b) Xpex bpcos? ¢ and by, > 0 (Vp € X) where X is a finite set of positive
real numbers. Then there exists a distribution function f € F satisfying f:
f"and Py(0) = (1/b) X, x dpbp cos? & where b is a normalization coefficient

n—2 T -1
on 52 [E
and dy = (#_22) /02 sinP™2 o cos™ % o da) for each p € X.

2
The above corollaries imply that if we have a good distribution function
f' € F; satisfying that P (¢) is a finite sum of non-negative power of cos ¢,
then we can construct an approximation algorithm for MAX DICUT whose
approximation ratio is greater than a;.

5 Numerical Method for Designing Algorithm

First, we designed a distribution function f' € F, satisfying Pp(¢) =
(1/a)(ag + a1 cos ¢ + ag cos® ¢), (ag,a1,az) > 0 and ag + a1 +az = 3. We
tried every triplet

(ao,al,ag) € {0.01(:1)0,:121,:172) | (.’E0,$1,.’E2) € Zi, 0.0l(xo +x1 + $2) = 3}.



We choose a triplet (aj,a},a3) which maximizes the approximation ratio
ap. Then we decrease the grid size around (ag,a},a3) and tried all the
triplets in the set

{0.0001(.’130, T, 332)

(20, 71, T2) € Z‘:’L, 0.0001(z +y + 2z) =3,
10.00012; — af| < 0.01 (Vi € {0,1,2}) '

As a result, we found that the following function
Ppi(¢) = (1/a)(1.1404 + 0.7754 cos ¢ + 1.0842 cos” ¢)

satisfies that the approximation ratio is greater than 0.859.

Next, we designed a distribution function f’' € F, satisfying Py (¢) =
(1/b) cos'/B ¢, for each B € {1.5,1.6,...,2.5}. As a result, we found that
the following function

Pf/(gb) _ COS(1/1.8) ¢
satisfies that the corresponding approximation ratio is greater than 0.863.

For each function Py (¢), we calculate the approximation ratio ay, as
follows. We discretize the 2-dimensional sphere S5 and choose every pair of
points (v;,v;) from the set

dn, 3¢ € {—32n/64, —317/64,...,327/64}
T =cosn, y =sinncosé, z =sinnsiné, ’

{(x,y,z)T € 52

and calculate the value
p(vi, v | 1)

(1/4)(1 + v - vi —vo - v — v; - V;)
Next, we choose minimum, 2nd minimum and 3rd minimum pairs of points.
For each pair (v;‘,v;) of chosen three pairs, we decrease the grid size and
checked every pair of points (v;,v;) satisfying that
In, 3¢ € {—647/4096, —637 /4096, . .. , 647 /4096}
v; € § (%,9,2) € 82| z = cos(nf +n), y = sin(n] +n) cos({F +£), ;
z = sin(nj + n)sin({f +£)

and
Iy, 3¢ € {—647/4096, —637 /4096, . .. , 647 /4096}

v; € (Iayaz) €S| z= 005(77; + n)a Y= Sin(ﬂ; + 77) COS(&; + é)a )
z = sin(nj + n) sin(&j + )

)T

L J— * M * * M * 1 *
where v} = (cosnj},sinn} cos§;,sinn; sin&) ' and
*

v} = (cosnj,sinn; cos;,sinn] sinﬁ;)T. For each pair of points (v;,v;) we

calculated the value p(v;,v;|f) by numerical integration.



6

Conclusion

In this paper, we proposed an approximation algorithm for MAX DICUT
problem whose approximation ratio is 0.863. Our algorithm solves the SDP
relaxation problem proposed by Goemans and Williamson with additional
valid constraints introduced in [3, 4]. We generate a dicut by using hyper-
plane separating technique based on skewed distribution function f € F,
satisfying that Pf(ﬁ) = cos(1/1-8) ¢,
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