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Abstract. In this paper, we propose 0.935-approximation algorithm
for MAX 2SAT. The approximation ratio is better than the previously
known result by Zwick, which is equal to 0.93109.

The algorithm solves the SDP relaxation problem proposed by Goemans
and Williamson for the first time. We do not use the ‘rotation’ technique
proposed by Feige and Goemans. We improve the approximation ratio by
using hyperplane separation technique with skewed distribution function
on the sphere. We introduce a class of skewed distribution functions
defined on the 2-dimensional sphere satisfying that for any function in the
class, we can design a skewed distribution functions on any dimensional
sphere without decreasing the approximation ratio. We also searched
and found a good distribution function defined on the 2-dimensional
sphere numerically. And we propose the derandomized algorithm for the
introduced distribution functions.

1 Introduction

In this paper we propose an approximation algorithm for the optimization prob-
lem called MAX 2SAT. There are n boolean variables z:; (i € {1,...,n}) and m
clauses Cs(s € {1,...,m}). Each clause consists of two literals, where each literal
is either boolean variable x; or its negation —z;. We associate a non-negative
weight wg for each clause Cs. The MAX 2SAT is the problem for finding an
assignment of z;’s value which maximizes the total weight of satisfied clauses.
The MAX 2SAT is formulated as follows;

(P) maximize Z ws subject to x; € {True,False}.
s:C, is satisfied

This problem is NP-hard [5] and so there are some algorithms for finding an
approximate solution. As known well, Goemans and Williamson [6] proposed a
randomized polynomial time algorithm for MAX CUT, MAX 2SAT and MAX
DICUT. Their algorithm is based on Semi-Definite Programming (SDP) relax-
ation and random hyperplane separation technique. The approximation ratio of
their algorithm for MAX 2SAT is 0.87856. More precisely, their algorithm finds
an assignment whose total weight is at least 0.87856 times the optimal value.



In the paper [4], Feige and Goemans proposed an approximation algorithm
for MAX 2SAT which achieves 0.93109 of approximation ratio. Their algorithm
based on two ideas. First, they added some constraints introduced by Feige and
Lovész in [3] to SDP relaxation problem. Next, they proposed the ‘rotation’
technique which modifies the solution obtained by SDP relaxation. They cal-
culated the approximation ratio of their algorithm numerically. Recently, Zwick
refined the rotation technique and proposed an algorithm whose approximation
ratio is 0.9310900680 in [12]. He also showed that the approximation ratio of his
algorithm almost completely matches upper bounds that we can obtain by any
rotation technique.

As a related work, in SODA 2001, Halperin and Zwick proposed a combina-
torial approximation algorithm for MAX DICUT [7]. In APPROX+RANDOM
2001, authors proposed a randomized algorithm for MAX DICUT [10].

In this paper, we propose an approximation algorithm without rotation tech-
nique whose approximation ratio is 0.935. Our algorithm solves the SDP relax-
ation problem proposed by Goemans and Williamson with the constraints used
in Feige and Goemans’ algorithm. We improve the approximation ratio by using
hyperplane separation technique with skewed distribution function on the sphere.
Although, the use of hyperplane separation technique with skewed distribution
is suggested by Feige and Goemans in the paper [4], there is a non-trivial prob-
lem to design a good distribution function. More precisely, the performance of
skewed distribution functions depends on the dimension of the corresponding
sphere. First, we show a non-trivial relation between the skewed distribution
functions on the 2-dimensional sphere and the n-dimensional sphere. We intro-
duce a class of skewed distribution functions defined on the 2-dimensional sphere
satisfying that for any distribution function in the class, we can design a skewed
distribution function defined on any dimensional sphere without decreasing the
approximation ratio. Second, we searched and found a good distribution func-
tion on the 2-dimensional sphere numerically. By using the above results, we can
design a good skewed distribution function on any dimensional sphere. It means
that the distribution function of our algorithm changes with respect to the di-
mension of the corresponding sphere. And finally, we propose a derandomized
algorithm for proposed distribution functions. The derandomized algorithm is
based on the technique proposed by Mahajan and Ramesh in the paper [9].

In Section 2, we review the SDP relaxation and hyperplane separation tech-
nique briefly. In Section 3, we describe the outline of our algorithm. In Section 4,
we discuss some relations between the skewed distribution functions on the 2-
dimensional sphere and the n-dimensional sphere. In Section 5, we describe a
numerical method used for finding a good distribution function defined on the
2-dimensional sphere. In Section 6, we describe how to derandomize our algo-
rithm.



2 Semi-Definite Programming Relaxation

Here we describe an SDP relaxation of MAX 2SAT and review the hyperplane
separation technique. First, we formulate the MAX 2SAT problem as an integer
programming problem. Let v; be a {—1,1}-variable associate with z; and v; 4
be a {—1,1}-variable associate with —z;. Let C be the set of index pairs of
clauses, i.e., C = {(4,5)|3s;Cs = (x; Vx;)} U{(4,7)|3s;Cs = (z; V ~xj_p)} U
{(1,7)|3s;Cs = (mxiep V ;) } U{(¢,5)|35;Cs = (mxi—n, V mxj_p)}, and w;; be
the weight associate with corresponding clause.
The next problem is equivalent to the original problem (P).

(P’) maximize (1/4) Z w;j (3 + vov; + vov; — viv;),
(i,5)eC
subject to vo =1, v; +vi1, =0 (Vi€ {1,...,n}),
vie{-1,1} (Vie{l,...,n,n+1,...,2n}).

In the paper [6], Goemans and Williamson relaxed the above problem by replac-
ing each variable vZ 6 {—1,1} with a vector on the n-dimensional unit sphere

v, € S, where S, { € R™"! | ||v|| = 1}. This relaxation is proposed by
Lovész [8] originally. By introducing some valid constraints used in papers [3, 4],
we obtain the following relaxation problem;

(P) maximize (1/4) Z wii(3+vo - v; +vo -V —V; V),
(i,5)€C
subject to vo = (1,0,...,0) ", v +vin =0 (Vie {1,...,n}),
v, €8, (Vie{l,...,n,n+1,...,2n}
Vo -V + Vo -V F UV > — Vz,
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It is well-known that we can transform the above problem to a semidefinite
programming problem [6] and so we can solve the problem in polynomial time
by using an interior point method [2, 11].

Next, we describe the hyperplane separation technique proposed by Goemans
and Williamson. Let (1,2, ...,U2,) be an optimal solution of P. We generate
a vector » € S, uniformly and construct the index-set U = {i € {1,...,n} |
sign(r-vg) = sign(r-v;)} and the corresponding assignment Aiz;— {True ifi e
U, False if i ¢ U}. We denote the expected weight of the assignment A by E(U).
Then the linearity of the expectation implies that;

— 21 — arccos(vg - U;) — arccos(vg - U;) + arccos(v; - ©
B = Ty 2 mCeon(v0 i) —arceoston B;) + arceos(@i ).
2T

(1,7)€A



Then we can estimate the approximation ratio of the algorithm by calculating
« defined by;

def. ) (1/27) (27 — arccos(vg - v;) — arccos(vg - v;) + arccos(v; - v;))
o = min
(vi,v5) € 2 (1/4)(3+vo - vi +vo - v; —vi - ;) ’
where
Vo V; +vo -V + ;v > —1,
2% L (v, v,) €Sy x 8 ~Yo - Vi =V v + ;- v; 2~
B o 22 g vi v vy —wi vy > 1, [
VoV — Vo Vj —U; Uy 2—1

and vo = (1,0,0) ". Clearly, the following inequalities hold;

E(U) > a(optimal value of (P)) > a(optimal value of (P)).

So, the expected weight E(U) is greater than or equal to « times the optimal
value of (P). It is known that o > 0.87856 [6].

Feige and Goemans’ algorithm solves the problem (P) and modifies the ob-
tained optimal solution by using rotation technique. The approximation ratio is
0.93109. Zwick refined the rotation technique and proposed an algorithm whose
approximation ratio is equal to 0.9310900680. Our algorithm does not use the
rotation technique and so we will not describe the technique here.

3 Hyperplane Separation by Skewed Distribution on
Sphere

Goemans and Williamson’s algorithm generates a separating hyperplane at ran-
dom. Our algorithm generates a separating hyperplane with respect to a distri-
bution function defined on S,, which is skewed towards v but is uniform in any
direction orthogonal to vg. Given the n-dimensional sphere S,,, we define the
class of skewed distribution function F,, by;

e ds = la = - n)s

mo [ p | fg T as=1 f@) = fov) e s
[vo-v =1 v — f(v) = f(¥')] (Vv,vv' € 8S,)

Let f € F, be a skewed distribution function defined on S,. Now consider

the probability that w; ; is counted in a assignment obtained by hyperplane
separation technique based on f. For any pair (v;,v;) € S, we define

o def. sign(r - vo) = sign(r - v;) or
p(vi,v; | f) = Pr [sign(r -vg) = sign(r - v;)

Then the expectation of the weight of the assignment with respect to a feasible
solution (U1, D2, ..., U, ) of P based on the distribution function f is Z(i j)ea Wij (T3, 7; |

f)-



When we use a skewed distribution function f € F,, defined on S, the
approximation ratio can be estimated by the distribution function f defined by
projection of a vector on S, to the linear subspace spanned by {v¢, v;,v;}. We
define fmore precisely. Let H be the 3-dimensional linear subspace including
{vo,v;,v;}. The distribution function f € F» is defined as follows;

foy e [ s as

where

T(v') def.

= {ve S, | theprojection of v to H is parallel to v'}.

~

Here we note that the distribution function f is invariant with respect to the
3-dimensional subspace H including vg, since f is uniform in any directions
orthogonal to vg. For any distribution function f’ € F» we define

def. . p(vi,v; [ f)

af = min )
(vi,v;) € 2 (1/4)(B +vo - vi +vo - v; —vi-vy)

here we note that p(v,,v; | f’) is defined on So = HN S,,. Then the approxima-
tion ratio of the algorithm using skewed distribution function f € F,, is bounded
by agp from below.

For constructing a good skewed distribution function, we need to find a func-
tion f’ € Fy such that the value oy is large. In Section 5, we describe a numerical
method for finding a good skewed distribution function in Fj.

Even if we have a good distribution function in F3, a non-trivial problem
still remains. For applying hyperplane separation technique, we need a skewed
distribution function on the n-dimensional sphere. However, when n > 2, not
every distribution function f’ € 75 has a distribution function f € F, satisfying
f = f’. For example, it is easy to show that there does not exists any distribution
function f € F3 satisfying the conditions that

=« [1/(2y27) (0.5 < vy -v <0.5),
fv) = {0 (otherwise(;.

In Section 4, we propose a class of functions in Fa such that a corresponding
skewed distribution function exists for any sphere S,, with n > 3.

4 Main Theorem
For any function f € F,,, we can characterize f by the function Py : [0,7/2] —

R4 defined by

Pf(e) déf. f(’u)‘cos 0=|Vo- V|-

The following theorem gives a class of permitted skewed distribution function in
Fa-



Theorem 1 Let f € F,, be a skewed distribution function with n > 2 satisfying

1 o0
= - E ay cosk 0.
a
k=0

Then the function PA(QS) can be described as

S(k+n) 1
P/\((ZS Z S(k+2) 1 CLk Cosk ¢7

where a is the coeﬁ?czent used for mormalizing the total probability to 1 and
S(n) (r) is the area of the n dimensional sphere whose radius is equal to r.

Proof. First, we notate some well-known formulae;

r(0) =1, r(%) — V7, T(x+1) = 2T (a),

Z (et ortat
/2 sin? z cos? x dx:%, "(r) = Wn+21 .
0 2T (B NG
When we fix ¢ and d¢, we have the following;

27 sin qSPjA(gb)dgb
= /1 Py (arccos(r cos ¢))(2mr sin ¢) (S("*g) (\/1 - r2)>
0
(\/1—T2COSQ¢T do ) ( cos ¢ )dr
cos ¢ '

V1—1r2 V1—=r2cos? o

Thus we have

1
Pr() = [ Prlarceostrcos)s= (vVi=r2) L

—r2

When we replace r by sina and Py (6) by (1/a) > _pe, ak cos® 6, we can describe
P¢) as;

n—2

T (1 PR
P}(@ = /0 <E Z a sin® o cos® ¢> %;22) cos" 3 a sin? a da

= E ak cos gb/ 2o cos" 3 a da

= — a _—_—
a 2F(n+k+1)
n+k+1 00 ktn)
e ko L= Stm(1 K
= — (L ap cos” ¢ = — ——————aj cos” @.
And so we have done. 0O

The above theorem directly implies the following.



Corollary 1 Let f' € Fy be a distribution function satisfying
1 oo
Pf/ = Z ];ka COSIC ¢

with the condition that by > 0. Then, for any n > 2, there exists a distribution
function f € F, satisfying f = f' and
1 0 S(k+2)(1)

P, == =z N\
T b & st (1)

by cos® 6,

where b is the coefficient used for normalizing the total probability to 1.
The following theorem extends the class of tractable distribution functions.

Theorem 2 Let f € F,, be a distribution function satisfying that
Ps(0) = (1/a) Y _ ascos' 0
teT

and T is a finite set of non-negative real numbers. Then the distribution function
f satisfies

PA{¢) = (1/a) Y cray cos’ ¢,
teT

where a is the normalization coefficient and

n—2

s
272 2, _
¢ = 7) sin*? acos” % o da
0

e

for each t € T.

Proof. We can prove in a similar way with the proof of Theorem 1 and so proof
is omitted. O
This theorem implies the following.

Corollary 2 Let ' € Fy be a distribution function satisfying
Ppi(¢) = (1/b) Y bicos' ¢ and by > 0 (Vt € T)
teT
where T is a finite set of positive real numbers. Then there exists a distribution
function f € F satisfying
F=f"and P;(0) = (1/b) Zdtbt cos’
teT

where b is the normalization coefficient and

n—2 P -1
2 3
dy = % / sin*? acos" 3 a da
F( 2 ) 0

for eacht € T.



The above corollaries imply that if we have a good distribution function f’ € Fy
satisfying that Py/(¢) is a finite sum of non-negative power of cos¢, then we
can construct an approximation algorithm for MAX 2SAT whose approximation
ratio is greater than or equal to a .

5 Numerical Method for Designing Algorithm

We designed a distribution function f’ € Fy satisfying Py (¢) = (1/b) cos'/? ¢,
where 8 € {1.0,1.1,...,2.0}. As a result, we found that the following function

Py (9) = cos /19

satisfies that the corresponding approximation ratio is greater than 0.935.

For each function Py (¢), we calculate the approximation ratio a.s as follows.
We discretize the 2-dimensional sphere S and choose every pair of points (v;, v;)
from the set

{m,zf €5,

In,3¢ € {—327/64, —317/64,...,327/64}
x =cosn, y =sinncosé, z =sinnsiné, ’

and calculate the value

p(’l}i,'Uj | f/)
(1/4)(1—&-'00-1)1- — Vg V; —V; "Uj)'

Next, we choose minimum, 2nd minimum and 3rd minimum pairs of points. For
each pair (v}, v}) of chosen three pairs, we decrease the grid size and checked
every pair of points (v,,v;) satisfying that

I, 3¢ € {—647/4096, —637 /4096, . . ., 647 /4096 }
v; € ¢ (z,y,2) € Sa |z =cos(nf +n), y=sin(n +n)cos(§ + &), ,
z = sin(n; + n)sin(§; +§)

and
In, 3¢ € {—647/4096, —637 /4096, . . ., 647 /4096 }
vj € { (2,9,2) € So | = cos(n] + 1), y = sin(n] + n) cos(§ + §), :
z =sin(n] +n)sin(& +€)
where
v = (cosn},sinn cos&F, siny! sing)
and
v} = (cosn;,sinn; cos;, sinn; sin EJ*)T

For each pair of points (v;,v;) we calculated the value p(v;,v;|f) by numerical
integration.



6 Derandomization

We generate the random vector r = (Z, Xq,..., X,)//Z2 + X2 + -+ X2 as
follows. Let Z, Xy,..., X, be independent random variables, and Xj,..., X,
have an identical distribution function. We define a density function of Xj, ..., X,
by \/%767952/2, and of Z by L3, . ar|z|te="/2.

Then the distribution function f : S,, — R of r satisfies the conditions of F,,
described in Section 3 clearly. From the above definitions,

/Qﬂ'bmﬁﬁp’\(‘? Z%///Mt (@74 )/dedzldxj
teT
By replacing (z;,x;) with (r cos,rsin), we have
= —Zat//|z\t 2pe=" 124z dr
teT
and by replacing r with z cos ¢,
= —Zat//|z\t22tan¢(1+tan Pe —2*tan” 9/2, ¢

teT

1 i & .
_ —/{Zat Slﬂ;/) dfb/ |Z|t+26—22/(2c052¢)dz}
a cos® ¢ oo

teT

1 Sind) t+3 t+3 /OO z t+2 7( /\/5 2
= - a costt3 /2 de 2 _ e (2/V2cosd)
/ {Z os”d °2), Toeoss)

1 .
= - /smqﬁZatbt cos' ¢ dg,

teT

where
o0 2
by = 2(t+5)/2/ 2H2e7% dz,
0
is a constant. From these equations,

PA(¢ Z asby cos ¢.

tET

So, by choosing appropriate distribution for Z, we can obtain any distribution
functions for applying Corollary 2.

Then we can derandomize our algorithm in a similar way with the method
by Mahajan and Ramesh [9]. We fix each variables step by step by calculating
expectation with conditional probabilities. The only thing to pay attention is
that we need to fix Z first.

This result leads that we do not need to select or search a good distribution
in derandomized algorithm. A good distribution is needed only for evaluating
the approximation ratio.

dz
V2cos ¢

}



7 Conclusion

In this paper, we proposed an approximation algorithm for MAX 2SAT problem
whose approximation ratio is 0.935. Our algorithm solves the SDP relaxation
problem proposed by Goemans and Williamson with additional valid constraints
introduced in [3,4]. We generate an assignment by using hyperplane separation
technique based on skewed distribution function f € F,, satisfying that Pf(ﬁ) =

cos1/13) ¢. Lastly, we derandomized our algorithm, and showed that the above
distribution function is not needed to solve the problem in the derandomized
algorithm.
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