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Abstract

The randomized algorithm of Polyak and Tempo (2000), which consists of random sampling and
subgradient descent, is generalized in order to solve parameter-dependent linear matrix inequalities
and its computational complexity is analyzed. This paper first examines an algorithm obtained by
direct generalization of Polyak and Tempo’s and shows that its expected time to achieve a solution is
infinite. Then this paper improves this algorithm so that its expected achievement time becomes finite.
An explicit upper bound of the expected achievement time is given in a special case. A numerical
example is provided.
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1. Introduction

Parameter-dependent linear matrix inequalities (LMIs) often appear when we consider analysis and

synthesis of linear parameter-varying (LPV) systems, which are useful to model time-varying or nonlinear

systems. Parameter-dependent LMIs are discussed in this context by the authors such as Becker, Packard,

Philbrick, and Balas (1993), Becker and Packard (1994), and Apkarian, Gahinet, and Becker (1995),

and their advanced use taking account of the rate of parameter change is considered by the authors

including Watanabe, Uchida, Fujita, and Shimemura (1994), Gahinet, Apkarian, and Chilali (1996),

Feron, Apkarian, and Gahinet (1996), Wu, Yang, Packard, and Becker (1996), Yu and Sideris (1997),

and Apkarian and Adams (1998).

Since a parameter-dependent LMI is equivalent to a set of infinitely many LMIs, it is difficult to solve

in general. One conventional approach is to make its parameter dependence affine by approximation

(Ohara, Ide, Yamaguchi, & Ohno, 1999) or by introduction of new parameters (Masubuchi & Shimemura,

1999). However, this approach often causes conservatism or increase of the problem size. Another

approach is to grid the parameter set and to consider the LMI only at the grid points (Wu, Yang,

Packard, & Becker, 1996; Apkarian & Adams, 1998). In this approach, there is a concern that the

LMI may not be satisfied between the grid points. Moreover, it has a problem called the “curse of
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dimensionality,” that is, the number of the grid points increases exponentially fast as the parameter

dimension grows.

We try in this paper a probabilistic approach to parameter-dependent LMIs. The algorithms to be

proposed are obtained by generalizing a recent work of Polyak and Tempo (2000), where they considered

design of a robust linear quadratic regulator. Since our approach does not require the number of LMIs to

be finite, it does not suffer from the mentioned problems of the conventional approaches. Although there

are many works on a probabilistic approach or randomized algorithms (for example, Ray & Stengel, 1993;

Khargonekar & Tikku, 1996; Barmish & Lagoa, 1997; Tempo, Bai, & Dabbene, 1997; Vidyasagar, 1999;

Chen & Zhou, 2000), most of them utilize random sampling only. The proposed algorithms are more

systematic than the existing ones because they use a combination of random sampling and subgradient

descent.

By utilizing the result of Polyak and Tempo (2000), it is possible to show that the proposed algorithms

arrive at a solution after a finite time with a probability one. However, it is not obvious how long this time

is. This paper spends its main efforts in evaluating the expected time to achieve a solution. Particularly,

it first shows that the expected achievement time is infinite when we use the algorithm obtained by

direct generalization of Polyak and Tempo’s one. This implies that this basic algorithm requires long

computational time and is not practical. This paper then shows that one can improve this algorithm so

that its expected achievement time is finite. An explicit upper bound of this time is given in a special

case. Furthermore, it is shown that the improved algorithm overcomes the curse of dimensionality in the

case that the LMI has to be satisfied not for all the parameters but for almost all of them. The contents

of this paper are to be presented in the conference (Oishi & Kimura, 2001).

After finishing the main body of the present research, the author is notified that Fujisaki, Dabbene,

and Tempo (2001) independently consider generalization of the algorithm of Polyak and Tempo. How-

ever, they concentrate on a special type of parameter-dependent LMIs and do not perform so detailed

analysis of computational complexity as is found in the present paper.

The following notation is used. Let Rn mean the n-dimensional Euclidean space. The symbol ‖ · ‖
stands for the 2-norm of a vector and the symbol ‖ · ‖F for the Frobenius norm of a matrix. Define

λ(A) as the maximum (i.e., the most positive) eigenvalue of a symmetric matrix A. For two symmetric

matrices A and B, the inequalities A < B and A ≤ B imply that B−A is positive definite and is positive

semidefinite, respectively. For a symmetric matrix A, the symbol A+ means the projection onto the cone

of positive semidefinite matrices. That is, with an orthogonal matrix U that makes UTAU = Ξ = (ξij)

diagonal, the matrix A+ is defined as UΞ+UT, where the (i, j)-element of Ξ+ is ξij if ξij > 0 and is zero

otherwise.
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2. Basic algorithm

A problem to be solved is presented first.

Problem. The parameter set P is the n-dimensional hypercube [−1, 1]n and the variable domain Q is a

bounded closed convex subset of Rd having its interior. Moreover, V (q,p) is a symmetric-matrix-valued

function of q ∈ Q and p ∈ P , which is affine with respect to q and is continuously differentiable with

respect to p. Find a q satisfying V (q,p) ≤ O for any p ∈ P . �

One can formulate analysis and synthesis of LPV systems into this form possibly using information

on the rate of parameter change. Details are found in the references cited in the previous section. See

Section 5 for an example.

Remark. Although the parameter set P is a general hyper rectangle in many LPV systems, it can

be transformed to the above hypercube [−1, 1]n without loss of generality. It is not practically difficult

to limit the variable domain to a bounded Q by performing some preliminary computation. One may

notice that a strict inequality V (q,p) < O is considered in many applications instead of V (q,p) ≤ O

above. However, this difference is not essential in numerical computation and the improved algorithm

to be introduced gives a solution q that satisfies the strict inequality. �

It is assumed throughout this paper that there exists a q satisfying the strict inequality V (q,p) < O

for any p ∈ P . Let us call the region {q ∈ Q : V (q,p) ≤ O for any p ∈ P} the solution region. The

solution region contains by assumption a d-dimensional closed ball whose center q∗ attains V (q∗,p) < O

for any p ∈ P . Fix one such ball and write its radius as r∗.

We now present an algorithm to solve the problem above. It is a generalization of the algorithm

of Polyak and Tempo (2000), which is for design of a robust quadratic regulator. In order to state

the algorithm, some preparation is needed. Choose an initial point q0 in the variable domain Q. We

introduce into the parameter set P a probability density function possessing a finite upper bound µP

and a positive lower bound µ
P
. Note that the inequality V (q,p) � O is equivalent to ‖V (q,p)+‖F > 0.

When ‖V (q,p)+‖F > 0 holds, we define ∇�‖V (q,p)+‖F to be the vector whose i-th element is

1
‖V (q,p)+‖F

tr
[
V (q,p)+

∂V (q,p)
∂qi

]
,

where q = [q1 . . . qd]T. It is possible to show that ‖V (q,p)+‖F is a convex function of q and

∇�‖V (q,p)+‖F is its subgradient. Furthermore, let Π be the projection onto the variable domain Q,

that is, Πq := arg min
��∈Q ‖q̃ − q‖ for q ∈ Rd. Finally, define r0, r1, . . . to be a sequence of positive

numbers that monotonically decreases to zero and satisfies
∑∞

�=0(r
�)2 = ∞.
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Algorithm.

0. k := 0. � := 0.

1. Randomly sample pk from P according to the probability density function on P .

2. If V (qk,pk) � O, put

qk+1 := Π
[
qk − γk∇�‖V (qk,pk)+‖F

]
,

� := � + 1,

where

γk :=
‖V (qk,pk)+‖F + r�

∥∥∇�‖V (qk,pk)+‖F

∥∥∥∥∇�‖V (qk,pk)+‖F

∥∥2 ;

Otherwise, just put qk+1 := qk.

3. k := k + 1. Return to Step 1. �

This algorithm produces a sequence of points qk. One can prove the next property on this sequence

as is found in Appendix A.

Proposition 1. Let �(k) be the value of � at the k-th iteration of the preceding algorithm. If r�(k) ≤ r∗

and V (qk,pk) � O, there holds

‖qk+1 − q∗‖2 ≤ ‖qk − q∗‖2 − [r�(k)]2.

When the point qk is not in the solution region, the probability that a correction step is made in

Step 2 is positive by assumption. This implies that correction of qk is made after a finite number of

iterations with a probability one. Combining this observation with the fact that the squared sum of {r�}
is infinite, we have the following corollary. See Polyak and Tempo (2000) for more details.

Corollary 1. With a probability one, there exists a finite number k1 such that the point qk produced by

the preceding algorithm is contained in the solution region for any k ≥ k1.

This property still holds in fact even if Q is unbounded. Among the numbers that can be k1, we refer

to the smallest one as the achievement time kA. The above corollary claims that there exists a finite

achievement time with a probability one.

A problem here is that it is not obvious how large the achievement time kA is. Although Polyak and

Tempo (2000) provide an answer to this question, it is not applicable in our generalized setting where

the set P is continuous and the number r� is not constant.
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3. Infiniteness of the expected achievement time

Since the achievement time kA is a random number, it is easier to evaluate its expectation EP (kA), which

is called the expected achievement time henceforth. The value of EP (kA) depends on the choice of the

initial point q0. In order to evaluate it in an averaged case, we suppose that the initial point q0 is chosen

according to some probability density function fixed on Q and consider the expectation EQ[EP (kA)].

The claim of this section is that this expectation is infinite. It means that the preceding algorithm often

requires a long time to achieve a solution and is not appropriate for a practical use. Improvement of the

algorithm is certainly necessary, which is a task of the next section.

We add the following assumptions in order to obtain the mentioned result. Suppose that there exists

a pair of q ∈ Q and p ∈ P that satisfies V (q,p) � O. The probability density function introduced into

Q is assumed to have a positive lower bound µ
Q
.

It is not difficult to see that the function sup�∈P λ[V (q,p)] is continuous and is convex with re-

spect to q. By the assumptions so far, there holds sup�∈P λ[V (q,p)] > 0 at some q ∈ Q while

sup�∈P λ[V (q∗,p)] < 0 at q∗. Accordingly, on the line segment connecting these two points, there

exists one and only one q that attains sup�∈P λ[V (q,p)] = 0. Let us write it as q� from now on. This q�

belongs to the interior of Q. It is possible to construct a (d−1)-dimensional manifold in a neighborhood

of q� so that it contains q� and sup�∈P λ[V (q,p)] = 0 holds anywhere on this manifold. We make here

our final assumption, that is, there is no p = [p1 . . . pn]T ∈ P that satisfies

detV (q�,p) = 0,
∂ detV (q�,p)

∂p1
= 0, . . . ,

∂ det V (q�,p)
∂pn

= 0

simultaneously. This assumption is considered to be mild enough because n + 1 equalities are not

simultaneously satisfied in an n-dimensional space in general.

Theorem 1. Under the assumptions so far, there holds

EQ

[
EP (kA)

]
= ∞.

The proof of this theorem requires the following lemma, which is proved in Appendix B.

Lemma 1. Define q̂(α) := q� +α(q�−q∗). Under the assumptions so far, there exists a positive C such

that

Prob{p ∈ P : V (q̂(α),p) � O} ≤ Cα

holds for any small enough nonnegative α.

Proof of Theorem 1. Suppose that the initial point q0 is chosen at q̂(α), α > 0. Since this q0 is

not in the solution region, at least one correction step is required to arrive at a solution. The expected

number of steps required to make one correction step is

1
Prob{p ∈ P : V (q̂(α),p) � O} ,
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which is greater than or equal to 1/Cα by Lemma 1. Since the expected achievement time EP (kA) is

greater than or equal to this value, we have EP (kA) ≥ 1/Cα.

Consider a (d−1)-dimensional manifold S on which sup�∈P λ[V (q,p)] = 0 and the point q� is located.

If we choose this manifold S small enough, there exists a positive α0 such that the inequality

Prob{p ∈ P : V (q + α(q� − q∗),p) � O} ≤ 2Cα

holds for any q ∈ S and any 0 < α < α0. Since the expectation EQ[EP (kA)] is the integration over the

whole Q, the integration over its subset {q + α(q� − q∗) : q ∈ S and 0 < α < α0} is less than or equal

to this. We consequently have

EQ[EP (kA)] ≥ µ
Q
D

∫ α0

0
EP (kA) dα ≥ µ

Q
D

∫ α0

0

1
2Cα

dα = ∞

with some positive number D. �

4. Improved algorithm

As we can see in the proof of Theorem 1, the reason of the infinite expected achievement time is that

the probability to make a correction step is close to zero near the solution region. We hence increase

this probability hoping to have the finite expected achievement time. Let a0, a1, . . . be a sequence of

positive numbers that monotonically decreases to zero and replace V (qk,pk) in the preceding algorithm

by V (qk,pk) + a�I. In this improved algorithm, a correction step is made if V (qk,pk) + a�I � O, which

holds with more probability than V (qk,pk) � O.

Before investigating the expected achievement time, we show that the achievement time remains

finite with a probability one after the improvement above. Define a∗ := − sup�∈P λ[V (q∗,p)], which is

positive by the definition of q∗. Let �(k) be the value of � at the k-th iteration of the improved algorithm

and suppose a�(k) < a∗. Then, since the function sup�∈P λ[V (q,p)] is convex, the ball with the center

q∗ and the radius [1 − a�(k)/a∗]r∗ is included by the region {q ∈ Q : sup�∈P λ[V (q,p) + a�(k)I] ≤ 0}.
This enables us to use Proposition 1 with replacing r�(k) ≤ r∗ by r�(k) ≤ [1 − a�(k)/a∗]r∗ and V (qk,pk)

by V (qk,pk) + a�(k)I. Following the reasoning to obtain Corollary 1, we arrive at the result below.

Proposition 2. With a probability one, there exists a finite number k1 such that the point qk produced

by the improved algorithm is contained in the solution region for any k ≥ k1.

Again we refer to the smallest k1 as the achievement time kA.

We now consider the expected achievement time EP (kA) in the improved algorithm. As in the

previous section, it is assumed that there exists a pair of q ∈ Q and p ∈ P satisfying V (q,p) � O. We

do not need here the assumption on the density function in Q or on the point q�. Let G be a positive

number with which ∥∥∥e1
∂V (q,p)

∂p1
+ · · · + en

∂V (q,p)
∂pn

∥∥∥
F

< G
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holds for any q ∈ Q, any p ∈ P , and any unit vector [e1 . . . en]T. Define R := sup
�∈Q ‖q − q∗‖. The

lemma below is important for our purpose.

Lemma 2. Let a be any nonnegative number and q� be any vector satisfying sup�∈P λ[V (q�,p)] = 0.

There then holds

Prob{p ∈ P : V (q�,p) + aI � O} ≥ min
{

1, µ
P

( a√
nG

)n}
.

This lemma is proved in Appendix C. From this lemma the following theorems are derived.

Theorem 2. For any initial point q0, the expected achievement time EP (kA) defined for the improved

algorithm is finite.

Theorem 3. Choose r� := r0/
√

� + 1 and a� := a0/
√

� + 1. Then, there holds

EP (kA) < max
{

e(R/r0)2
(r0

r∗
+

a0

a∗
+ 1

)2
,

e(R/r0)2 [e(R/r0)2 + 1]n/2(
√

nG)n

µ
P
(a0)n

(r0

r∗
+

a0

a∗
+ 1

)n+2
}

. (1)

The right-hand side of (1) increases faster than the exponential order of n. This suggests that our

algorithm suffers from the curse of dimensionality like the gridding algorithm, which was discussed in

Section 1. However, the curse of dimensionality is removed if it is sufficient to obtain an “approximate

solution” that satisfies the provided LMI not for all p ∈ P but for almost all of them. This is shown

next.

Theorem 4. Let ε and δ be any positive numbers less than unity and let {qk} be a sequence produced

by the improved algorithm. With a probability greater than 1 − δ, there exists a nonnegative integer k

less than or equal to

2e(R/r0)2

ε

(r0

r∗
+

a0

a∗
+ 1

)2
+

1
2ε2

ln
1
δ

(2)

that satisfies Prob{p ∈ P : V (qk,p) ≤ O} ≥ 1 − ε. Here ln denotes the natural logarithm.

Choose ε and δ to be small positive numbers. Then, with a high probability, the time to obtain an

approximate solution has the upper bound (2), which is independent of the parameter dimension n. The

present algorithm is therefore advantageous to the gridding algorithm and other deterministic algorithms

when the parameter dimension n is high.

Proof of Theorem 2. If q0 is in the solution region, the achievement time is zero. We suppose in the

rest of the proof that q0 is not in the solution region.

Let �0 be the smallest integer � that attains r� ≤ (1 − a�/a∗)r∗. Note that the same inequality

remains valid for any � ≥ �0. Let �1 be the smallest integer satisfying
∑�1−1

�=�0
(r�)2 ≥ R2. The number

of correction steps required to achieve the solution region must be less than or equal to �1 and, thus, is
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finite. It is left for us to show that the number of steps required to make one correction step is finite on

the average.

Suppose that qk is not in the solution region. Since the corresponding � has to be less than or equal

to �1, there holds a� ≥ a�1 . Furthermore, there exists a point q� satisfying sup�∈P λ[V (q�,p)] = 0 on the

line segment connecting qk and q∗. There holds by definition that r�1 ≤ (1 − a�1/a∗)r∗, which implies

a�1 < a∗ and then sup�∈P λ[V (q∗,p) + a�1I] < 0. Since λ[V (q,p) + a�1I] is a convex function of q, if

λ[V (q�,p) + a�1I] > 0, it is inferred that λ[V (qk,p) + a�1I] > 0. By these observations, we can see that

Prob{p ∈ P : V (qk,p) + a�I � O} ≥ Prob{p ∈ P : V (qk,p) + a�1I � O}
≥ Prob{p ∈ P : V (q�,p) + a�1I � O}

≥ min
{

1, µ
P

( a�1
√

nG

)n
}

. (3)

The last inequality follows from Lemma 2.

The expected number of steps required to make one correction step is the reciprocal of the leftmost

expression in (3), which is shown to be finite. The proof is hence complete. �

Proof of Theorem 3. We evaluate �0 and �1 in the previous proof explicitly.

Solve r� ≤ (1 − a�/a∗)r∗ to have � ≥ (r0/r∗ + a0/a∗)2 − 1, which implies �0 < (r0/r∗ + a0/a∗)2.

Since
∑�−1

�=�0
(r�)2 >

∫ �
�0

(r0)2/(x + 1)dx = (r0)2 ln[(� + 1)/(�0 + 1)], the inequality � ≥ e(R/r0)2(�0 + 1)− 1

guarantees
∑�−1

�=�0
(r�)2 > R2. Therefore, we have

�1 < e(R/r0)2(�0 + 1) < e(R/r0)2
[(r0

r∗
+

a0

a∗
)2

+ 1
]

< e(R/r0)2
(r0

r∗
+

a0

a∗
+ 1

)2

and

1
a�1

=
√

�1 + 1
a0

<
1
a0

√
e(R/r0)2

[(r0

r∗
+

a0

a∗
)2

+ 1
]

+ 1 <
1
a0

√[
e(R/r0)2 + 1

](r0

r∗
+

a0

a∗
+ 1

)2
.

The expected achievement time is no greater than the product of �1 and the reciprocal of the rightmost

expression in (3). Substitution of the above inequalities gives the desired result. �

Proof of Theorem 4. Let k̃ be the smallest integer greater than (2). Suppose that the inequality

Prob{p ∈ P : V (qk,p) � O} > ε (4)

holds for any 0 ≤ k ≤ k̃−1. This implies that the point qk does not arrive in the solution region at least

until k = k̃ − 1, which ensures �̃ < �1, where �̃ is the value of � at the time k̃ − 1 and �1 is the number

defined in the proof of Theorem 3. Note that the inequality �̃ < �1 is equivalent to ε − �̃/k̃ > ε − �1/k̃.

Consider in general that one carries out k̃ Bernoulli trials whose probability of success is s. It is known

as Chernoff’s inequality that the probability to have s − �̃/k̃ ≥ A, where �̃ is the number of success and

A is any nonnegative number, is less than or equal to exp(−2k̃A2) (see, e.g., p. 22, Vidyasagar, 1997).
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Since we have (4) for any 0 ≤ k ≤ k̃ − 1 and the number ε − �1/k̃ is nonnegative by assumption, the

probability to have ε − �̃/k̃ > ε − �1/k̃ is less than or equal to exp[−2(k̃ε− �1)2/k̃]. This quantity is less

than δ again by assumption. Now it is seen that the inequality (4) fails to hold at least one 0 ≤ k ≤ k̃−1

with a probability greater than 1 − δ. �

5. Example

The proposed two algorithms, the basic one and the improved one, are applied to an example problem.

g

ν �

θ

w
L,W

Figure 1. A considered plant

We consider a plant given in Figure 1, which is a simplification of the tower crane investigated by

Takagi and Nishimura (1999). A uniform boom of the length L[m] and the weight W [kg] is connected to

the ground by a free joint. From the top of the boom, a load of the weight w[kg] is hung down by a rope

of the length �[m]. The angles from the vertical line to the boom and to the rope are ν[rad] and θ[rad],

respectively. One can add a force g[N] to the top of the boom in the horizontal direction. Especially,

the force that makes the equilibrium boom angle equal to some given value ν0[rad] is denoted by g0[N].

Linearize the plant dynamics around the equilibrium point and choose x = [ν − ν0 θ ν̇ θ̇]T as

a state vector and u = g − g0 as an input. Then we have an LPV system ẋ(t) = Ax(t) + bu(t).

The matrix A and the column vector b are functions of the parameter p := [� ν0 w]T. Suppose

that L = 0.71m and W = 0.205kg here and that the parameter p can take any value in the set

P = {p : 0.5m ≤ � ≤ 1m, (40π/180)rad ≤ ν0 ≤ (50π/180)rad, 0.1kg ≤ w ≤ 0.2kg}. We want to see

whether the state feedback u = fTx, fT = [12.25 − 12.21 4.91 1.16], stabilizes this system for any

parameter p in P . We suppose here for simplicity that the time derivative of the parameter p is zero.

Let us consider a Lyapunov function having the form xTL(p)x with L(p) = L0 +�L1 +(cos ν0)L2 +wL3.

Then, a sufficient condition for stability is the existence of symmetric matrices L0, . . . , L3 that satisfy[A(p) + b(p)fT]TL(p) + L(p)[A(p) + b(p)fT]

−L(p)

 < O

for any p in P . The problem to find L0, . . . , L3 is formulated into the general form described in Section 2.

Define q to be a vector consisting of the elements of L0, . . . , L3 and write the left-hand side of the above

inequality as V (q,p). The matrices L0, . . . , L3 are seeked for in the region where each element of them

belongs to the interval [−2, 2]. The variable domain Q is defined as such. We choose the probability
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density functions in P and Q to be those corresponding to the uniform distribution. The sequences {r�}
and {a�} are defined by r� = a� = 1/

√
� + 1.

0 1 2 3 4 5 6
0

5

10

15

20

×105

Achievement time
(a) Basic algorithm

0 1 2 3 4 5 6
0

5

10

15

20

×105

Achievement time
(b) Improved algorithm

Figure 2. Distribution of the achievement time for 100 trials

In Figure 2, (a) and (b) are histograms of the achievement time when we execute the basic and the

improved algorithms 100 times for each. While the achievement time of the basic algorithm distributes in

a rather wide range, that of the improved algorithm concentrates in the range of k ≤ 2×105. This shows

the effect of the improvement. Strictly speaking, the word “achievement time” is not used here in its

original sense. Since it is difficult to judge whether a provided qk satisfies V (qk,p) ≤ O for all p ∈ P , we

regard qk to be a solution if this qk satisfies the inequality for all of 10000 p’s randomly sampled from P .

Hence, this is an achievement time to an “approximate solution” considered in Theorem 4. By the result

of Khargonekar and Tikku (1996) and Tempo, Bai, and Dabbene (1997), the fact that V (qk,p) ≤ O holds

for all of randomly sampled 10000 p’s implies that the inequality Prob{p ∈ P : V (qk,p) ≤ O} ≥ 0.999

holds with a probability greater than 0.9999. From this we expect that the achievement time measured

here sufficiently reflects the properties of the achievement time in the original sense.

The time to execute 2×105 iterations in the improved algorithm is measured on Pentium III 1.0GHz

with 256MBytes memory. On the average of 100 executions, the time is 106 s without the achievement

judgment described above.

6. Conclusion

Randomized algorithms for parameter-dependent LMIs are proposed as a generalization of the algorithm

of Polyak and Tempo (2000) and their computational complexity is analyzed.

The following problems are left unsolved. The proposed algorithms do not contain an explicit termi-

nation rule. Since it is difficult to judge whether the considered LMI is satisfied for all the parameters

p in P , it is considered to be practical to terminate the algorithms when the LMI is satisfied for all of

many p’s randomly sampled from P . If one adds this termination rule to our algorithms, their computa-

tional complexity is not sufficiently characterized by the iteration number k. One has to reexamine their

complexity using a more appropriate index. The computational time presented in the previous section

10



is not very long but not very short either. More speedup is preferable. It would be useful if one can

explicitly evaluate the upper bounds given in Theorems 3 and 4. However, this is difficult because these

upper bounds include unknown numbers r∗ and a∗. Explicitly computable upper bounds are desired.

Finally, it is assumed throughout this paper that the considered LMI has a solution. It is also important

to investigate the case that the LMI has no solution.
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A. Proof of Proposition 1

The proof is a complete parallel to that of Theorem 1 of Polyak and Tempo (2000).

We write r instead of r�(k) for simplicity. Since r ≤ r∗, the point

q̃ := q∗ + r
∇�‖V (qk,pk)+‖F∥∥∇�‖V (qk,pk)+‖F

∥∥
is included in the solution region and thus ‖V (q̃,pk)+‖F = 0. From V (qk,pk) � O it follows that

‖qk+1 − q∗‖2 ≤∥∥qk − γk∇�‖V (qk,pk)+‖F − q∗∥∥2

=‖qk − q∗‖2 + (γk)2
∥∥∇�‖V (qk,pk)+‖F

∥∥2 − 2γk
[∇�‖V (qk,pk)+‖F

]T(qk − q̃)

− 2γk
[∇�‖V (qk,pk)+‖F

]T(q̃ − q∗). (5)

Since ∇�‖V (qk,pk)+‖F is a subgradient, there holds on the second last term of (5) 0 = ‖V (q̃,pk)+‖F ≥
‖V (qk,pk)+‖F +

[∇�‖V (qk,pk)+‖F

]T(q̃ − qk). On the last term of (5) we have
[∇�‖V (qk,pk)+‖F

]T(q̃ −
q∗) = r

∥∥∇�‖V (qk,pk)+‖F

∥∥. Substitution of these relations into (5) gives the desired inequality.

B. Proof of Lemma 1

The proof requires two lemmas. Let ∇� det V (q�,p) denote the vector whose i-th element is (∂/∂pi) det

V (q�,p).

Lemma 3. There exists a (possibly multiple) p� ∈ P that satisfies λ[V (q�,p�)] = 0. This p� is on the

surface of P and the value of ‖∇� det V (q�,p�)‖ has a positive lower bound common to all of such p�.

If the parameter dimension n is even, the angle between the two vectors ∇� detV (q�,p�) and x − p� is

no greater than π/2 for any x ∈ P other than p�. If n is odd, the same is true with −∇� detV (q�,p�)

instead of ∇� detV (q�,p�).

11



Proof. The existence of p� is ensured by the definition of q� and the compactness of P . Since all

the eigenvalues of V (q�,p) are negative at any p that cannot be p�, the function detV (q�,p) takes

the minimum value at p� if n is even and the maximum value otherwise. By assumption, the gradient

∇� det V (q�,p�) is not the zero vector, which means that p� has to be on the surface of P . Because

the set {p ∈ P : λ[V (q�,p)] = 0} is closed and bounded, there exists a positive minimum value for

‖∇� detV (q�,p�)‖. The last property is a consequence of the Karush-Kuhn-Tucker necessary condition

for optimality. �

Lemma 4. There exists a positive number g such that detV (q̂(α),p) = 0 implies maxi=1,... ,n |pi| ≥
1 − gα for any small enough nonnegative α and any p ∈ P .

Proof. Let p� be a vector considered in Lemma 3. With a guarantee of Lemma 3, one can choose g so

that the inequality g‖∇�V (q�,p�)‖ >
∣∣(∂/∂α) det V (q̂(α),p�)|α=0

∣∣ holds for any p�. We negate the claim

of the lemma with this g and derive contradiction.

Assume that there hold det V (q̂(αj),xj) = 0 and maxi=1,... ,n |xj
i | < 1 − gαj for some sequence of

positive numbers α1, α2, . . . that monotonically decreases to zero and for some sequence of parameters

x1,x2, . . . in P . Here, xj
i denotes the i-th element of xj. The sequence {xj} has to have an accumulation

point, which has to be one of the considered p�’s. We can assume that the sequence {xj} converges to

this p� by taking its subsequence if necessary. Expand detV (q̂(α),p) around α = 0 and p = p� to have

0 = detV (q̂(αj),xj) =
∂ detV (q̂(α̃j), x̃j)

∂α
αj + [∇� det V (q̂(α̃j), x̃j)]T(xj − p�), (6)

where α̃j → 0 and x̃j → p� as j → ∞. From the assumption maxi=1,... ,n |xj
i | < 1 − gαj , it follows that

gαj <

∣∣∣∣ [∇� detV (q�,p�)]T

‖∇� det V (q�,p�)‖ (xj − p�)
∣∣∣∣.

Take the limit j → ∞ in this inequality and use (6) to conclude

g‖∇� detV (q�,p�)‖ ≤ lim
j→∞

∣∣∣∣ 1
αj

[∇� detV (q�,p�)]T(xj − p�)
∣∣∣∣

= lim
j→∞

∣∣∣∣ 1
αj

[∇� detV (q̂(α̃j), x̃j)]T(xj − p�)
∣∣∣∣ =

∣∣∣∣∂ detV (q̂(α),p�)
∂α

∣∣∣
α=0

∣∣∣∣.
This contradicts with the definition of g. �

We now prove Lemma 1. Suppose that V (q̂(α),p) � O for some small enough nonnegative α and

some p ∈ P . Since V (q̂(0),p) ≤ O, there exists 0 ≤ α̃ < α with which det V (q̂(α̃),p) = 0. Lemma 4 is

invoked here to give maxi=1,... ,n |pi| ≥ 1 − gα̃ > 1 − gα.

By the above reasoning, the set {p ∈ P : 1 ≥ maxi=1,... ,n |pi| ≥ 1 − gα} includes the set {p ∈ P :

V (q̂(α),p) � O}. The probability measure of the former set is at most µP

[
2n − (2 − 2gα)n

]
, which is

less than or equal to µP 2nngα for a small enough nonnegative α.
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C. Proof of Lemma 2

If a = 0 the considered inequality is trivial. Suppose that 0 < a < 2
√

nG. Since sup
�∈P λ[V (q�,p)] = 0,

there exists p ∈ P satisfying λ[V (q�,p)] = 0. Write it as p� to have λ[V (q�,p�) + aI] = a. From the

definition of G, it follows that G‖p − p′‖ > ‖V (q,p) − V (q,p′)‖F ≥ ∣∣λ[V (q,p) + aI]− λ[V (q,p′) + aI]
∣∣

for any p and p′ in P . This implies that there holds V (q�,p) + aI � O in the set {p : ‖p− p�‖ ≤ a/G}.
Irrespective of the location of p�, the intersection of this set and P includes the n-dimensional hypercube

each edge of which has the length a/
√

nG. Since this hypercube ensures V (q�,p) + aI � O in its inside

and has the volume (a/
√

nG)n, the desired inequality holds. If a ≥ 2
√

nG, again the desired inequality

is trivial because the set {p : ‖p − p�‖ ≤ a/G} includes the whole P .
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