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Abstract

We propose to fit a Lancaster-type additive model of interaction terms for cell

probabilities of contingency tables to evaluate the conditional probability of popu-

lation uniqueness of sample unique records in microdata sets. Moment estimation

of the Lancaster-type additive model is straightforward and the proposed estimation

procedure is intuitively appealing from the viewpoint of disclosure risk assessment.

In order to increase flexibility of the procedure, we also consider Ridge type shrinkage

of the Lancaster-type additive model towards the independence model. For illustra-

tion we apply the proposed procedure to a test data set based on 1990 U.S. Census

PUMS data.

1. Introduction

In evaluating the disclosure risk of a given microdata set, the number (or the pro-

portion) of the population uniques among the sample unique records with respect to a

given set of key variables is an important overall measure of the disclosure risk. For

estimating the number of population uniques, various models have been proposed, in-

cluding Poisson-Gamma model (Bethlehem et al. (1990)), Ewens sampling formula (e.g.

Hoshino and Takemura (1998)), and more recently, Pitman model (Hoshino (2001)). These

models treat the sample unique records exchangeably. Therefore under these models esti-

mated conditional probability of population uniqueness is common for every sample unique

record and is equal to the estimated proportion of population uniques among the sample

unique records. However it is clear that some sample unique records are more likely to be

population uniques than other records, depending on the intuitive “rareness” of the sample

unique records. If a sample unique has very rare combination of observed characteristics,

it is likely to be a population unique.

One way of evaluating the per-record identification risk is modeling of cell probabili-

ties of the contingency table corresponding to a microdata set, where all the key variables of

the microdata set are categorized and the joint frequencies of the key variables are counted.
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Then the per-record identification risk can be evaluated in terms of the estimated condi-

tional probability of population uniqueness of sample uniques cells. This approach was

investigated in Skinner and Holmes (1998) and Fienberg and Makov (1998). They used

the standard log-linear model of cell probabilities of contingency tables. In this paper

we consider fitting the Lancaster-type additive model of interaction terms, because of its

simple computation and interpretation.

In actual evaluation of disclosure risk, we often have to consider 10 or more possible

key variables. Then the contingency table is m-way, where m is greater than equal to

10. Suppose that each variable has 10 categories, then the total number of the cells in

the contingency table is 10m. This shows that we have to deal with contingency table

of very large size in disclosure risk assessment. In the application in Section 4 the total

number of the cells is about 1/4 billion. The maximum likelihood estimation of log-

linear model becomes computationally very expensive for large tables and simplicity of

additive modeling of cell probabilities is attractive from computational viewpoint. On

the other hand a difficulty with additive modeling is that estimated cell probabilities are

not necessarily non-negative. Relative merits of log-linear model and additive model are

discussed in Section 5.

Throughout this paper we assume the following simple superpopulation model: the

cell probabilities of the contingency table are unknown but fixed and each of the N indi-

viduals of the population falls into a cell by an independent multivariate Bernoulli trial.

Concerning the sampling we assume simple random sampling of n individuals without re-

placement. In this setting, the unobserved N −n individuals are distributed independently

of the observed n individuals and the evaluation of conditional probability is simply derived

from the multinomial probability of the unobserved individuals.

In Section 2 we introduce the Lancaster-type additive model of interaction terms

and its moment estimation. We also introduce Ridge type shrinkage of the Lancaster-type

additive model towards the independence model. In Section 3 we discuss the estimation

of the number of population uniques among the sample uniques based on the estimated

Lancaster-type additive model. We also propose some procedures of checking the fit of

the estimated model. In Section 4 we apply the proposed model to a test data set based

on 1990 U.S. Census PUMS data. Finally in Section 5 we discuss relative merits of the

log-linear model and the additive model for disclosure risk assessment.

2. Lancaster-type additive model and its shrinkage to independence

Here we describe the Lancaster-type additive model. For simplicity of notation we

describe the model for 3-way contingency tables, although in actual applications we need

to use m-way tables, where m (the number of key variables) is often around 10. Extension

of the model to higher order tables is trivial except for notational complication.

Let pijk denote the cell probability of an I×J×K contingency table. Denote the one-
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dimensional marginal probabilities by pi··, p·j·, p··k and the two-dimensional marginal prob-

abilities by pij·, pi·k, p·jk. The Lancaster-type additive model without three-variable inter-

actions in Lancaster’s sense (Darroch (1974), Lancaster (1971), Zentgraf (1975), Chapter

12 of Lancaster (1969)) is defined by

pijk = pi··p·j·p··k
{

1 +
( pij·

pi··p·j·
− 1

)

+
( pi·k

pi··p··k
− 1

)

+
( p·jk
p·j·p··k

− 1
)}

. (1)

Note that the independence model pijk = pi··p·j·p··k is modified by two-variable interaction

terms of the form pij·/(pi··p·j·) − 1. If we sum this term with respect to i, j, k, we have

∑

i,j,k

pi··p·j·p··k
( pij·

pi··p·j·
− 1

)

=
∑

i,j,k

pij·p··k −
∑

i,j,k

pi··p·j·p··k = 1 − 1 = 0.

Therefore the modification terms sum to 0 and pijk of (1) sum to 1. As shown in Darroch (1974),

(1) is equivalent to the following hypothesis of no three-variable interaction in the sense of

Lancaster:

H :
pijk

pi··p·j·p··k
= (αβ)ij + (αγ)ik + (βγ)jk.

See Darroch and Speed (1983), O’Neill (1982) on the relation between the Lancaster-type

additive model and the standard log-linear model.

The moment estimation of (1) is straightforward. Let n denote the sample size and let

ni··, nij·, . . . , denote the sample marginal frequencies. Then the cell probability is estimated

as

p̂ijk = p̂i··p̂·j·p̂··k
{

1 +
( p̂ij·

p̂i··p̂·j·
− 1

)

+
( p̂i·k

p̂i··p̂··k
− 1

)

+
( p̂·jk
p̂·j·p̂··k

− 1
)}

=
ni··

n

n·j·

n

n··k

n

{

1 +
( nnij·

ni··n·j·

− 1
)

+
( nni·k

ni··n··k

− 1
)

+
( nn·jk

n·j·n··k

− 1
)}

. (2)

Note that the moment estimate in (2) can be negative. If p̂ijk < 0 for some cell (i, j, k),

we should first replace it by 0. Actually in the analysis of a test data set in Section 4 we

have a large number of negative estimated cell probabilities. p̂ijk of (2) always sum to 1.

Therefore by replacing negative estimates by 0, the sum exceeds 1. We define renormalized

non-negative moment estimate by

1

c
× max(p̂ijk, 0), c =

∑

p̂i′j′k′≥0

p̂i′j′k′ = 1 −
∑

p̂i′j′k′<0

p̂i′j′k′. (3)

When renormalized, the simplicity of the moment estimation is somewhat lost. We might

consider maximum likelihood estimation of the additive model (1). However as discussed in

Section 2 of Darroch and Speed (1983) the maximum likelihood estimation of the additive

model seems to be difficult. Also it should be noted that there is some computational

difficulty of evaluating the renormalizing constant c in (3) for large contingency tables. We

discuss this point at the end of this section.
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We have presented Lancaster-type additive model for 3-way contingency table. Gen-

eralization to m-way table is straightforward. The model can also be extended to include

some higher order interactions.

Although the model (1) contains only up to the two-variable interactions, the number

of estimated interaction terms may be large. Let Il, l = 1, . . . , m, denote the number of

categories of the l-th variable. Then the total number of estimated parameters is roughly

equal to

I1I2 + I1I3 + · · · + Im−1Im.

For example, when m = 10 and Il = 10, l = 1, . . . , m

I1I2 + I1I3 + · · · + Im−1Im = 4500.

Therefore there is a question of stability of the estimated cell probabilities. For this reason,

we introduce a shrinkage factor 0 ≤ λ ≤ 1 and consider Ridge type shrinkage of p̂ijk of (2)

towards the independence model:

p̂ijk(λ) =
ni··

n

n·j·

n

n··k

n

{

1 + λ
( nnij·

ni··n·j·

− 1
)

+ λ
( nni·k

ni··n··k

− 1
)

+ λ
( nn·jk

n·j·n··k

− 1
)}

. (4)

The case λ = 0 is the independence model and the case λ = 1 is the full additive model (2).

Note that the number of the parameters in the independence model is I1 + · · · + Im − m.

This is much smaller and we can expect stability in estimation by shrinking towards λ = 0.

For λ > 0 (4) can be negative. As above we consider replacing negative estimates by

0 and renormalizing them:

1

c(λ)
× max(p̂ijk(λ), 0), c(λ) =

∑

p̂i′j′k′ (λ)≥0

p̂i′j′k′(λ) = 1 −
∑

p̂i′j′k′ (λ)<0

p̂i′j′k′(λ). (5)

In the example of Section 4 we will see that c(λ) can be substantially larger than 1. This

indicates lack of fit of the additive model.

In the example in Section 4 we vary λ = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 and check the sta-

bility of the estimated models. It may be more appropriate to choose the value of λ from

the data itself. For example we might consider the set of random variable {nnij· − ni··n·j·}

approximately normally distributed and use Stein type estimator. This seems somewhat

too complicated for the present application and here we only consider fixed number of

values of λ.

We have discussed how to deal with negative estimates of cell probabilities. This is

closely related to the problem of structural zeros. The estimator p̂ijk of (2) has the simple

form because of the assumption of no structural zeros in the I × J ×K contingency table.

In actual contingency tables corresponding to microdata sets from official statistics, there

are usually many structural zeros. The Lancaster-type additive model loses its simplicity

when the structural zeros are incorporated into the model. In this sense, we regard the

model as convenient approximate model for quick evaluation of disclosure risk.
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Finally we discuss the evaluation of the renormalizing constants c in (3) and c(λ) in

(5). As discussed above we have in mind contingency tables with large number of cells and

actual summation in (3) and (5) might be time consuming. In this case we can use Monte

Carlo simulation for approximate evaluation of c or c(λ). Approximate value of c or c(λ) is

sufficient for the evaluation of the conditional probability of population uniqueness. Write

(4) as

p̂ijk(λ) = p0
ijk × wijk(λ), (6)

where

p0
ijk = p̂i··p̂·j·p̂··k (7)

denotes the estimate under the independence model and

wijk(λ) = 1 + λ
( nnij·

ni··n·j·

− 1
)

+ λ
( nni·k

ni··n··k

− 1
)

+ λ
( nn·jk

n·j·n··k

− 1
)

.

It is simple to resample from the independence model {p0
ijk}. Let X denote the n×m data

matrix of observations on m key variables of n individuals. The easiest way to resample

from the independence model is to randomly choose one observation from each column of

X , independently from column to column. Let Ep0(·) denote the expected value under the

estimated independence model. Then

1 − c(λ) =
∑

p̂ijk(λ)<0

p̂ijk(λ) = Ep0

[

wijk(λ)I{wijk(λ) < 0}
]

, (8)

where I{wijk(λ) < 0} denotes the indicator function of the event wijk(λ) < 0. Therefore

1 − c(λ) can be estimated by the resampling average of wijk(λ)I{wijk(λ) < 0} under the

estimated independence model. Replication size of 200,000 seems to be sufficient for our

purposes.

3. Estimation of the number of population uniques and diagnostics of the

model

Once the cell probability is estimated, the per-record disclosure risk for sample unique

record (or cell) is given as follows. As discussed in Section 1 we assume that N individuals

of the population fall into the cells of the contingency table according to the multinomial

scheme and the sampling of n individuals is by simple random sampling without replace-

ment. Let nijk and Nijk denote the sample and the population cell frequencies. Then given

that a cell is a sample unique (nijk = 1), the conditional probability of the cell being a

population unique (Nijk = 1) is written as

P (Nijk = 1 | nijk = 1) = (1 − pijk)
N−n. (9)

If we replace pijk by its estimate p̂ijk, we obtain an estimated value of the conditional

probability. The number of population uniques in the microdata set is now estimated by
∑

(i,j,k) :nijk=1

P̂ (Nijk = 1 | nijk = 1) =
∑

(i,j,k) : nijk=1

(1 − p̂ijk)
N−n. (10)
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Furthermore a simple approximate confidence interval of the number of population uniques

can be obtained based on Poisson distribution with mean given by (10).

Note that (9) is a decreasing function of pijk and this reflects an intuitively obvious

fact that the disclosure risk of a sample unique is high if the estimated probability of the

cell is small. p̂ijk of (2) is small if univariate relative frequencies are small and the terms like

(nnij·)/(ni··n·j·) are small. This term is the ratio of the actual two-dimensional frequency

nij to the estimated frequency ni··n·j·/n under the independence model. Therefore p̂ijk of

(2) combines univariate rareness and bivariate rareness, which are routinely considered in

disclosure control practices. This argument shows that p̂ijk of (2) is a reasonable measure

of the identification risk of a sample unique cell (i, j, k).

We now discuss how to assess the goodness of fit of the Lancaster-type additive

model. As stated in Section 1 the standard superpopulation models treat the sample

uniques exchangeably. More precisely under these models we only consider “size indices”

(Sibuya (1993), Sibuya and Yamato (1995)) or “frequency of frequencies” (Good (1965))

s0, s1, s2, . . . ,

where si is the number of the cells of frequency i in the sample. For the purpose of

checking the goodness of fit of these models, we can evaluate expected values of size indices

under estimated models and compare the expected values with actual size indices. For

the Lancaster-type additive model expected values of size indices can be evaluated by

resampling.

Since the random variables are discrete it is conceptually very simple to resample from

the estimated model. However in the case of very large contingency table, it seems better

to avoid summing large number of small estimated probabilities in resampling. Here we

consider using Metropolis-Hastings type algorithm of Markov Chain Monte Carlo method

(Hastings (1970)) using the independence model {p0
ijk} of (7) as the Markov transition

kernel. Let (i, j, k) be the current cell. We choose a candidate of the next cell (i′, j′, k′)

according to the independence model {p0
i′j′k′}. If wi′j′k′(λ) < 0 we simply ignore this cell

(not counting as a step of the Markov chain) and choose another candidate (i′, j′, k′). If

wi′j′k′(λ) ≥ 0 we move to (i′, j′, k′) with probability

p = min
{wi′j′k′(λ)

wijk(λ)
, 1

}

, (11)

and stays at (i, j, k) with probability 1 − p. Even if we stay at (i, j, k) we count this as

one step of the Markov chain. From the general results on Markov Chain Monte Carlo

method we see that the estimated renormalized model {(1/c(λ)) × max(p̂ijk(λ), 0)} forms

the unique stationary distribution of the Markov chain and by iterating the chain long

enough we can resample from the estimated model. It should be noted that we should use

intermittent observations from the chain and avoid using consecutive observations. This

is because when the Markov chain stays at the same cell consecutive observations at the

same cell has an obvious downward bias for the number of the sample unique cells.
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4. Application to a test data set from U.S. Census PUMS data

We applied the Lancaster-type additive model to a test data set subsampled from

1990 U.S. Census of Population and Housing Public Use Microdata Samples. We subsam-

pled n = 9809 individuals from the state of Washington and chose m = 10 variables for

experimental purpose:

1. Relationship (14 categories), 2. Sex (2), 3. Age (91), 4. Marital status (5),

5. Place of birth (14), 6. Spouse present/absent (7), 7. Own child (2),

8. Age of own child (5), 9. Related child (2), 10. Detailed relationship (10).

The population size is N = 4, 867, 000. The dataset can be viewed as a contingency table

of the type

14 × 2 × 91 × 5 × 14 × 7 × 2 × 5 × 2 × 10

with 249,704,000 cells. We see that the contingency table is very sparse with only n = 9809

counts among 249,704,000 cells Fitting log-linear model to contingency table of this size is

computationally fairly difficult. We took these m = 10 variables from a PUMS data set

without further global recoding. For example we used the age itself with 91 categories.

This is somewhat unrealistic for evaluation of disclosure risk. On the other hand there are

other possible key variables in the original PUMS data set. We also intended to check how

the proposed model works for large contingency tables.

Although the (formal) total number of cells 249,704,000 is very large, the effective

total number should be much smaller because of structural zeros. For example there is no

age of own child if there is no own child. In this case the age of own child is coded as N/A

in the data set. Also there is an obvious relation between age and marital status. The

existence of large number of structural zeros seems to adversely affect the fit of the model

as discussed below.

For reference we show first few lines of 9809 × 10 data matrix.

00,0,17,4,10,6,0,0,0,0

00,0,17,4,52,6,0,0,0,0

00,0,18,0,23,1,0,0,0,0

00,0,18,0,24,1,0,0,0,0

00,0,18,0,51,1,0,0,0,0

The frequencies of the cell sizes (size indices, frequency of frequencies) s1, s2, . . ., of

this data set is given as follows.

Cell size 1 2 3 4 5 6 7 8 9 10 11 ≤

Frequency 2249 521 275 132 104 60 59 34 46 19 124
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We fitted the Lancaster-type additive model to this data set with Ridge type shrinkage

with λ = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0. The estimated number of population uniques among the

2249 sample uniques based on (10) is given in Table 1.

Table 1: Estimated number of the population uniques

λ 0.0 0.2 0.4 0.6 0.8 1.0 Ewens Pitman

no renormalization 885.02 480.27 372.82 315.93 278.88 252.13 5.88 213.96

renormalization 885.02 482.94 403.46 376.21 362.50 354.68

sum of negative prob. 0 –0.013 –0.193 –0.465 –0.758 –1.065

In Table 1 the numbers below “Ewens” and “Pitman” show the estimated numbers

of the population uniques under these models. Derivation of these numbers is discussed

below. “No renormalization” means using (4) ignoring negative estimated cell probabilities

and “Renormalization” means that the renormalization in (5) was applied. Sum of negative

probabilities stands for 1− c(λ) in (8), where the summation is evaluated by Monte Carlo

simulation with replication size 200,000.

The sum of negative estimated cell probabilities is substantial for λ ≥ 0.4. It is

−0.465 for λ = 0.6, which indicates that negative estimated cell probabilities are very

frequent. This indicates that the fit of our additive model is not very good for this data

set. However it should be mentioned that for the 3623 nonempty cells in the data set,

all estimated probabilities were positive even for λ = 1. This implies that all the 3623

nonempty cells tend to have large marginal bivariate frequencies. This seems to correspond

to positive correlation among the variables. It should also be noted that renormalization

does not greatly affect the estimated number of population uniques.

The estimated number of population uniques decreases as λ increases from 0 to 1. A

possible explanation on this decrease is as follows. Under the independence model λ = 0,

estimated cell probability is positive for every cell, whenever the univariate marginal fre-

quencies are all positive. This implies that the probability mass is spread all over the

contingency table. However as discussed above there exist correlations among variables

and in addition there are many structural zeros. Therefore under the independence model

the probabilities of nonempty cells tend to be underestimated and the probabilities of

empty cells tend to be overestimated. Since sample unique cells are nonempty, the condi-

tional probabilities of population uniqueness (1 − p̂i1···im)N−n for the sample unique cells

(ni1···im = 1) are overestimated leading to an overestimated number of population uniques.

From this viewpoint the decrease of the estimated number of population uniques as λ

increases from 0 to 1 suggests that the fit of the model is improving by incorporating two-

variable interactions. Obviously this argument is not totally persuasive in view of lack of

fit indicated by the sum of negative estimated cell probabilities.
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We briefly discuss estimation of the number of population uniques under the Ewens

model and the Pitman model in Table 1. A simple moment estimate under the Ewens

model is given by (Hoshino and Takemura (1998))

s1n(n − 1)

n(N − 1) − s1(N − n)
.
= s1

n

n − s1

n

N
= 5.88.

For the Pitman model let u = 3623 denote the number of nonempty cells in the sample

and let α̂ = s1/u = 2249/3623 = 0.621. The following simple moment estimate under the

Pitman model is proposed by Hoshino (2001):

s1

( n

N

)1−α̂
= 213.96.

In our experiences the Ewens model and its related models including Poisson-Gamma

model tend to underestimate the number of the population uniques and the Pitman model

behaves in an opposite manner. For this example our estimate under the Lancaster-type

additive model is even larger than that of the Pitman model.

We now resample from the estimated Lancaster-type additive model for the purpose

of checking the goodness of fit of the model. We use the MCMC method described at the

end of Section 3. In each run of the Markov chain, we discarded the first 5000 steps and

then we recorded n = 9809 observations, which are 20 steps apart from each other. From

the observations we obtained sample size indices. For each value of λ we performed 100

runs of the Markov chain and took the average of sample size indices. The result is given

in Table 2.

Table 2: Expected size indices under the estimated model

Cell size 1 2 3 4 5 6 7 8 9 10 11 ≤

λ = 0.0 9060 323.8 28.6 3.28 0.4 0.04 0 0 0 0 0

λ = 0.2 8769.2 412.9 52.1 10.3 2.43 0.53 0.08 0.02 0.01 0 0

λ = 0.4 8435.8 502.6 82.8 19.6 5.29 1.52 0.55 0.18 0.06 0 0

λ = 0.6 8283.8 538.4 96.9 24.1 7.57 2.51 0.72 0.25 0.11 0.01 0.45

λ = 0.8 8189.4 559.1 104.6 28.2 8.67 3.0 1.24 0.3 0.18 0.06 0.41

λ = 1.0 8132.6 574.4 109.0 29.7 9.67 3.29 1.12 0.5 0.18 0.03 0.22

Actual 2249 521 275 132 104 60 59 34 46 19 124

As seen from Table 2 the expected number of sample uniques is very much higher

than the actual value of 2249. Overall the distribution of the size indices are shifted

downward compared to the observer size indices. This is another indication that the fit of

the proposed model is not good for this data set. Again the reason for this lack of fit seems

to be excessive spread of the probability mass over the whole contingency table leading

to many cells with very small probability. This tendency is expected for the case of the
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independence model λ = 0 as discussed above. In Table 2 the expected number of the

sample uniques decrease as λ increases from 0 to 1. This again suggests that the fit of the

model is improving by incorporating two-variable interactions. Although there is no direct

relationship between the expected number of sample uniques and the estimated number

of population uniques under the Lancaster-type additive model, Table 2 suggests that the

number of population uniques is overestimated by Lancaster-type additive model in Table

1.

5. Comparison to the log-linear model and some discussion

In this study we have used the Lancaster-type additive model of the interaction terms.

The standard model for analyzing contingency tables is the log-linear model (e.g. Bishop,

Fienberg and Holland (1975)). With the log-linear model estimates are always nonnegative.

Furthermore the problem of structural zeros can be appropriately handled in the framework

of the maximum likelihood estimation (Chapter 5 of Bishop, Fienberg and Holland (1975)).

However for large contingency tables there is a computational difficulty in fitting the log-

linear model.

Consider I × J × K 3-way contingency table. The log-linear model without three-

variable interaction is defined by

log pijk = (αβ)ij + (αγ)ik + (βγ)jk. (12)

For given {(αβ)ij, (αγ)ik, (βγ)jk} the normalizing constant c is defined by

1 =
1

c
×

∑

i,j,k

exp((αβ)ij + (αγ)ik + (βγ)ik). (13)

It seems that for this log-linear model the expression for c can not be simplified and we

need to perform the actual summation for the exact evaluation of c. In the framework

of exponential family, c corresponds to the moment generating function and its partial

derivatives with respect to the natural parameters {(αβ)ij, (αγ)ik, (βγ)jk} are needed in

many algorithms for the maximum likelihood estimation. Avoiding the actual summation

by simulation as in (8) does not seem to be appropriate for the iterative steps of maximum

likelihood estimation. The difficulty in evaluating the normalizing constant in exponen-

tial family is well known in other contexts, e.g., Gibbs distribution in spatial statistics

or Boltzman machine in neural networks (e.g. Titterington and Anderson (1994)). The

normalizing constant c in (13) is called the “partition function” in these areas and its

evaluation is an important topic.

In terms of the expectation parameter, instead of natural parameter, the iterative

proportional fitting (Section 3.5 of Bishop, Fienberg and Holland (1975), Chapter 4 of

Lauritzen (1996)) is the standard procedure for maximum likelihood estimation. In the
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iterative proportional fitting we do not need to compute the normalizing constant. How-

ever we need to keep the expected cell sizes of all the cells in computer memory at each

step of the iteration. This is not feasible for large contingency tables.

Compared to the log-linear model, the simplicity of moment estimation of the additive

model is attractive. We could regard the additive model as a quick alternative for the log-

linear model. It is important to further investigate the feasibility of fitting the log-linear

model utilizing the ever increasing computing power.

We might interpret p̂ijk(λ) only as a relative measure of the per-record disclosure risk.

Smaller the value of p̂ijk(λ), riskier the sample unique. The total number of the population

uniques can be separately estimated by standard models.

Concerning the test data set in Section 4, the log-likelihood model including all

the two-variable interactions might not improve the fit over the additive model, because

our analysis suggests that two-variable interactions do not fully capture the dependence

structure of the variables and the structural zeros.

It is theoretically most desirable to specify all the structural zeros based on the

definition of the variables. However this is often too cumbersome. One practical approach

would be to regard all sampling zeros in bivariate marginal tables as structural zeros. We

might simply let the estimated cell probability be zero, whenever the cell belongs to an

empty marginal cell in bivariate marginal tables.
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