
An Accumulative Parallel Skeleton for All

Zhenjiang Huy Hideya Iwasakiz Masato Takeichiy

yDepartment of Mathematical Informatics

The University of Tokyo

zDeaprtment of Computer Science

The University of Electo-Communications

Summary.

Parallel skeletons intend to encourage programmers to build a paral-

lel program from ready-made components for which eÆcient implemen-

tations are known to exist, making the parallelization process simpler.

However, it is neither easy to develop eÆcient parallel programs using

skeletons nor to use skeletons to manipulate irregular data, and more-

over there lacks a systematic way to optimize skeletal parallel programs.
To remedy this situation, we propose a novel parallel skeleton, called

accumulate, which can not only eÆciently describe data dependency in

computation but also exhibits nice algebraic properties for manipula-

tion. We show that this skeleton signi�cantly eases skeletal parallel

programming in practice, eÆciently manipulating both regular and ir-

regular data, and systematically optimizing skeletal parallel programs.

Keywords: Bird Meertens Formalisms, Data Parallelism,

Nested Parallelism, Program Transformation, Skeletal Paral-
lel programming.

1 Introduction

With the increasing popularity of parallel programming environments such as PC

cluster, more and more people, including those who have little knowledge about

parallel architecture and parallel programming, are hoping to write parallel pro-

grams to solve their daily problems. This situation eagerly calls for models and

methodologies which can assist programming parallel computers e�ectively and

correctly.

The data parallel model [HS86, Kar87, HL93] turns out to be one of the most

successful ones for programming massively parallel computers [Pra92]. To support

parallel programming, this model basically consists of two parts:

� a parallel data structure to model a uniform collection of data which can be

organized in a way that each element can be manipulated in parallel; and

1 September 2001, METR 01-05

An Accumulative Parallel Skeleton for All 2

� a �xed set of parallel skeletons on the parallel data structure to abstract

parallel structures of interest, which can be used as building blocks to write

parallel programs. Typically, these skeletons include element-wise arithmetic

and logic operations, reductions, prescans, and data broadcasting.

This model not only provides programmers an easily understandable view of a

single execution stream of a parallel program, but also makes the parallelizing

process easier because of explicit parallelism of the skeletons.

Despite these promising features, the application of current data parallel pro-

gramming su�ers from several problems which prevent it from being practically

used. Firstly, because parallel programming relies on a set of parallel primitive

skeletons for specifying parallelism, programmers often �nd it hard to choose proper

ones and to integrate them well in order to develop eÆcient parallel programs

to solve their problems. Secondly, the skeletal parallel programs are diÆcult to
be optimized, and the major diÆculty lies in the construction of rules meeting

the skeleton-closed requirement for transformation among skeletons [Bir87, SG99].

Thirdly, skeletons are assumed to manipulate regular data structure. For irregular

data like nested lists where the sizes of inner lists are remarkably di�erent, the

parallel semantics of skeletons would lead to load unbalance which may nullify the

e�ect of parallelism in skeletons. For more detailed discussion of these problems,

see Section 3.

To remedy this situation, we propose in this paper a novel parallel skeleton,

which can signi�cantly eases skeletal parallel programming, eÆciently manipulating

both regular and irregular data, and systematically optimizing skeletal parallel

programs. Our contributions, which make skeletal programming more practical,
can be summarized as follows.

� We de�ne a novel parallel skeleton (Section 4), called accumulate, which can

not only eÆciently describe data dependency in a computation through an
accumulating parameter, but also exhibits nice algebraic properties for ma-

nipulation. It can be considered as a higher order list homomorphism, which

eÆciently abstracts a computation requiring more than one pass and provides

a better recursive interface for parallel programming.

� We give a single but general rule (Theorem 6 in Section 5), based on which

we construct a framework for systematically optimizing skeletal parallel pro-

grams. Inspired by the success of the shortcut deforestation [GLJ93] for

optimizing sequential programs in compilers, we give a speci�c shortcut law

for fusing composition style of skeletal parallel programs, but paying much

more attention to guaranteeing skeleton-closed parallelism. Our approach us-

ing a single rule is in sharp contrast to the existing one [SG99, KC99] based
on a huge set of transformation rules developed in a rather ad-hoc way.

� We propose a
attening rule (Theorem 8 in Section 6), enabling accumulate to

deal with both regular and irregular nested data structures eÆciently. Com-

pared to the work by Blelloch [Ble89, Ble92] where the so-called segmented

scan is proposed to deal with irregular data, our rule is more general and

powerful, and can be used to systematically handle a wider class of skeletal

An Accumulative Parallel Skeleton for All 3

parallel programs.

The organization of this paper is as follows. After brie
y reviewing the nota-
tional conventions and some basic concepts in the BMF parallel model in Section

2, we illustrate with a concrete example the problems in skeletal parallel program-

ming in Section 3. To resolve these problems, we begin by proposing a new general

parallel skeleton called accumulate, and show how one can easily program with this

new skeleton in Section 4. Then in Section 5, we develop a general rule for opti-

mization of skeletal parallel programs. Finally, we give a powerful theorem showing

that accumulate can be used to eÆciently manipulate irregular data in Section 6.
Related work and discussions are given in Section 7.

2 BMF and Parallel Computation

We will address our method on the BMF data parallel programming model [Bir87,

Ski94], though the method itself is not limited to the BMF model. We choose
it because BMF can provide us a concise way to describe both programs and

transformation of programs. Those who are familiar with the functional language

Haskell [JH99, Bir98] should have no problem in understanding the programs in

this paper. From the notational view point, the main di�erence is that we use

more symbols or special brackets to shorten the expressions so that manipulation

of expressions can be performed in a more clear way.

Functions. Function application is denoted by a space and the argument which

may be written without brackets. Thus f a means f (a). Functions are curried, and
application associates to the left. Thus f a b means (f a) b. Function application

binds stronger than any other operator, so f a�b means (f a)�b, but not f (a � b).
Function composition is denoted by a centralized circle Æ. By de�nition, we have

(f Æg) a = f (g a). Function composition is an associative operator, and the identity

function is denoted by id. In�x binary operators will often be denoted by �;
 and

can be sectioned ; an in�x binary operator like � can be turned into unary functions

by (a �) b = a � b = (� b) a:

Parallel Data Structure: Join Lists. Join lists are �nite sequences of values of

the same type. A list is either empty, a singleton, or the concatenation of two other

lists. We write [] for the empty list, [a] for the singleton list with element a (and

[�] for the function taking a to [a]), and x ++ y for the concatenation of two lists

x and y. Concatenation is associative, and [] is its unit. For example, the term
[1]++ [2]++ [3] denotes a list with three elements, often abbreviated to [1; 2; 3]. We

also write a : xs for [a] ++xs. If a list is constructed on by the constructor of []

and :, we call it cons list.

Parallel Skeletons: map, reduce, scan, zip. It has been argued in [Ski90] that

BMF [Bir87] is a nice architecture-independent parallel computation model, con-

sisting of a small �xed set of speci�c higher order functions which can be regarded

as parallel skeletons suitable for parallel implementation. Four important higher

order functions are map, reduce, scan and zip.

Map is the operator which applies a function to every element in a list. It is

An Accumulative Parallel Skeleton for All 4

written as an in�x �. Informally, we have

k � [x1; x2; : : : ; xn] = [k x1; k x2; : : : ; k xn]:

Reduce is the operator which collapses a list into a single value by repeated ap-

plication of some associative binary operator. It is written as an in�x =. Informally,

for an associative binary operator �, we have

�= [x1; x2; : : : ; xn] = x1 � x2 � � � � � xn:

Scan is the operator that accumulates all intermediate results for computation

of reduce. Informally, for an associative binary operator � and an initial value e,
we have

��==e [x1; x2; : : : ; xn] = [e; e � x1; e� x1 � x2; : : : ; e� x1 � x2 � � � � � xn]:

Note that this de�nition is a little di�erent from that in [Bir87]; the e there is
assumed to be the unit of �. In fact eÆcient implementation of the scan skeleton

does not need this restriction.

Zip is the operator that merge two lists into a single one by pair-wising the

corresponding elements and the resulting list has the same length as that of shorter
one. Informally, we have

[x1; x2; : : : ; xn] � [y1; : : : ; yn] = [(x1; y1); : : : ; (xn; yn)]:

It has been shown that these four operators have nice massively parallel imple-
mentations on many architectures [Ski90, Ble89]. If k and � use O(1) parallel time,

then k� can be implemented using O(1) parallel time, and both �= and ��==e can
be implemented using O(logN) parallel time (N denotes the size of the list). For

example, � can be computed in parallel on a tree-like structure with the combining

operator � applied in the nodes, while k� is computed in parallel with k applied

to each of the leaves. The study on eÆcient parallel implementation of ��==e can be
found in [Ble89], though it is not so obvious.

3 Limitations of the Existing Skeletal Parallel Programming

In this section, we are using a simple but practical example, the lines-of-sight prob-

lem (los for short), to explain in details the limitations (problems) of the existing
approach to parallel programming using skeletons, clarifying the motivation and

the goal of this work.

Given a terrain map in the form of a grid of altitudes, an observation point,

and a set of rays, the lines-of-sight problem is to �nd which points are visible along
these rays originating at the observation point (as in Figure 1). A point on a ray

is visible if and only if no other point between it and the observation point has a

greater vertical angle. More precisely, los : Point ! [[Point]] ! [[Bool]] accepts

as input an observation point p0 and a list of rays where each ray is a list of points,

and returns a list of lists where corresponding element is a boolean value showing

whether the point is visible or not.

An Accumulative Parallel Skeleton for All 5

Point
Observation

Fig. 1 Altitude Map

This problem is of practical interest, and a simpler version (considering only

a single line) was informally studied in [Ble89] where an eÆcient parallel program
was given without explanation how it was obtained. Now the question is how to

make use of the four BMF skeletons in Section 2 to develop an eÆcient parallel

program to solve this problem.

3.1 Problems in Programming EÆcient Skeletal Programs

Programming with skeletons eÆciently is hard because it requires a proper choice

of skeletons and an eÆcient combination of them. EÆcient programming with these
skeletons is a well known area of research [Bir87, Ski94, Col95, GDH96, Gor96a,

HIT97, HTC98]. Using skeletons, one often tries to solve a problem by composition

of several passes so that each pass can be described in terms of a parallel skeleton.

Considering the subproblem los1 which just checks whether the points in a single

ray ps are visible or not from the observation point p0, one may solve the problem

by the following three passes.

1. Compute the vertical angles for each point.

2. For each point, compute the maximum angle among all those of the points

between this point and the observation point, which can again be solved by

two passes:

(a) for each point, gather all angles of the points between this point and the

observation point;

(b) for each point, compute the maximum of the angles.

3. For each point compare its angle with the maximum angle of the points

between the point and the observation point.

And therefore one could come up with the following program:

An Accumulative Parallel Skeleton for All 6

los1 p0 ps = let

as = (angle p0) � ps | Pass 1

ass = ++�==[] ([�] � as) | Pass 2 (a)

mas = maximum � ass | Pass 2 (b)

vs = (� (x ; y) ! x > y) � (as �mas) | Pass 3
in

vs

However, this multi-pass program has the problem of introducing many in-
termediate data structures (such as as , ass , and mss) passed between skeletons.

This may result in a terribly ineÆcient programs (the above de�nition los1 is such

an example) with high computation and communication cost especially in a dis-

tributed system [KC99]; these intermediate data structures have to be distributed

to processors and each result must be gathered to the master processor.

Another problem is that even for a simpler subproblem like Pass 2 (a), solving

it in terms of skeleton is actually not an easy task. One approach to cope with this

problem is to derive a homomorphism [Col95, GDH96, Gor96a, HIT97, HTC98],

resulting in skeletal parallel programs in the form of � = Æ k�. Its theoretical

foundation is the following homomorphism lemma.

De�nition 1 (Homomorphism) Function h is a homomorphism if it is de�ned by

h [] = ��
h [a] = f a
h (x++ y) = h x� h y

where � is a binary operator whose unit is �� and f is a function. 2

Lemma 1 (Homomorphism Lemma [Bir87]) Function h is a homomorphism if

and only if it can be factored into the compositional form of h = � = Æ f �. 2

In practice, many functions cannot be directly described by homomorphism.

Function los1 is not an exception, because there does not exist an � such that

los1 p0 (ps1 ++ ps2) = los1 p0 ps1 � los1 p0 ps2:

Furthermore, it can only deal with programming with map and reduce skeletons,
but it cannot deal with programming with scan being an important parallel skeleton

[Ble89].

3.2 Problems in Optimizing Skeletal Parallel Programs

As argued, most ineÆciency speci�c to skeletal parallel programs grows out of many

intermediate data structures passing from one skeleton to another; therefore the
optimization must essentially fuse composition of skeletons to eliminate unneces-

sary intermediate data structures for saving both computation and communication

cost. As a matter of fact, without a powerful and systematic way to optimize skele-

tal parallel programs, it would be diÆcult to make skeletal parallel programming

useful in practice. Consider the cost of the program for los1. Let n be the length

of ps, the work (when computed with a single processor) is O(n2), because ass

An Accumulative Parallel Skeleton for All 7

produces a list of n+1 lists (whose length are from 0 to n) each of which is applied

by maximum . On the other hand, one can easily write a sequential program to

solve los1 by using an accumulating parameter starting from �1 and storing the

maximum vertical angles found so far.

los1 p0 ps = los10 p0 ps (�1)

los10 p0 [] maxAngle = []

los10 p0 (p : ps) maxAngle = let a = angle p0 p
in (if a > maxAngle then [T] else [F])

++ los10 p0 ps (max maxAngle a)

Here we use T and F to represent True and False respectively. It traverses the

points and compares for each point the angle with maxAngle to decide whether it

is visible or not. This sequential program is a linear program. Therefore, if an

eÆcient parallel programs using skeletons cannot be obtained, no one would prefer

to use it.

The major diÆculty for this fusion lies in the construction of rules meeting

the skeleton-closed requirement that the fusion of skeletons should give a skeleton

again [Bir87, SG99]. Recall the program for Pass 2 (a):

ass = ++�==[]([�] � as):

It cannot be fused into a program using a single skeleton of map, or reduce , or

scan , although one may hope to fuse it into something like (� e � a ! e ++ [a])�==[],
which is incorrect because the underlined binary operator is not associative. The

key problem for optimization turns out to be how to systematically fuse skeletal

parallel programs.

3.3 Problems in Dealing with Nested Parallelism

Consider the program of Pass 2 (b) in the de�nition of los1:

mas = maximum � ass:

Let ass = [as1; as2; : : : ; asn]. The ineÆciency happens when the lengths of as1,
as2, : : :, asn are quite di�erent. To see this more clearly, consider an extreme case

(which will not be possible for our example) of

maximum � [[1]; [2]; [1; 2; 3; 4; : : : ; 100]];

and assume that we have three processors. If we naively use one processor to

compute maximum on each element list according to the parallel semantics of map,

computation time will be dominated by the processor which computes maximum

[1; 2; : : : ; 100], and the load unbalance cancels the e�ect of parallelism in the map

skeleton.

Generally, the nested parallelism problem can be formalized as under what

condition of f , the function f� can be implemented eÆciently no matter how

di�erent the sizes of the element lists are? Blelloch [Ble89, Ble92] gave a case study,

showing that if f is ��==e, than f� is called segmented scan and can be implemented

An Accumulative Parallel Skeleton for All 8

eÆciently. But how to systematically cope with skeletal parallel programs remains

unclear.

A concrete but more involved example is the lines-of-sight problem which can
be solved by

los p0 pss = (los1 p0) � pss

where pss may be an unbalanced (irregular) data.

4 An Accumulative Parallel Skeleton

From this section, we shall propose a new general parallel skeleton to resolve the

problems raised in Section 3, showing how one can easily program with this new

skeleton, how skeletal parallel programs can be systematically optimized, and how

nested parallelism can be e�ectively dealt with.

4.1 The Skeleton accumulate

We believe that the skeleton itself should be able to describe data dependency

in a more natural way: map and zip describe parallel computation without data

dependency, reduce describes parallel computation with an upward (bottom-up)

data dependency, and scan describes parallel computation with an upward and a

simple downward (top-down) data accumulation. Our new proposing accumulative
skeleton can describe both upward and downward data dependency in a more

natural and general way.

De�nition 2 (accumulate) Let g; p; q be functions, and let � and
 be associative
operators. The skeleton accumulate is de�ned by

accumulate [] e = g e
accumulate (a : x) e = p(a; e) � accumulate x (e
 q a):

We write [[g; (p;�); (q;
)]] for the function accumulate. 2

As a quick example of the use of the skeleton, los10 in Section 3 can be de�ned
as

los1 p0 = [[�m ! [];
(�(p;m)! if a > maxAngle then [T] else [F];++);
(id ;max)]]:

4.2 Parallelizable

To see that it is indeed a parallel skeleton, we will show that it can be implemented

eÆciently in parallel. As a matter of fact, the recursive de�nition for accumulate

belongs to the class of parallelizable recursions as de�ned in [HTC98]. The following

theorem gives the resulting parallel version for accumulate.

Theorem 2 (Parallelization) The function accumulate de�ned in De�nition 2 can

An Accumulative Parallel Skeleton for All 9

be parallelized to the following divide-and-conquer program.

accumulate [] e = g e
accumulate x e = fst (accumulate

0 x e)
accumulate

0 [a] e = (p (a; e) � g (e
 q a); p (a; e); q a)
accumulate

0 (x++ y) e = let (rx; sx; tx) = accumulate
0 x e

(ry; sy; ty) = accumulate
0 y (e
 tx)

in (sx � ry; sx � sy; tx
 ty)

Proof. Apply the parallelization theorem in [HTC98] followed by the tupling

calculation [HITT97]. 2

It is worth noting that accumulate
0 can be implemented in parallel with multiple

processor system supporting bidirectional tree-like communication, using the time

of O(log n) where n denotes the length of the input list based on the algorithm in

[Ble89], provided that �,
, p, q and g can be computed in constant time. Two

passes are employed; an upward pass in the computation can be used to compute

the third component of accumulate
0 x e before a downward pass is used to compute

the �rst two values of the tuple.

4.3 An Abstraction of Multi-Pass Computation

To see that it is necessary to have this skeleton, we will show that it cannot be

eÆciently implemented by a naive combination of the existing skeletons, although
accumulate can be described in terms of the existing skeletons according to the

di�usion theorem [HTI99].

Theorem 3 (Di�usion) The function accumulate de�ned in 2 can be di�used into

the following composition of skeletal functions.

accumulate x e = let y ++ [e0] =
�==e(q � x))
z = x� y

in (�= (p � z))� (g e0) 2

The resulting skeletal program after di�usion cannot be eÆciently implemented

just according to the parallel semantics of each skeleton. To see this, consider the
simplest composition of two skeleton of �=(p � z) when computed on a distributed

parallel machine. It is typically performed by the following two passes.

1. Compute p � z by distributing data z among processors, performing p� in a

parallel way, and collecting data from processors to form data w.

2. Compute �=w by distributing data w among processors, performing �= in a

parallel way, and collecting data from processors to form the result.

The underlined two parts are obviously not necessary, but this multiple-pass

computation style is unavoidable, because �= Æ p� cannot be fused into a single
existing skeleton. To remove this eÆciency, we must introduce a new skeleton to

capture (abstract) this kind of multiple-pass program. Our skeleton accumulate

is greatly inspired by this need and is exactly designed for abstracting multiple-

pass computation. It can be eÆciently implemented without any intermediate data

distribution and collection (of course, it contains necessary data communication)

[AIH00].

An Accumulative Parallel Skeleton for All 10

4.4 Parallel Programming with accumulate

The following two features make it easy to use accumulate to solve many problems.

� Sequential Programming Style. Compared to homomorphism, accumulation

is de�ned on cons lists (with two cases of [] and a : x) instead of join lists
(with three cases of [], [a], x++ y). This sequential programming style makes

it easier for parallel programming.

� Accumulative Programming Style. accumulate uses an accumulating param-

eter which can be used to describe dependency of computation in a natural

way. In contrast, the existing skeletal parallel programming requires all de-

pendency must be explicitly speci�ed by using intermediate data.

We have shown in Section 4.1 that computation function los1 can be easily
described by accumulate. The skeleton is indeed so powerful and general that it

can be used to describe the skeletons without sacri�cing the performance in order,

as summarized in the following theorem.

Theorem 4 (Skeletons in accumulate)

f � x = [[� ! []; (�(a;)! [f a];++); (;)]] x
�= x = [[� ! ��; (�(a;)! a;�); (;)]] x
��==e = [[[�]; (�(a; e) ! [e];++); (id:�)]] 2

Note that in the above theorem, is used to represent a special function which

can be any with consistent type; it is only used when accumulating parameter is
actually unnecessary as seen in the de�nitions for f� and �=. This information

can be quite useful for specialization of accumulate. Note also that the description

of the skeletons in terms of accumulate is not unique.

Powerful and general, accumulate can be used to solve many problems in a rather
straightforward way, not more diÆcult that solving the problems in sequential

order. We give a simple example computing a polynomial value below. Other

examples for solving more complicated problem (bracket matching problem and

computing the sum of larger list) can be found in Appendix A.

This example, a case study in [SG99] and an exercise in [Ble90], is to compute

a polynomial

poly [a1; a2; : : : ; an] x = a1 � x+ a1 � x2 + � � �+ an � xn:

It can be easily de�ned by the following recursive de�nition with an accumulating

parameter storing xi.

poly as x = poly0 as x
where poly0 [] e = 0

poly0 (a : as) e = a� e+ poly as (e� x)

That is,
poly = [[�e! 0; (�(a; e) ! a� e;+); (id;�)]]:

It soon follows from the parallelization theorem that we have obtained an O(log n)
parallel time program for evaluating a polynomial.

An Accumulative Parallel Skeleton for All 11

5 Optimizing Skeletal Parallel Programs

To fuse several skeletons into one for eliminating unnecessary intermediate data

structures passed between skeletons, one would try to develop rules for performing

algebraic transformations on skeletal parallel program like [SG99]. For instance,
here is a possible algebraic transformation which eliminates an intermediate list:

f � (g � x) = (f Æ g) � x

Unfortunately, one would need a huge set of rules to account for all possible com-

binations of skeletal functions. In this paper, we borrow the idea of shortcut

deforestation [GLJ93] for optimization of sequential program, and reduce this set
to a single rule, by standardizing the way in which join lists are consumed by

accumulate and standardizing the way in which they are produced.

5.1 The Fusion Rule

First of all, we explain the shortcut deforestation theorem, known as foldr-build

rule [GLJ93].

Lemma 5 (foldr-build Rule [GLJ93]) If for some �xed A we have gen : 8�: (A !

� ! �)! � ! �, then

foldr (�) e (build gen) = gen (�) e;

where foldr and build are de�ned by

foldr (�) e [] = e
foldr (�) e (a : x) = a� foldr (�) e x
build gen = gen (:) []: 2

Noticing that accumulate can be described in terms of foldr as

accumulate = foldr (�a�r ! (�e! p(a; e)� r(e
 q a))) g

we soon obtain a rule for fusion of accumulate from Lemma 5:

[[g; (p;�); (q;
)]] (build gen) = gen (�a�r ! (�e! p(a; e)� r(e
 q a))) g:

However, this rule has a practical problem for being used to fuse skeletal parallel

programs. The reason is that skeletal functions would produce join lists rather

than cons lists, due to the requirement of associativity in the their de�nitions. For

example, for the de�nition of f�:

f � x = [[� ! []; (�(a;)! [f a];++); (;)]] x

it would be more natural to consider it as a production of a join list using the con-

structors of [], [�], and ++ . To resolve this problem, we standardize the production

of join lists by de�ning buildJ as

buildJ gen = gen (++) [�] [];

An Accumulative Parallel Skeleton for All 12

and accordingly standardize the list consumption by transforming [[g; (p;�); (q;
)]]
based on the parallelization theorem to

[[g; (p;�); (q;
)]] x = fst Æ accumulate
0

accumulate
0 [] = �e! (g e; ;)

accumulate
0 [a] = �e! (p (a; e) � g (e
 q a); p (a; e); q a)

accumulate
0 (x++ y) = accumulate

0 x��;
 accumulate
0 y

where � is de�ned by

(u��;
 v) e = let (r1; s1; t1) = u e
(r2; s2; t2) = v (e
 t1)

in (s1 � r2; s1 � s2; t1
 t2):

Therefore, we obtain the following general and practical fusion theorem for accumulate.

Theorem 6 (Fusion (Join Lists)) If for some �xed A we have gen : 8�: (� ! � !
�)! (A! �)! � ! � then

[[g; (p;�); (q;
)]] (buildJ gen) e
= fst (gen (��;
) (�a! (�e! (p (a; e)� g (e
 q a); p (a; e); q a)))

(�e! (g e; ;) e) 2

For the skeletons in the form of [[� ! e; (�(a;)! p0 a;�); (;)]], like map and

reduce , which do not need a accumulating parameter, we can specialize Theorem

6 to have the following corollary for fusion with these skeletons.

Corollary 7 If for some �xed A we have gen : 8�: (A ! � ! �) ! (A ! �) !
� ! � and then

[[� ! d; (�(a;)! p0a;�); (;)]] (buildJ gen) = gen (�) (�a! p0 a� d) d 2

5.2 Warm Fusion

To apply Theorem 6 for fusion, we must standardize those skeletal parallel pro-

grams to be fused in terms of accumulate for consuming join lists and of buildJ for

producing join lists. We deal with this by the following two methods:

� Standardizing Library Functions by Hand. We can standardize frequently

used functions by hand. For example, the following give such form for map

and scan .

f � x = buildJ (�c�s�n! [[� ! n; (�(a;)! s (f a); c); (;)]] x)

��==ex = buildJ (�c�s�n! [[s; (�(a; e) ! s e; c); (id;�)]] x e)

Following this idea, users may recode their library functions such asmaximum

in this form, as done in sequential programming like [GLJ93] which rewrites
most prelude functions of Haskell in the form of foldr-build form. This method

is rather practical, but needs preprocessing.

� Standardizing accumulate Automatically. For a user-de�ned function in terms
of accumulate, we may build a type inference system to automatically abstract

the data constructors of join lists appearing in the program to derive its buildJ

form. Many studies have been devoted to sequential programming and have

success [LS95, OHIT97, Chi99], which can adapt to our use.

An Accumulative Parallel Skeleton for All 13

5.3 Some Examples

Consider the following function alleven, which tests whether all the elements of a

list are even:

alleven x = ^ = (even � x);

we can perform fusion systematically (automatically) as follows. Note that this

program cannot be fused in the existing framework.

^ = (even � x)
= f def. of reduce and map g

[[� ! T; (�(a;)! a;^); (;)]]
(buildJ (�c�s�n! [[� ! n; (�(a;)! s (even a); c); (;)]] x))

= f Corollary 7 g

[[� ! T; (�(a;)! even a ^ T;^); (;)]] x
= f simpli�cation g

[[� ! T; (�(a;)! even a;^); (;)]] x

Theorem 6 can be applied to a wider class of skeletal parallel programs, includ-

ing the useful program patterns such as (1) f1 � Æ f2 � Æ � � � Æ fn , (2) � = Æ f �,
(3) � = Æ
�==e , (4) f � Æ ��==e Æ g �, (5) �1�==e1 Æ �2�==e2 . Recall the lines-of-sight
problem in Section 3 where we have got the following compositional program for

Pass 2 (b) after expansion of ass and as:

mas = maximum= � (++�==[] ([�] � (angle � ps)):

we can fuse it into a single one (see Appendix B).

6 Dealing with Nested Skeletons

Our new skeleton accumulate can deal with nested data structure very well, espe-

cially irregular one whose elements may have quite di�erent sizes. Parallel pro-

graamming as argued in Section 3.3. To be concrete, as described in Section 3.3,

we are considering eÆcient implementation of a computation which maps some
function f in terms of accumulate to every sublist, when given is a list of
at lists,

e.g. list of lists of integer.

In order to process a given nested (maybe irregular) list eÆciently, we �rst use

atten : [[a]]� > [(Bool ; a)] to transform the nested list into a
at list of pairs
[Ble92]. Each element in this
at list is a pair of
ag , a boolean value, and an

element of inner list of the original nested list. If the element is the �rst of an inner

list,
ag is T, otherwise
ag is F. For example, a nested list

[[x1; x2; x3]; [x4; x5]; [x6]; [x7; x8]]

is
attened into the list

[(T; x1); (F; x2); (F; x3); (T; x4); (F; x5); (T; x6); (T; x7); (F; x8)]:

Using the
attened representation, each processor can be assigned almost the

same number of data elements, and therefore, reasonable load balancing between

An Accumulative Parallel Skeleton for All 14

processors can be achieved. For the above example, if there are four proces-

sors, they are assigned to [(T; x1); (F; x2)], [(F; x3); (T; x4)], [(F; x5); (T; x6)], and
[(T; x7); (F; x8)], respectively. Note that elements of the same inner list may be

divided and assigned to more than one processor.

Our theorem concerning nested lists states that mapping the function accumulate

to every sublist can be turned into a form applying another accumulate to the
at-

tened representation of the given nested list.

Theorem 8 (Flattening) If xs is a nested list which is not empty and does not
include empty list, then

(� x ! [[g ; (p;�); (q ;
)]] x e0) � xs

= snd ([[g 0; (p0;�0); (q 0;
0)]] (
atten xs) (T; e0; e0)

where

g
0 (z ; et ; ef) = (F; [g ef];)

p
0 ((T; a); (z ; et ; ef)) = (T; [p (a; et)]; ef)

p
0 ((F; a); (z ; et ; ef)) = (T; [p (a; ef)];)

q
0 (T; a) = (T; e0; e0
 q a)

q
0 (F; a) = (F; e0; q a)

(z ; vs1 ++ [v1]; a1) �
0 (T; vs2; a2) = (z ; vs1 ++ [v1 � g a2] ++ vs2; a1)

(z ; vs1 ++ [v1]; a1) �
0 (F; [v2] ++ vs2; a2) = (z ; vs1 ++ [v1 � v2] ++ vs2; a1)

(z ; et1; ef 1)

0 (T; et2; ef 2) = (T; et2; ef 2)

(z ; et1; ef 1)

0 (F; et2; ef 2) = (z ; et2; ef 1
 ef 2)

2

Due to space limitations, rather than giving a proof, we give some explanation

about the resulting accumulate on the
attened list. To convey suÆcient infor-
mation along with the elements in the
attened list, we use triples for both the

accumulation parameter and the result of accumulate. The triple of accumulation

parameter contains a
ag value referred in
0 whether to accumulate on the value

from the left part of the
attened list, initial value of accumulation, and the value

passed to the right part of the
attened list. On the other hand, the triple of the

result of accumulate consists of a boolean value representing the
ag of the �rst
element of the processed list, the result of the (partial) computation, and accu-

mulative value passed to the next computation. Two instances of this triple are

combined together by an associative operator �0.

The key point of this theorem is that the transformed program is just a simple
application of accumulate to the
attened list. It soon follows from the implemen-

tation of accumulate that we obtain an eÆcient implementation for the map of

accumulate.

7 Related Work and Discussions

Besides the related work in Introduction, we give other most related work below.

Parallel Programming in BMF has been attracting many researchers. The

initial BMF [Bir87] was designed as a calculus for deriving (sequential) eÆcient

programs on lists. Skillicorn [Ski90] showed that BMF could also provide an
architecture-independent model for parallel programming because a small �xed

An Accumulative Parallel Skeleton for All 15

set of higher-order functions in BMF such as map, reduce can be mapped ef-

�ciently to a wide range of parallel architectures. Along with the extension of

BMF from the theory of lists to the uniform theory of most data types, Skillicorn

[Ski93b, Ski94, Ski96] called these data types categorical data types, and established

an architecture-independent cost model for generic catamorphisms. This in
uence

our de�nitions of parallel primitives over data structures like trees.

Despite the architecture-independent cost model for the extended BMF, we are

lacking of powerful parallelization theorem and laws for calculating eÆcient parallel

programs, which more or less prevents it from being widely used. To remedy

this situation, quite a lot of recent studies have been devoted to the development
of powerful parallelization methods with BMF [Ski93a, Col95, Gor96b, Gor96a,

GDH96, HIT97, HTC98]. As explained in Section 3, the main idea is based on

derivation of list homomorphism from a naive speci�cation. This is based on the

fact that a list homomorphism can be eÆciently implemented by a composition of

two parallel primitives, namely reduce and map. Our newly introduced skeleton

accumulate can be considered as a natural extension of list homomorphism, which

is more general and easier to be used in programming, because of explicit use of
accumulating parameters in recursive de�nitions.

Our design of accumulate for parallel programming is also related to the Third

Homomorphism Theorem [Gib96], which says that if a problem can be solved in

terms of both foldl (top down) and foldr (bottom up), then it can be solved in
terms of a list homomorphism which can be implemented in parallel in a divide-and-

conquer way. However, it remains open how to construct such list homomorphism

from two solutions in terms of foldl and foldr . Rather than �nding a way for

this construction, we provide accumulate for parallel programming, and it can be

regarded as an integration of both foldl and foldr .

Optimizing skeletal parallel programs is a challenge, and there have been several

studies. A set of optimization rules, together with performance estimation, have

been proposed in [SG99], which are used to guide fusion of several skeletons into

one. Unfortunately, this would need a huge set of rules to account for all possible

combinations of skeletal functions. In contrast, we reduce this set to a single rule
(Parallelization Theorem), by standardizing both the way in which join lists are

consumed by accumulate and the way in which they are produced. This idea is

related to the shortcut deforestation [GLJ93, LS95, Chi99] which has proved to be

practically useful for optimization of sequential programs. Another approach is to

re�ne the library functions to reveal their internal structure for optimization in a

compiler [KC99]. We deal with this problem in programming instead of compiler

reconstruction.

As for nested parallelism, our work is related to that by Blelloch [Ble89, Ble92]

who gave a case study showing that if f is ��==e, than (��==e)� can be implemented

eÆciently. Comparatively, we treat more complicated f including scan as its special

case, and show that (�x:[[g; (p;�); (q;
)]] x e0)� can be eÆciently implemented.
Note that the
attening transformation [Ble92, KS96] mainly deals with nested

apply-to-all (sort of nested map like (f �)�).

This work is a continuation of our e�ort to apply the so-called program calcu-

An Accumulative Parallel Skeleton for All 16

lation technique [THT98] to the development of eÆcient parallel programs [HIT97,

HTC98]. As a matter of fact, our new skeleton accumulate comes out of the re-

cursive pattern which is parallelizable in [HTC98, HTI99]. Based on these results,

this paper made a signi�cant progress towards practical use of skeletons for paral-

lel programming, showing how to program with accumulate, how to systematically

optimize skeletal programs, and how to deal with irregular data.

References

[AIH00] S. Adachi, H. Iwasaki, and Z. Hu. Di�: A powerful parallel skeleton. In The

2000 International Conference on Parallel and Distributed Processing Tech-

niques and Application, pages 525{527 (Vol.4), Las Vegas, 2000. CSREA Press.

[Bir87] R. Bird. An introduction to the theory of lists. In M. Broy, editor, Logic
of Programming and Calculi of Discrete Design, pages 5{42. Springer-Verlag,
1987.

[Bir98] R.S. Bird. Introduction to Functional Programming using Haskell. Prentice
Hall, 1998.

[Ble89] Guy E. Blelloch. Scans as primitive operations. IEEE Trans. on Computers,
38(11):1526{1538, November 1989.

[Ble90] G. E. Blelloch. Pre�x sums and their applications. Technical Report CMU-
CS-90-190, Carnegie-Mellon Univ., 1990.

[Ble92] G.E. Blelloch. NESL: a nested data parallel language. Technical Report CMU-
CS-92-103, School of Computer Science, Carnegie-Mellon University, January
1992.

[Chi99] O. Chitil. Type inference builds short cut to deforestation. In Proceedings of

1999 ACM SIGPLAN International Conference on Functional Programming,
pages 249{260. ACM Press, 1999.

[Col95] M. Cole. Parallel programming with list homomorphisms. Parallel Processing
Letters, 5(2), 1995.

[GDH96] Z.N. Grant-Du� and P. Harrison. Parallelism via homomorphism. Parallel

Processing Letters, 6(2):279{295, 1996.

[Gib96] J. Gibbons. The third homomorphism theorem. Journal of Functional Pro-

gramming, 6(4):657{665, 1996.

[GLJ93] A. Gill, J. Launchbury, and S. Peyton Jones. A short cut to deforestation. In
Proc. Conference on Functional Programming Languages and Computer Archi-

tecture, pages 223{232, Copenhagen, June 1993.

[Gor96a] S. Gorlatch. Systematic eÆcient parallelization of scan and other list homomor-
phisms. In Annual European Conference on Parallel Processing, LNCS 1124,
pages 401{408, LIP, ENS Lyon, France, August 1996. Springer-Verlag.

[Gor96b] S. Gorlatch. Systematic extraction and implementation of divide-and-conquer
parallelism. In Proc. Conference on Programming Languages: Implementation,

Logics and Programs, LNCS 1140, pages 274{288. Springer-Verlag, 1996.

[HIT97] Z. Hu, H. Iwasaki, and M. Takeichi. Formal derivation of eÆcient parallel
programs by construction of list homomorphisms. ACM Transactions on Pro-

gramming Languages and Systems, 19(3):444{461, 1997.

[HIT99] Z. Hu, H. Iwasaki, and M. Takeichi. Caculating accumulations. New Genera-

tion Computing, 17(2):153{173, 1999.

An Accumulative Parallel Skeleton for All 17

[HITT97] Z. Hu, H. Iwasaki, M. Takeichi, and A. Takano. Tupling calculation elimi-
nates multiple data traversals. In ACM SIGPLAN International Conference

on Functional Programming, pages 164{175, Amsterdam, The Netherlands,
June 1997. ACM Press.

[HL93] P. Hammarlund and B. Lisper. Data parallel programming, a survey and a
proposal for a new model. Technical Report 93/8-SE, Department of Telein-
formatics, Royal Institute of Technology, September 1993.

[HS86] W.D. Hills and Jr. G. L. Steele. Data parallel algorithms. Communications of

the ACM, 29(12):1170{1183, 1986.

[HTC98] Z. Hu, M. Takeichi, and W.N. Chin. Parallelization in calculational forms. In
25th ACM Symposium on Principles of Programming Languages, pages 316{
328, San Diego, California, USA, January 1998.

[HTI99] Z. Hu, M. Takeichi, and H. Iwasaki. Di�usion: Calculating eÆcient paral-
lel programs. In 1999 ACM SIGPLAN Workshop on Partial Evaluation and

Semantics-Based Program Manipulation, pages 85{94, San Antonio, Texas,
January 1999. BRICS Notes Series NS-99-1.

[JH99] S. Peyton Jones and J. Hughes, editors. Haskell 98: A Non-strict, Purely

Functional Language. Available online: http://www.haskell.org, February
1999.

[Kar87] A. Karp. Programming for parallelism. IEEE Computer, pages 43{57, May
1987.

[KC99] G. Keller and M. M. T. Chakravarty. On the distributed implementation of
aggrefate data structures by program transformation. In J. Rolim et al., editor,
4th International Workshop on High-Level Parallel Programming Models and

Supportive Environments (LNCS 1586), pages 108{122, Berlin, Germany, 1999.
Springer-Verlag.

[KS96] G. Keller and M. Simons. A calculational approach to
attening nested data
parallelism in functional languages. In J. Ja�ar and R. H. C. Yap, editors,
Concurrency and Parallelism, Programming, Networking, and Security: Second

Asian Computing Science Conference, ASIAN'96, volume 1179 of Lecture Notes
in Computer Science, pages 234{243. Springer Verlag, 1996.

[LS95] J. Launchbury and T. Sheard. Warm fusion: Deriving build-catas from recur-
sive de�nitions. In Proc. Conference on Functional Programming Languages

and Computer Architecture, pages 314{323, La Jolla, California, June 1995.

[MR90] M. Medcalf and J. Reid. Fortran 90 explained. Oxford Science Publications,
1990.

[OHIT97] Y. Onoue, Z. Hu, H. Iwasaki, and M. Takeichi. A calculational fusion system
HYLO. In IFIP TC 2 Working Conference on Algorithmic Languages and

Calculi, pages 76{106, Le Bischenberg, France, February 1997. Chapman&Hall.

[Pra92] T.W. Pratt. Kernel-control parallel versus data parallel: A technical compar-
ison. In Proceeding of a Workshop on Languages, Compilers and Run-Time

Enviroments for Distributed Memory Multiprocessors, appeared as SIGPLAN

Notices, Vol 28, No. 1, January 1993, pages 5{8, September 1992.

[SG99] Christian Lengauer Sergei Gorlatch, Christoph Wedler. Optimization rules
for programming with collective operations. In Mikhail Atallah, editor,
IPPS/SPDP'99. 13th Int. Parallel Processing Symp. & 10th Symp. on Par-

allel and Distributed Processing, pages 492{499, 1999.

[Ski90] D.B. Skillicorn. Architecture-independent parallel computation. IEEE Com-

puter, 23(12):38{51, December 1990.

[Ski93a] D.B. Skillicorn. The Bird-Meertens Formalism as a parallel model. In J.S.
Kowalik and L. Grandinetti, editors, Software for Parallel Computation, vol-
ume 106 of NATO ASI Series F, pages 120{133. Springer-Verlag, 1993.

An Accumulative Parallel Skeleton for All 18

[Ski93b] D.B. Skillicorn. Categorical data types. In Second Workshop on Abstract

Models for Parallel Computation, Oxford University Press, 1993.

[Ski94] D.B. Skillicorn. Foundations of Parallel Programming. Cambridge University
Press, 1994.

[Ski96] D.B. Skillicorn. Parallel implementation of tree skeletons. Journal of Parallel
and Distributied Computing, 39(0160):115{125, 1996.

[THT98] A. Takano, Z. Hu, and M. Takeichi. Program transformation in calculational
form. ACM Computing Surveys, 30(3), December 1998. Special issues for 1998
Symposium on Partial Evaluation.

A Two Examples of Parallel Programming in accumulate

As argued in Section 4, the skeleton accumulate can be used to solve many problems

in a rather straightforward way, not more diÆcult that solving the problems in
sequential order. Two examples for solving the bracket matching problem and for

computing the sum of larger list are given for illustration.

Bracket Matching Problem

The bracket matching problem is to determine whether the brackets '(' and ')' in

a given string are correctly matched. It was an example in [Col95] for demonstrat-

ing a homomorphic approach to programming with skeletons and a quite involved

algorithm was given. By our approach, we can solve this problem by using an

accumulating parameter representing a counter, which is initialized to 0, and in-
cremented or decreased as opening and closing brackets are encountered.

bm x = bm0
x 0

bm0 [] c = c = 0

bm0 (a : x) c = if a =0 (0 then bm0
x (c+ 1)

else if a =0)0 then c > 0 ^ bm0
x (c� 1)

else bm0
x c

The bm0 is not yet in the form which can be speci�ed by accumulate, but we can

easily transform it by merging three recursive call and have

bm0 (a : x) c = p(a; c) ^ bm0 x (c+ q a)
p(a; c) = if a =0 (0 then T else if a =0)0 then c > 0 else T

q a = if a =0 (0 then 1 else if a =0)0 then � 1 else 0

and therefore we obtain the following eÆcient parallel program:

bm = [[�c! c = 0; (p;^); (q;+)]]:

Computing the Sum of Larger Integer List

This example is an extension of the problem in [Ble90], with which we want to show

that accumulate can be friendly used with the existing skeletons. The problem is

to compare two integer lists of the same length and to return the sum of elements

of the larger one as the result. It can be solved naively as follows

sumLarger x y = if gt x y then + = x else + = y

An Accumulative Parallel Skeleton for All 19

Function gt is to compare two integer lists (under the lexicographical order), and

can be computed by �rst zipping the elements of x and y and then comparing

corresponding element from left to right starting from True. This can be speci�ed

by
gt x y = comp (x� y) T
comp [] r = r
comp ((a; b) : xy) r = r ^ comp xy (r ^ (a � b))

where comp can be expressed in terms of accumulate by

comp = [[id; (�(ab; r) ! r;^); (�(a; b) ! a � b;^)]]:

B Fusion of mas: An Example

This section demonstrates how Theorem 6 can be used to systematically fuse the

following program:

mas = max= � (++�==[] ([�] � (angle � ps)):

The fusion calculation is as follows.

mas

= f def. of mas g
maximum= � (++�==[] ([�] � (angle � ps))

= f represnet skeletal functions in buildJ-accumulateform g
[[� ! []; (�(a;)! [maximum a];++); (;)]]

(buildJ (�c�s�n! [[s; (�(a; e)! s e; c); (id;++)]]

(buildJ (�c�s�n ! [[� ! n; (�(a;)! s ([�] a); c); (;)]]

(buildJ (�c�s�n ! [[� ! n; (�(a;)! s (angle a); c); (;)]] ps)))) []))

= f Corollary 7 g
[[� ! []; (�(a;)! [maximum a];++); (;)]]

(buildJ (�c�s�n! [[s; (�(a; e)! s e; c); (id;++)]]

(buildJ (�c�s�n ! [[� ! n; (�(a;)! c (s ([angle a])) n; c); (;)]] ps)) []))

= f Corollary 7 g
[[�e! [maximum e] ++ []; (�(a; e)! [maximum e] ++ [];++); (id;++)]]

(buildJ (�c�s�n ! [[� ! n; (�(a;)! c (s ([angle a])) n; c); (;)]] ps)) []

= f move maximum to accumulating parameter as in [HIT99], maximum = max = g
[[�e! [maximum e]; (�(a; e)! [e];++); (maximum;max)]]

(buildJ (�c�s�n ! [[� ! n; (�(a;)! c (s ([angle a])) n; c); (;)]] ps)) []

= f Theorem 6 g
fst ([[� ! (�e! ([maximum e]; ;));

(�(a;)! (�e! ([angle a] ++ [e]; [angle a]; angle a))

�++ ;max
(�e! ([e]; ;)); �++ ;max

);

(;)]] ps [])

This �nal program is quite eÆcient. Note that although it looks diÆcult to

understand, it is basically the same as the program of (max�==maximum []).

