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Abstract

Tutte associates a V by V skew–symmetric matrix T , having indeterminate entries,
with a graph G = (V, E). This matrix, called the Tutte matrix, has rank exactly twice
the size of a maximum cardinality matching of G. Thus, to find the size of a maximum
matching it suffices to compute the rank of T . We consider the more general problem of
computing the rank of T + K where K is a real V by V skew–symmetric matrix. This
modest generalization of the matching problem contains the linear matroid matching
problem and, more generally, the linear delta–matroid parity problem. We present a
tight upper bound on the rank of T + K by decomposing T + K into a sum of matrices
whose ranks are easy to compute.

1 Introduction

Let G = (V, E) be a simple graph, and let (ze : e ∈ E) be algebraically independent

commuting indeterminates. We define a V by V skew–symmetric matrix T = (t ij), called

the Tutte matrix of G, such that tij = ±ze if ij = e ∈ E, and tij = 0 otherwise. Tutte

observed that T is nonsingular (that is, its determinant is not identically zero) if and only

if G admits a perfect matching. In fact, the rank of T is equal to the size of a maximum

cardinality matchable set in G. (A subset X of V is called matchable if G[X ], the subgraph

induced by X , admits a perfect matching.) By applying elementary linear algebra to the

Tutte matrix, Tutte proved his famous matching theorem [17]. Similar techniques prove

the following extension of Tutte’s theorem.

1991 Mathematics Subject Classification 05C70.
Keywords: matching, matroids, delta–matroids, matroid parity

1


