
A Compositional Framework for Mining

Longest Ranges

Haiyan Zhao, Zhenjiang Hu, Masato Takeichi

METR 2002-05 May 2002



A Compositional Framework for Mining Longest

Ranges

Haiyan Zhao, Zhenjiang Hu, Masato Takeichi

Department of Information Engineering

University of Tokyo

7-3-1 Hongo, Bunkyo-ku
113-8656 Tokyo, Japan

{zhhy,hu,takeichi}@ipl.t.u-tokyo.ac.jp

Abstract

This paper proposes a compositional framework for mining interesting

range information from huge databases, in which a domain specific query
language is provided to specify the range of interest, and a general algorithm

is given to mine the range specified in this language quickly. A wide class of
longest range problems, including the intensively studied optimized support

range problem [FMMT96], can be solved efficiently and systematically in this
framework. Experiments with real world databases have been done and the

results show that our framework is efficient not only in theory but also in
practice.

Keywords Data Mining, Optimized Ranges, Longest Ranges, Longest Seg-

ment Problem, Program Calculation, Multidimensional Minima Searching.

1 Introduction

The last two decades have seen an explosive growth in our capabilities to both
generate and collect data. The computerization of many business and government
transactions have flooded us with information, and generated an urgent need for
new techniques and tools that can automatically assist us in transforming this data
into useful knowledge. There has been quite a lot of research [FPSM92, FPSSR96,
SMJ95], among which the well known data mining gains much interest whose general
goal is to extract interesting correlated information from large collections of data.

In this paper, we examine a new mining problem, called longest range problem,
for discovering interesting range information from a huge database. Consider a rela-
tion, namely callsDetail, in a telecom service provider database containing detailed
call information. The attributes of the relation may include date, time, src city,

1



src country, dst city, dst country and duration. A simple tuple in the relation cap-
tures information about the two ends of each call, as well as the temporal elements
of the call.

Some useful knowledge hidden in this relation can be used by the telecom service
provider to make some decision. Suppose the telecom service provider is interested
in offering a discount to customers. In this case, the timing of discount may be
critical for its success, for example, to make the campaign more profitable, it would
be advantageous to offer it close to a time interval in which the number of calls is
not so few, say, during one year the number of calls exceeds 10000. And the telecom
service provider wants to do this campaign in a time interval as long as possible,
that is, to find the longest time interval which satisfies the above conditions. This
can be described as

find longest time range
from callsDetail
s.t. count(∗) ≥ 10000.

This problem is practically important, but finding an efficient and correct algo-
rithm is very difficult. This has been seen by [FMMT96], which took great pains
in solving optimized range problem, a special case of our longest range problem (see
Section 5). Things turn out to be more interesting and difficult if we want to find
the longest time interval under a more complicated condition, say, for the above
example, to encourage the customers to make long time calls, besides the number
of calls are big enough, the average talking time during the interval is not so long,
say, less than 10 minutes, that is, the average of duration is less than 10 minutes.

find longest time range
from callsDetail
s.t. count(∗) ≥ 10000 ∧

average(duration) < 10

However, as far as we know, this kind of problems has not been systematically solved
yet, and it remains open how efficiently it can be solved.

In this paper, we propose a compositional framework to address this kind of
problems in a general way. The main contributions of this paper are as follows.

• First, we design a general and powerful range querying language for mining
the longest ranges. A wide class of longest range problems, including the
optimized range problem as intensively studied in [FMMT96, SBS99, RS99],
can be expressed and solved by our language.

• Second, we show that the language can be efficiently implemented by using
techniques in program calculation. And moreover, our solution demonstrates
that efficient algorithms for solving the longest range problems can be compo-
sitionally built according to the structure of predicates used to specify range
properties. This composite approach is in sharp contrast with the existing
case-by-case study as in [Zan92, Jeu93, vdE90].

2



• Last but not least, we test our framework with a POS database from a coffee
shop with two years sales data for mining various range information. The
experiments with the real world databases demonstrate that our framework is
efficient not only in theory but also in practice, and can be applied in data
mining field.

The rest of this paper is organized as follows. First, in Section 2, we explain
some notation conventions and basic concepts used in this paper, and highlight the
problem and the goal of this paper. Then, in Section 3, we propose our language
for specifying longest ranges, and explain how it can be efficient implemented in
Section 4. Section 5 exemplifies a special application, while Section 6 demonstrates
our experimental results. Finally, we conclude our work in Section 7.

2 Longest Range Problems

In this section, we apprehend the longest range problems and highlight the purpose
of this work, after briefly reviewing our notational conventions.

2.1 Notation

For concise and clear specification, throughout this paper we will use Haskell [JH99],
a purely functional language, as our notation to specify our problems as well as to
express our algorithms. For those who are not familiar with Haskell, we briefly
explain some basic conventions for functional language below.

Function application is denoted by a space and the argument which may be
written without brackets. Thus f a means f (a). Functions are curried, and ap-
plication associates to the left. Thus f a b means (f a) b. Function application is
regarded as more binding than any other operator, so f a⊕ b means (f a)⊕ b, but
not f (a⊕ b). Function composition is denoted by a centralized circle ◦, by definition,
(f ◦ g) a = f (g a). Function composition is an associative operator. Infix binary op-
erators will often be denoted by ⊕,⊗ and can be sectioned ; an infix binary operator
like ⊕ can be turned into unary functions by a⊕ b = (a⊕) b = (⊕ b) a = (⊕) a b.

Lists are finite sequences of values of the same type. A list is either empty, a
singleton, or the concatenation of two other lists. We write [ ] for the empty list,
[a] for the singleton list with element a, and x ++ y for the concatenation of list x
and y. Concatenation is associative, and [ ] is its unit. For example, [1] ++ [2] ++ [3]
denotes a list with three elements, often abbreviated to [1, 2, 3]. We also write a : x
for [a] ++x.

For a nonempty list xs, function head xs returns the first element, while last xs
gives the last element. Function map f xs is used to establish a mapping for list xs
(by applying function f to each element), its definition is as follows:

map f xs = [f x | x← xs].

3



Function filter p xs, removing elements of a list that do not satisfy the predicate p,
is defined as:

filter p xs = [x← xs | p x].

2.2 Specification

Let us move on to the longest range problem. In fact, it is not a new problem at
all. After preprocessing like bucketing according to the concerned range attribute
proposed in [FMMT96], it boils down to the longest segment problem [Zan92, Jeu93]
known in program calculation community, if we regard a relation in database as a
list of records (tuples). It can be concisely specified by

lrp :: ([α]+ → Bool)→ [α]+ → Int
lrp p xs = maximum ◦map length ◦ filter p ◦ segs xs

It accepts a predicate p and an input list, and computes the longest range by the
following steps:

• firstly enumerating all segments (contiguous sublists, also called range in this
paper) of the input list by function segs,

• then keeping those satisfying the predicate p by filter,

• finally computing the length by length of the satisfied segments, and returning
the largest value as the result by maximum.

Here, function segs for enumerating all segments can be straightforwardly defined
as in [Bir89] by

segs = concat ◦ map inits ◦ tails.

among which, inits returns the list of all the initial segments of a given list, tails
returns the list of all subsequences of a given list, and concat concatenates a list of
lists into one long list.

concat :: [[α]]→ [α]
concat xss = [x|xs← xss;x← xs]

To simplify our presentation, we use the length of the longest segment as the
result rather than the longest segment itself, and we assume that the input list to
lrp is nonempty, as indicated by [α]+ in the type declaration of lrp.

Note that although lrp is an executable Haskell program, this straightforward
definition serves just as the specification instead of a real solution, because it is
too inefficient (the number of segments is about n2/2, the algorithm require O(n2)
computations of p on the segments) to be applied to data mining where database is
always huge. Practical use of it requires that such computation should use less than
O(n2) time, where n denotes the size of the concerned relation.

Unfortunately, it is known that there does not always exist an efficient algorithm
for computing lrp p for any p [Zan92]. However, if p has a particular shape, or has

4



4 -3 5 6 -10 9 6 3 -20 5 3xs

lrp p2 xs

lrp p xs

lrp p1 xs

Figure 1: A Compositional Example

some nice properties, then a strong optimization can often be made, resulting in an
efficient algorithm using less than O(n2) time or even linear time.

Although solutions to various kinds of segment problems have appeared in the
literature [Bir89, vdE90, Jeu93, Rem85, Rem86, Rem88, Zan92], one major problem
which prevents them from being used in mining longest ranges is that their solutions
are not compositional. Consider, for example, to compute the longest range z from
a given list xs that satisfies the following two conditions:

(p1) the two end elements in the range are equal, i.e.,

p1 z = (head z) = (last z);

(p2) the sum of the elements in the range is no less than 10, i.e.,

p2 z = (sum z) ≥ 10.

Using lrp, we can specify the problem by

lrp p xs
where p z = p1 z ∧ p2 z

where p is defined by using two simpler predicates p1 and p2. Now supposing that
we have got ranges for both lrp p1 xs and lrp p2 xs. Unfortunately, we cannot
obtain the result for lrp p xs from those for lrp p1 xs and lrp p2 xs. Figure 1
exemplifies the result for lrp p1 xs, lrp p2 xs, and lrp p xs respectively, where xs is
the input list. The longest range satisfying p1 is [5, 6,−10, 9, 6, 3,−20, 5], and that
satisfying p2 is [4,−3, 5, 6,−10, 9, 6, 3], whereas the longest range satisfying both p1

and p2 is [6,−10, 9, 6], which cannot be derived from [5, 6,−10, 9, 6, 3,−20, 5] and
[4,−3, 5, 6,−10, 9, 6, 3].

It thus demonstrates that knowing efficient solutions to lrp with specific kinds
of predicates is not helpful for solving lrp with the combination of these kinds of
predicates.

Therefore, the goal of this work is to provide a compositional framework, in
which,

5



p ::= f (head) <© g (last) End Element Relation Property

| (sum attr) <© c Sum Property

| (average attr) <© c Average Property

| (count attr) <© c Count Property

| (min attr) <© c Min Property

| (max attr) <© c Max Property

| p1 ∧ p2 Conjunction

| p1 ∨ p2 Disjunction

| not (p) Negation

Figure 2: Predicates for Specifying Range Property

• Users can specify a wide class of longest range problems in a straightforward
way, by using predicates composed of the primitive ones using the predicate
connectives of ∧, ∨ and not.

• Efficient solutions for implementing the above specification are guaranteed to
exist and can be constructed systematically.

As a result, the problem turns to be two folds. One is how to choose a wide class of
primitive predicates, in the sense that it can not only be solved efficiently, but also
be used as the basis for building the compositional ones. And the other is how to
construct efficient solution for the longest range specified by these predicates.

3 A Range Querying Language

To find the longest ranges of interest from databases efficiently and easily, the first
step is how to specify the desired longest ranges.

3.1 The find Statement

Our range query language for the user to specify the range of his interest resembles
SELECT in SQL.

find longest attr range
from tab
where property

in which, find, longest, range, from and where are reserved words, whereas the
other three are specified by user. Roughly speaking, it finds the longest range of the
attribute attr from the relation tab under the condition given by property. Note
that attr must be a numeric attribute of the relation tab.

It is evident that both attr and tab come from the database under consideration.
However, how to specify property is not so easy as it looks. Just as discussed in

6



Section 2, it cannot be guaranteed that there always exists an efficient algorithm to
compute the longest range with respect to any property. It is thus crucial how to
define proper property.

3.2 Querying Longest Ranges

We design a class of predicates, as shown in Figure 2, for describing the range
properties. In Figure 2, <© denotes a transitive total order relation, like ≤, and f,
g, c, attr and <© are all changeable and can be specified by user. Our predicates are
classified into three groups:

• the primitive predicates describing the two end element relation property,

• the aggregate predicates specifying constraints on aggregation result on an
attribute (field), and

• the composite predicates combining the former two kinds of predicates.

The former two groups are used to specify simple and concise properties, while the
third group is for expressing more complicated properties in a compositional manner.

Primitive Property on Two-End Element Relation

We start by explaining the primitive property we can specify. As argued in [Zan92],
one of the simplest but very useful range property is the order relation between two
end elements (the leftmost element and the rightmost element) of the range, based
on the fact that for many application, one is often able to put suitable information
about the range to the two end elements by some preprocessing.

Therefore we provide the primitive predicate

f (head) <© g (last)

to describe this property, meaning that the leftmost element (after applied function
f) of the range z has a transitive total order relation <© with the rightmost element
(after applied function g) of z. f and g can be any functions. Being simplest, this
relation on two end elements can be used to describe many interesting ranges.

Example 1 In the telecom relation callsDetail given in Introduction, we may want
to find the longest time interval in which the average of the calling time duration
for the first and the last call is no less than 10 minutes

(head.duration + last.duration)/2 ≥ 10

which can be reformulated to

head.duration ≥ 20 − last.duration.

7



Thus this query can be specified in our language by

find longest time range
from callsDetail
where head.duration ≥ 20 − last.duration.

Note that both time and duration are attributes of the relation callsDetail, and
x.y means to get the the value of attribute y from the record x. It is worth noting
that we do not actually need to write f and g explicitly in the property description
as seen above. If lhs is an expression computing on head and rhs an expression
computing on last, then such f and g can be automatically derived: the f and g
derived from

head.duration ≥ 20 − last.duration

is
f x = x.duration
g x = 20 − x.duration.

It should also be noted that [Zan92] only allows the case where f = id and
g = id. Our extension enables us to solve more complicated relations between two
end elements as shown above.

Aggregation Property

Aggregate functions sum, average, count, min and max are often used to describe
searching conditions in the database community. We therefore provide them for
specifying the aggregate range properties. The general form is

(agg attr) <© c

where agg is an aggregate function, <© a total transitive order, attr an attribute,
and c a constant value. Suppose the relation <© be ≤, then this property means
that aggregate computation over the attribute attr in the range should be no more
than c.

Example 2 For the same relation of callsDetail, consider to find the longest time
interval during whose total calling time is less than a given threshold, say 50 hours.
We may specify this query by

find longest time range
from callsDetail
where (sum duration) < 50 ∗ 60.

Composite Property

Though we can describe many interesting range properties using the primitive prop-
erty and aggregate predicates, the practical usage needs to specify more complicated

8



and interesting range properties. For this purpose, we provide three composite predi-
cates ∧, ∨, and not in our language to combine the primitive predicate and aggregate
predicates easily, the precedence of which is descending from not to ∨.

Just as their names suggest, not denotes the logical negation of predicate, which
means to compute the longest range not satisfying the given predicate followed not,
and ∧ is used to describe the logical conjunction of predicates, which requires the
concerned segment should satisfy each components of ∧ simultaneously, while for
the logical disjunction predicate ∨, it’s enough for the concerned segment to satisfy
any of its components.

Example 3 Recall the example in Introduction, which can be coded easily in our
language by

find longest time range
from callsDetail
where count(∗) ≥ 10000 ∧

average(duration) < 10.

Example 4 For the example in Section 2, we can regard the list xs as a relation
with a single attribute, say value, then it can be coded in our language as follows.

find longest value range
from xs
where

(head.value) ≤ (last.value) ∧
not ((head.value) ≤ (last.value)) ∧
(sum value) ≥ 10.

Note that (head.value) ≤ (last.value) is an abbreviation for f(head) ≤ f(last),
where f is defined by f x = x.value.

Consequently, our range query language, for its compositional feature, is powerful
and easy for user to specify a wide class of longest ranges.

Remark

It is worth noting that we discuss only the properties related with computing the
range, and omit the general selection conditions, which, in fact, can be easily filtered
by preprocessing. For example

find longest time range
from callsDetail
where

sum ( duration) < 50 ∗ 60 ∧
src city = Tokyo ∧
dst city = HongKong

9



can be transformed to

find longest time range
from callsDetail′

where
sum ( duration) < 50 ∗ 60,

and callsDetail′ is a view defined in SQL as

SELECT ∗
FROM callsDetail
WHERE src city = Tokyo AND

dst city = HongKong

In fact, this preprocessing does not raise any additional cost, for it is fused into
the process of bucketing, which will be discussed concisely in next section.

4 Implementing the Range Querying Language

This section explains how to implement our query language in an efficient way. Our
result can be summarized in the following theorem.

Theorem 1

find longest attr range
from tab
where property

can be implemented using at most

O(n logk−1 n)

time, if every f and g used in the definition of primitive predicates inside property
p can be computed in constant time. Here n denotes the size of relation and k is a
constant depending on the definition of property (Lemma 2).

2

We prove this theorem by giving a concrete implementation, which consists of
the following four phases:

• Bucketing the relation,

• Normalizing the range property,

• Refining the longest range problems,

• Computing the longest range.

In the rest of this section we will explain these phases one by one.

10



4.1 Bucketing the Relation

Our idea is to bucket the relation according to the range attribute and reduce the
query to a longest segment problem whose input is a list of tuples.

Before showing how to solve longest segment problem, we briefly explain the
bucketing process. This bucketing process is necessary, because the original relation
may not be sorted in the order of the range attribute. For instance, the relation
callsDetail may be in the order of (date, time), but for the query like

find longest time range
from callsDetail
where (sum duration) < 50,

we need to sort the relation according to time in order to compute the time range.
As discussed in [FMMT96], rather than using expensive sorting algorithm, we may
apply some efficient bucketing algorithm (almost linear) to achieve it. We adopt the
algorithm in [FMMT96], and to keep the information for later aggregate computa-
tion, we extend the algorithm by associating with each bucket with the number of
records it has and the summation of the attributes manipulated by aggregate func-
tions in the property description, its cost is the same as that in [FMMT96] (linear)
by using fusion technique [Chi92, OHIT97].

The remainder of this section will be explained on the ground that the relation
has been bucketed into equal-size blocks according to the range attribute.

4.2 Normalizing the Range Property

For efficient implementation, the range property specified by user should be first
normalized into canonical form to eliminate the redundancy.

Elimination of Aggregate Functions

Recall the example in Section 2, where the second condition p2, saying that the sum
of the elements of the range is no less than 10, which is expressed by our predicate
as

(sum xs) ≥ 10.

How to eliminate this sum function? The trick is to use scanl1 1

to compute every prefix sum of the input list xs and get a new list ss =
scanl1 (+) xs:

[x1, x2, . . . , xh, . . . , xl, . . .]
[s1, s2, . . . , sh, . . . , sl, . . .].

1 scanl1 (⊕) xs accumulates function (⊕) for every initial segment of the given list xs, for
example,

scanl1 (+) [1, 2, 3, 4,5,6] = [1, 3, 6, 10, 15, 21]

11



To compute the sum of a range xs′ = [xh, . . . , xl], we may use the end elements of
xs′ and corresponding ss′, i.e., xh, sh, xl, sl:

sum xs′ = xh + (sl − sh).

Thus, sum xs′ ≥ 10 is coded as 10 + sh − xh ≤ sl. Accordingly, for any segment z,
we can use a preprocessing as the following function

preproc z = zip z (scanl1 (+) z)

to make a new segment with each element changed to a pair. Here, zip is a function
tupling two lists into one by taking a pair of lists and returning a list of pairs of the
corresponding elements, for instance,

zip [1, 2, 3, 4, 5, 6] (scanl1 (+) [1, 2, 3, 4, 5, 6]) =
[(1, 1), (2, 3), (3, 6), (4, 10), (5, 15), (6, 21)].

With the same trick, we can eliminate the other four. Consequently, the aggre-
gate predicates can be expressed in the form of f (head) <© g (last).

It should be noted that this preprocessing does not raise additional cost by using
accumulation and fusion techniques [Bir84, Chi92].

Normalization of Composite Property

Next, let us turn our attention to the composite property. With respect to it, we
have the following Lemma holds.

Lemma 2 (Normalization) Any composite predicate can be expressed in its canon-
ical form, that is, the disjunction of a number of conjunction of primitive predicates,
i.e.,

p x = p11 x ∧ p12 x ∧ . . . ∧ p1k1
x ∨

p21 x ∧ p22 x ∧ . . . ∧ p2k2
x ∨

. . . . . . ∨
pm1 x ∧ pm2 x ∧ . . . ∧ pmkm

x

where, pij is primitive predicate, and the maximum of k1, k2, . . ., km is exactly the
k in Theorem 1.

Proof sketch. With the aggregate functions transformed into f (head) <© g (last)
form, the first two groups of predicates in nature have only one form. In addition,
by A. de Morgan’s law, as well as the distributive and associative law on logic
operators, we can get that each pij in the above formula is either f (head) <© g (last)
or not (f (head) <© g (last)).

According to the semantics of not , we can get that

not (f (head) <© g (last)) = f (head) <©
C g (last),

here we use RC to denote the complement relation of R. Because <© is a transitive
total order relation, so <©C is also transitive total order. Thus we can say that
for any primitive predicate p, not p is also primitive. Consequently, this lemma is
self-evident.

2

12



4.3 Refining the Longest Range Problem

Lemma 2 shows that a range property specified by our language can be normalized
into a disjunction of simpler components, which is either a primitive one in the form
of f (head) <© g (last) or a conjunction of several primitive ones. On the ground of
this normalization, what we need to do is how to deal with these three cases. If we
can address both the primitive and the conjunction case, then the disjunction case is
easy to solve, for it computes the longest range that satisfies any of its components.
We can get the result by calculating that for each component and select the longest
one as the result. Thus, the crucial part is how to deal with the conjunction case
and primitive case.

The primitive case is about a transitive total order relation on the two end
elements of the range, while the conjunction case is to compute the longest range
that satisfies a number of primitive predicates simultaneously, that is,

p z = f1 (head) <© g1 (last) ∧
f2 (head) <© g2 (last) ∧
. . . ∧
fk (head) <© gk (last)

where k is the number of primitive predicates. If we capsule this composite conjunc-
tion by tupling all of its primitive components together, as follows,

(f1, . . . , fk) (R1, . . . , Rk) (g1, . . . , gk)

with each Ri is a transitive total order relation, and

(x1, ..., xk) (R1, ...,Rk) (y1, ..., yk)
≡ x1 R1 y1 ∧ ... ∧ xk Rk yk.

Then, what we need to implement boils down to the following problem:

Given a list, compute the length of a longest nonempty range such that
the computation on the leftmost element is related with that on the
rightmost element by a relation R̄ (which is not necessary to be a total
order).

f̄ (head) R̄ ḡ (last)

where,
f̄ = f1 4 · · · 4 fk

ḡ = g1 4 · · · 4 gk

(x1, . . . , xk) R̄ (y1, . . . , yk) = ∧k
i=1xi Ri yi

where everyRi be a transitive total order relation, and the split operator
4 be defined by

(f1 4 · · · 4 fk) xs = (f1 xs, . . . , fk xs).

Notice that R̄ is usually a partial order, and that if R̄ itself is a transitive total
order relation, it is just the primitive form f (head) <© g (last), and a special case of
it, where f = id and g = id, is known as the leftmost at most rightmost problem
[Zan92].

13



x xs

R

R

Cw winaacc

visiting not yet visited

relation

               visited

Figure 3: Demonstration of the solution

4.4 Computing the Optimized Ranges

To address this refined problem, let us first identify the core of it: How to determine
whether the relation between the two end elements of the segment holds or not, and
the end element is either a individual one (primitive case) or a tuple (conjunction
case).

Main Point of our Solution

One naive solution is that in the process of scanning the input from left to right,
for each element x under consideration, we compare it with every element preceding
it, to determine whether the relation between this two elements holds, and then
choose the longest segment (that is, whose left-end is the leftmost one among all the
elements preceding it) that satisfies the relation as the result.

It is evident that this naive solution is inefficient, because an element has to be
compared with all the prefix elements. Therefore, we consider reusing the earlier
comparison results by accumulation. In addition, one fact about the longest range
is that the length of the longest range sometimes increases but never decreases in
the process of scanning the input, just as the maximum in a set.

Based on these two points (reusing the comparison results and the length only
increasing), we can get a practical and efficient solution to the problem, which
is motivated by the so-called windowing technique proposed by [Zan92] and is a
significant extension to windowing technique.

Without loss of generality, henceforth suppose the relation <© in the primitive
predicate be ≤, the input be a list of number, and the result be the length of the
length if the longest segment rather the segment itself.

To reuse the earlier comparison results, one measure of our solution is to build
an additional storage to memorize the minima of all the elements that have been
scanned before the current element; and at the same time, to take use of the feature
that the length of the longest segment never decreases, the length of the current
longest range is also memorized.

Figure 3 demonstrates this idea. (acc++ [a]++ [w]++win) denotes the additional

14



storage for the elements preceding x in descending order, x is the current element
to be processed, and xs is the input not yet processed. The length of ([w] ++win)
is just that of the current longest range.

Because the additional storage is organized in the descending order, to element x,
we can skip the range win (whose length is that of the current longest segment), and
only need to compare it with acc++ [a]++ [w] backwards in the following way: if the
relation R between x and w does not hold, then the longest length keeps unchanged,
win slides rightwards by one element, and the leftmost element of win appends to
(acc ++ [a]); Otherwise, we can increase the length and extend win leftwards while
shrinking acc, and repeat this process until win cannot be extended, that is, there
is no element in (acc ++ [a]) holding the relation R with x.

It is worth noting that the additional storage is built synchronously with the
scanning of the input, so this algorithm is on-line in nature.

We illustrate this idea by a simple example of computing the length of the longest
range whose leftmost element is less than or equal to its rightmost one. Assume the
input is

xs = [4,−3, 5, 6,−10, 9, 6, 3,−20, 5, 3]

the same as that in Figure 1. To compute the longest range, we scan xs from left
to right, while building an additional list ys, which contains the minimum of all
elements that have been scanned before the element. For instance, when we finish
scanning −20 and is scanning 5 (as underlined), the corresponding ys should be

ys = [4,−3,−3,−3,−10,−10,−10,−10,−20],

and the longest length obtained so far is 7. 2

Now we divide ys into two parts with the second part (which is often called
window) having the length of the longest range obtained so far. To see if there is
any longer range including 5, we skip checking the elements in the window except
the leftmost element−3. Since 5 is greater than −3, we know there must be a longer
range containing 5, and we thus extend the window leftwards while shrinking the
first part:

[4,−3,−3,−3,−10,−10,−10,−10,−20,−20].

Repeating this process until the window cannot be extended. After that, we move
to scan the next element of the input till the end.

Algorithm for Computing Longest Range

From the above illustration, we can see the main operations include extending win,
shrinking acc, as well as sliding win and inserting an element to acc. And which

2 The longest range before scanning 5 is

[4,−3, 5, 6,−10, 9,6],

whose length is 7.

15



operations is enforced depends on the comparison result of the current element x
and the elements in the additional storage. For example, for relation ≤, the key
point is to determine whether there exists an element in (acc++ [a] ++ [w]) less than
x, in other word, whether x is minimum in (acc++ [a] ++ [w]). If the answer is true,
we extend win leftwards, and shrink acc simultaneously.

To be precise, we define the following operations for acc and win, respectively.

• accIsmin :: determines whether a given element is minimal in acc, if so, it
returns a true value

• accInsert :: inserts an element to acc

• accDelete :: deletes an element from acc

• accLastElement :: returns the last inserted element

as well as

• winExtend :: extends win to left by one element and increases its length by one

• winSlide :: shifts win to right by one element and keep the length unchanged

• winHdLeft :: returns the first element of win

We can express our solution in the following Haskell code. flr is the function to
find the longest range, which receives four parameters, the functions f and g being
applied to the leftmost and rightmost elements respectively, the given relation r,
and the input list (x : xs).

flr f g r (x : xs) =
flr′ f g r accEmptyr winInit xs

where winInit = winExtend winEmpty x

flr′ f g r acc win [ ] = length win
flr′ f g r acc win (x : xs) =

if accIsminr acc′ (g x)
then flr′ f g r (accDeleter acc lastAcc)

(winExtend win lastAcc) (x : xs)
else flr′ f g r acc′

(winSlide win (f x)) xs
where hwin = winHdLeft win

acc′ = accInsertr acc hwin
lastAcc = accLastElementr acc

Here, flr calls a recursive function flr′, which use two additional parameters acc
and win to memorize the intermediate results discussed above.

Notice that there are at most 2n recursive calls to flr′ for an input list of length n,
and that in each recursive call, besides the cost for f and g, the major computation

16



time is spent on insertion and deletion of elements for acc and win, as well as
the determination whether the current element is minimal (suppose that the given
relation is ≤) in acc. In other words, the time cost of this algorithm depends on the
efficiency of operations on acc and win. Suppose the time cost for these operations
is Tp, then function flr will be in O(nTp) time.

While the time cost of these operations has great relations with the underlying
data structures, so now the problem becomes how to choose proper data structure
for acc and win.

For the primitive case, the relation (<©) is in total order, in other words, if we
assume <© be≤, the minima is unique for a sequence of numbers, that is the minimum
of the sequence. Therefore as shown in the figure, we can use an double-end list
[Oka98] as the data structure for acc and win, it is known from [Oka98] that all these
operations can be efficiently implemented in constant amortized time. Consequently,
flr is an amortized linear algorithm for the primitive case.

On the other hand, the primary distinction from the primitive one is that the
relation order in conjunction case is no longer total, it becomes a partial order on
tuples, whose definition is derived from the orders of its components as:

(x1, . . . , xk) ≤ (y1, . . . , yk) ≡ x1 ≤ y1 ∧ . . . ∧ xk ≤ yk,

here, k is the number of the primitive predicates in the conjunction.

The real challenge for the partial order is that the minimum is not unique, which
means that there may exist several minima at each point, as result we can not
determine whether an element (e.g., x) is minima in the set (e.g., the minima at
point w) in constant time. Rather than the double-end list acc used for total order,
we need a more comprehensive data structure now to store information of the minima
gotten at the point x. Therefore, we use a binary search tree, each of whose nodes
corresponds to a k-tuple, to represent the minima at each point that is now a set of
k-tuples. In this case, the determination becomes a minima searching (i.e., whether
x is minima) in the tree, and at the same time the construction for the minima at
each point involves the minima searching and insertion to the tree. Luckily all the
trees for each point can be merged as a single one, this can be achieved simply by
insertion and deletion to trees in O(log n) time.

Fortunately, the key problem boils down to the multidimensional minima search-
ing problem, which is settled in [ZHM02] by using a so-called k-d-m tree in O(log(k−1) n)
time. k-d-m tree is a multidimensional search tree with minimum attribute. Each
node of k-d-m tree represents a k-tuple in our case. So we adopt k-d-m tree as the
structure for acc.

The time cost for the operations on k-d-m tree is summarized as follows.

• accIsmin :: O(log(k−1) n)

• accInsert :: O(log n)

• accDelete :: O(log n)

• accLastElement :: O(1)

17



And as to win, which stores the elements in window with its length equal to the
current longest length, its data structure can use a double-ends list [Oka98]. The
time cost for the operations on win are given below.

• winExtend :: amortized O(1) time

• winSlide :: amortized O(1) time

• winHdLeft :: amortized O(1) time

Based on the time costs for operations on acc and win, we can get that the time
cost for the algorithm flr in conjunction case is O(n log(k−1) n).

Theorem 1 has accordingly been proved. In the case of k = 1 (primitive case),
the longest range can be computed in linear time.

5 One Application: Optimized Support Range Prob-

lem

This section will present one application of our framework for data mining. As a
special case of our longest range problems, the optimized support range problem,
first studied in [FMMT96] and got more studies in [SBS99, RS99], is very useful in
extracting correlated information. For example, the optimized association rule for
callsDetail in the telecom database,

(date ∈ [d1..d2]) ∧ (src city = Tokyo)
⇒ (dst city = HongKong)

describes the calls from Tokyo during the date [d1, d2] are made to HongKong. Gen-
erally, an optimized association rule R has the form of A ∈ [l, u] ∧ C1 ⇒ C2, where
A is a numeric attribute, C1 and C2 are conjunction of conditions, and l and u are
uninstantiated variables. Each rule has an associate support and confidence prop-
erty, in which, support(Ci) be the ratio of the number of tuples satisfying Ci and the
number of the tuples in the relation, support(R) is then the same as the support of
(A ∧ C1 ∧ C2), confidence(R) be the ratio of the supports of condition A ∧ C1 ∧ C2

and A ∧ C1.

Suppose that the telecom service provider want to offer discounts to Tokyo cus-
tomers who make calls to HongKong at a period of consecutive days in which the
maximum number of calls from Tokyo are made and a certain minimum percentage
of the call from Tokyo are to HongKong. This is known as the optimized support
range problem, which can be described by

maximize support(rule)
s.t. confidence(rule) ≥ θ

where rule is the optimized association rule given above, support and confidence
are functions related with the support and confidence of the rule, and θ is a given
constant.

18



To do this, first we preprocess the original relation by adding a new attribute
called support. It is defined according to the above rule by

support = 1 src city = Tokyo ∧ dst city = HongKong
= 0 otherwise

After the bucketing according to the range attribute date, it is just to compute
the longest date range with respect to the average of support no less than the given
θ. Thus, the optimized support range problem is only a special case of longest range
problem, it can be simply expressed by our language as follows.

find longest date range
from callsDetail
where (average support) ≥ θ

From Theorem 1, we know that it can be solved in O(n) time.

Besides the optimized support problem, our framework can efficiently address
many range mining problem, such as maximum gain problem.

6 Performance Evaluation

The proposed language and algorithm have been first tested in Haskell using the
schemas described in previous sections. And for the practical application, it has
further been re-implemented in Java using JDK1.3 with a friendly GUI for user to
specify his range of interest, together with the mining conditions (range property),
which is available at site http://www.ipl.t.u-tokyo.ac.jp /rise2001/.

Our efficient algorithm for mining longest ranges from database is built on the
basis of the preprocessing for the original data, that is the bucketing according to the
range attribute of interest. We mainly adopted the technique for bucketing proposed
in [FMMT96], which is almost linearly with the number of data when the data sets
get larger. Furthermore, for the practical purpose, according to the characteristics
of the range attribute, the bucket size can be specified by user in our framework.

We evaluated the performance on a Panasonic CF-M2XR with a CPU clock
rate of 650 MHz and 192 MB of main memory, running Microsoft Windows 2000
Professional 5.0. And the tested data is a real world database from a coffee shop
with two-year sales data. Figure 4 shows the execution time and memory used
when mining the longest range with the buckets numbers range from 10 to 3000.
Here, we give the evaluated results for mining longest ranges where the number of
primitive predicates the range property should satisfy simultaneously is from 1 to
5, respectively denoted by k = 1, . . . , k = 5.

The experimental results demonstrate the efficiency of our algorithm and shows
the promising application prospect. Particularly, the optimized support rule can be
easily solved in linear time in our framework.

19



7 Conclusion

In this paper, we identify one important class of data mining problems called longest
range problems, and propose a compositional framework for solving the problems
efficiently. This work is a continuation of our effort to investigate how program
calculation approach could be used in data mining [HCT00], and it confirms us with
its promising result.

At present, our framework provide a wide class of predicates for specifying the
range property, we want further to investigate how general predicates our approach
can deal with. Another work we want to study is whether our framework can deal
with multi-range rather than the current a single range attribute.

References

[Bir84] R. Bird. The promotion and accumulation strategies in transforma-
tional programming. ACM Transactions on Programming Languages
and Systems, 6(4):487–504, 1984.

[Bir89] R. Bird. Constructive functional programming. In STOP Summer
School on Constructive Algorithmics, Abeland, 9 1989.

[Chi92] W.N. Chin. Safe fusion of functional expressions. In Proc. Conference
on Lisp and Functional Programming, pages 11–20, San Francisco, Cal-
ifornia, June 1992.

[FMMT96] T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Mining opti-
mized association rules for numeric attributes. In Proc. ACM PODS’96,
pages 182–191, Montreal Quebec, Canada, 1996.

[FPSM92] W. Frawley, G. Piatetsky-Shapiro, and C. Matheus. Knowledge discov-
ery in databases: An overview. AI Magazine, pages 213–228, 1992.

[FPSSR96] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R.Uthurusamy. Ad-
vances in Knowledge Discovery and Data Mining. AAAI/MIT Press,
1996.

[HCT00] Z. Hu, W.N. Chin, and M. Takeichi. Calculating a new data mining
algorithm for market basket analysis. In Second International Workshop
on Practical Aspects of Declarative Languages, LNCS 1753, pages 169–
184, Boston, Massachusetts, January 2000. Springer-Verlag.

[Jeu93] J. Jeuring. Theories for Algorithm Calculation. Ph.D thesis, Faculty of
Science, Utrecht University, 1993.

[JH99] S. Peyton Jones and J. Hughes, editors. Haskell 98: A Non-strict, Purely
Functional Language. Available online: http://www.haskell.org,
February 1999.

20



[OHIT97] Y. Onoue, Z. Hu, H. Iwasaki, and M. Takeichi. A calculational fusion
system HYLO. In IFIP TC 2 Working Conference on Algorithmic Lan-
guages and Calculi, pages 76–106, Le Bischenberg, France, February
1997. Chapman&Hall.

[Oka98] C. Okasaki. Purely Functional Data Structures. Cambridge University
Press, 1998.

[Rem85] M. Rem. Small program exercises. Science of Computer Programming,
5:309–316, 1985.

[Rem86] M. Rem. Small program exercises. Science of Computer Programming,
7:87–97, 1986.

[Rem88] M. Rem. Small program exercises. Science of Computer Programming,
11:167–173, 1988.

[RS99] R Rastogi and K. Shim. Mining optimized support rules for numeric
attributes. In 15th International Conference on Data Engineering, Syd-
ney, Australia, March 1999. IEEE Computer Society Press.

[SBS99] R. Rastogi S. Brin and K. Shim. Mining optimized gain rules for numeric
attributes. In Proc. of ACM KDD’99, 1999.

[SMJ95] A. Silberschatz, M.Stonebraker, and J.D.Ullman. Database reserach:
Achievements and opportunities into the 21st century. In NSF Workshop
on the Future of Database Systems Research, May 1995.

[vdE90] J.P.H.W. van den Eijnde. Left-bottom and right-top segments. Science
of Computer Programming, 15:79–94, 1990.

[Zan92] H. Zantema. Longest segment problems. Science of Computer Program-
ming, 18:36–66, 1992.

[ZHM02] H. Zhao, Z. Hu, and M.Takeichi. Multidimensional searching trees with
minimum attribute. JSSST Computer Software, 19(1):22–28, Jan. 2002.

21



Figure 4: Performance of mining longest range

22


