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SUMMARY

We consider testing the quasi-independence hypothesis for two-way contingency tables which
contain some structural zero cells. For sparse contingency tables where the large sample ap-
proximation is not adequate, the Markov chain Monte Carlo exact tests are powerful tools. To
construct a connected chain over the two-way contingency tables with fixed sufficient statis-
tics and an arbitrary configuration of structural zero cells, an algebraic algorithm proposed
by Diaconis and Sturmfels (1998) can be used. However their algorithm does not seem to
be a satisfactory answer, because the Markov basis produced by the algorithm often contains
many redundant elements and is hard to interpret. We derive an explicit characterization of a
minimal Markov basis, prove its uniqueness and present an algorithm for obtaining the unique
minimal basis. A computational example and the discussion on further basis reduction for the
case of positive sufficient statistics are also given.

Keywords: Bradley-Terry model, Gröbner basis, minimal Markov basis, quasi-independence,
quasi-symmetry, structural zero.

1 Introduction

Researchers often encounter the problem of analyzing incomplete contingency tables, i.e., tables
containing some structural, or a priori, zeros. Structural zeros arise in situations where it is
theoretically impossible for some cells to contain observations. For example, when a secondary
infection can occur only if a primary infection occurs, the cell in the contingency table that
corresponds to the secondary infection without the primary infection would necessarily contain
a structural zero. Such cells can occur naturally as a feature of the data and can be distinguished
from sampling zeros, which occur due to the sampling variability and the relative smallness of
the cell probabilities. It is noted that if probabilities of some cells are free from models, i.e.,
if the probabilities of some cells are regarded as nuisance parameters, these cells can also be
treated as if they are structural zero cells.

For analyzing two-way incomplete contingency tables, one of the most familiar models is the
quasi-independence model (see Bishop et al., 1975, for example). To perform the exact test of
quasi-independence, the null distribution of an appropriate test statistic is required. However,
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a complete enumeration of this distribution is often computationally infeasible and a Monte
Carlo exact test is used. See Agresti (1992) for example.

As another approach, a Markov chain Monte Carlo approach is extensively used in various
settings of contingency tables, for example, Besag and Clifford (1989) for performing signif-
icance tests for the Ising model (two-way binary tables); Smith et al. (1996) for tests of
independence, quasi-independence and quasi-symmetry for square contingency tables; Guo and
Thompson (1992) for exact tests of Hardy-Weinberg proportions (triangular two-way contin-
gency tables); Diaconis and Saloff-Coste (1995) for two-way contingency tables; Hernek (1998),
Dyer and Greenhill (2000) for 2×J contingency tables; Forster et al. (1996) for 2d contingency
tables; Aoki and Takemura (2002) for 3 × 3 × K contingency tables; Diaconis and Sturmfels
(1998) for general discrete exponential family. In this paper, we present Markov chain Monte
Carlo algorithms for testing quasi-independence of incomplete two-way contingency tables. In
addition we present similar results for testing quasi-symmetry for square tables.

Our main contribution is twofold. First, our work is an extension of the work of Smith et
al. (1996), which considers the situation that the contingency table is square and the diagonal
cells are structural zeros. In this paper, we consider more general situation; the contingency
table is not necessarily square and there is no constraint on the configuration of structural zero
cells. Second, our approach provides more concise and explicit expressions of a Markov basis
than the general algorithms by Diaconis and Sturmfels (1998). Diaconis and Sturmfels (1998)
proposed algebraic algorithms for finding a basis to construct a connected Markov chain over
general multiway contingency tables with fixed sufficient statistic. Their algorithms involve
computations in polynomial rings using Gröbner bases. However, algorithms based on Gröbner
bases are very time consuming when the size of contingency tables is large. Furthermore,
Gröbner basis computation produces large number of redundant basis elements due to the lack
of symmetry and minimality inherent in Gröbner basis. Concerning the minimality of a basis,
Takemura and Aoki (2002) gives some characterizations of a minimal basis and its uniqueness
for a connected Markov chain for sampling from the conditional distribution. In this paper,
we give the closed form expression of the unique minimal basis for two-way contingency tables
with arbitrary configuration of structural zeros.

The construction of this paper is as follows. Section 2 and Section 3 describe the problem.
Section 4 gives an explicit characterization a minimal basis. We also prove its uniqueness.
Section 5 describes the algorithms for enumerating elements of the unique minimal basis. In
this section, an explicit forms of minimal bases for some typical situations are also given.
Computational example is given in Section 6. In Section 7 we discuss further basis reduction
for the case of positive sufficient statistics. Finally in Appendix we give a corresponding result
on quasi-symmetry for square two-way tables.

2 Exact tests for quasi-independence

Let N = {0, 1, 2, . . .} and let X be an I × J contingency table with entries xij ∈ N, i =
1, . . . , I, j = 1, . . . , J . Let S ⊂ {(i, j) | 1 ≤ i ≤ I, 1 ≤ j ≤ J} be the set of cells that are not
structural zeros. We consider models for the cell probability in incomplete contingency tables
in the (natural) logarithmic scale as

log pij = µ + αi + βj + γij (1)
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for (i, j) ∈ S and pij ≡ 0 for (i, j) �∈ S. We then define the model of quasi-independence for
the subtable S by setting

H0 : γij = 0

for (i, j) ∈ S. This is a natural extension of the familiar model of independence of the variables
corresponding to rows and columns in the ordinary two-way contingency tables. An interpre-
tation of this model and restrictions on the parameters are discussed in detail in Bishop et al.
(1975).

For testing a null hypothesis in the presence of nuisance parameters, a common approach is
to base the inference on the conditional distribution given a sufficient statistic for the nuisance
parameters. Using this conditional distribution, an exact test can be constructed. See Agresti
(1992) for details of exact tests for contingency tables. Under the null hypothesis of quasi-
independence, the row sums, xi·, and the column sums, x·j , are the sufficient statistics for the
nuisance parameters µ, αi, βj. The conditional distribution is then written as

f(X | {xi·}, {x·j}, S) = C
∏

(i,j)∈S

1

xij !
, (2)

where C is the normalizing constant determined from {xi·}, {x·j}, S and written as

C−1 =
∑

X∈F({xi·},{x·j},S)

 ∏
(i,j)∈S

1

xij !

 ,

where

F({xi·}, {x·j}, S) =

{
Y

∣∣∣∣∣
J∑

j=1

yij = xi·,
I∑

i=1

yij = x·j , yij ∈ N, and yij = 0 for (i, j) /∈ S

}
.

Hereafter, for simplicity we omit S in F({xi·}, {x·j}, S) , when S = {1, . . . , I}×{1, . . . , J}, i.e.,
there is no structural zero cell. The discrepancy from the null hypothesis H0 is measured by an
appropriate test statistic. For each element in F({xi·}, {x·j}, S), the value of this test statistic
is calculated. The exact conditional p value is the sum of the conditional probabilities for the
elements in F({xi·}, {x·j}, S) which are at least as discrepant from the null hypothesis as the
observed data.

Unfortunately, however, a complete enumeration of all the elements in F({xi·}, {x·j}, S),
and hence the calculation of the normalizing constant C, is usually computationally infeasible
for large sparse tables. In this paper, instead, we consider a Markov chain Monte Carlo method
described in the next section.

3 Metropolis-Hastings sampling

To perform the exact tests of quasi-independence, our approach is to generate samples from
f(X | {xi·}, {x·j}, S) and calculate the null distribution of various test statistics. If a connected
Markov chain over F({xi·}, {x·j}, S) is constructed, the chain can be modified to give a con-
nected and aperiodic Markov chain with stationary distribution f(X | {xi·}, {x·j}, S) by the
usual Metropolis procedure (Hastings, 1970, for example).
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If there is no structural zero cell, a connected Markov chain over F({xi·}, {x·j}) is easily
constructed as follows. Let X be the current state in F({xi·}, {x·j}). The next state is selected
by choosing a pair of rows and a pair of columns at random, and modifying X at the four
entries where the selected rows and columns intersect as

+ −
− +

or
− +
+ − with probability

1

2
each. (3)

The modification adds or subtracts 1 from each of the four entries, keeping the row and column
sums. If the modification forces negative entries, discard it and continue by choosing a new
pairs of rows and columns.

On the other hand, if there are structural zero cells, a chain constructed from this type of
moves might not be connected. As the simplest example, consider 3 × 3 contingency tables
having structural zero cells as the diagonal elements, i.e., S = {(i, j), i �= j}. If the marginal
totals are xi· = x·j = 1 for all 1 ≤ i, j ≤ 3, there are two states in F({xi·}, {x·j}, S) displayed
as

[0] 1 0
0 [0] 1
1 0 [0]

and
[0] 0 1
1 [0] 0
0 1 [0]

.

Here and hereafter we denote a structural zero cell by [0], in order to distinguish it from a
sampling zero cell. To connect these two states, moves such as

0 −1 +1
+1 0 −1
−1 +1 0

are needed. In Smith et al. (1996), it is remarked without proofs that a connected chain can
be constructed only by the moves such as (3) for I × I contingency tables with structural zeros
as diagonal cells, when I > 3. In Section 7 we show that this statement is true when all the
marginal totals are positive. But our concern in this paper is to list a common minimal set of
moves that is needed to construct a connected chain for arbitrary values of the marginal totals,
depending only on the size of the contingency tables and S, the configuration of the structural
zero cells.

To describe the problem precisely, we give a definition of a Markov basis and its minimality
as introduced in Diaconis and Sturmfels (1998). Let F0(S) be the set of I × J contingency
tables with non-structural zero cells as S and zero marginal totals

F0(S) =

{
Y

∣∣∣∣∣
J∑

j=1

yij =

I∑
i=1

yij = 0, yij ∈ Z, and yij = 0 for (i, j) /∈ S

}
,

where Z denotes the set of integers. The elements of F0(S) are called moves on S.

Definition 1 A Markov basis is a set B = {B1, . . . , BL} of I × J contingency tables Bi ∈
F0(S), i = 1 . . . , L, such that, for any {xi·}, {x·j} and X, X ′ ∈ F({xi·}, {x·j}, S), there exist
A > 0, (ε1, Bt1), . . . , (εA, BtA) with εs = ±1, such that

X ′ = X +

A∑
s=1

εsBts and X +

a∑
s=1

εsBts ∈ F({xi·}, {x·j}, S) for 1 ≤ a ≤ A.

A Markov basis B is minimal if no proper subset of B is a Markov basis.
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4 Unique minimal basis for quasi-independence in two-

way incomplete contingency tables

In this section, we derive a minimal Markov basis for I × J contingency tables with structural
zeros. In the following, we assume that the level indices i1, i2, . . . and j1, j2, . . . are all distinct,
i.e.,

im �= in and jm �= jn for all m �= n. (4)

The following definition gives a fundamental tool in this paper.

Definition 2 A loop (or loop move) of degree r on S is an I × J contingency table

Mr(i1, . . . , ir; j1, . . . , jr) ∈ F0(S), 1 ≤ i1, . . . , ir ≤ I, 1 ≤ j1, . . . , jr ≤ J,

where Mr(i1, . . . , ir; j1, . . . , jr) has the elements

mi1j1 = mi2j2 = · · · = mir−1jr−1 = mirjr = 1,
mi1j2 = mi2j3 = · · · = mir−1jr = mirj1 = −1,

and all the other elements are zero. Specifically degree 2 loop M2(i1, i2; j1, j2) is called a basic
move. The support of Mr(i1, . . . , ir; j1, . . . , jr) is the set of its non-zero cells {(i1, j1), (i1, j2), . . . ,
(ir, j1)}.

Note that because of the notational convention (4), there is at most one +1 and −1 in each
row and each column of a degree r loop. Loops constitute an essential subset of F0(S). To see
the role of the loops, we give the following lemma.

Lemma 1 Let Y ∈ F0(S) be an I × J contingency table with some nonzero elements. Then
Y can be expressed as a finite sum

Y =
∑

k

akMr(k)(i1(k), . . . , ir(k); j1(k), . . . , jr(k)),

where ak is a positive integer, r(k) ≤ min{I, J} and there is no cancellation of signs in any
cell.

The proof of this lemma is easy and omitted. Instead we show an example to clarify the
meaning of this lemma. Let Y ∈ F0(S) be 4 × 5 contingency table expressed as follows.

3 −2 0 −2 1
−2 3 0 0 −1
−1 −1 2 0 0

0 0 −2 2 0

First notice that y11 > 0. Since y1· = y·1 = 0, there exists some i, j > 1 satisfying y1j , yi1 < 0.
In this case, we see that y12, y14, y21, y31 < 0. Here, since y22 > 0, the four cells, y11, y12, y22, y21,
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are the nonzero elements of the basic move M2(1, 2; 1, 2). Then we can subtract (twice) this
basic move from Y as follows.

Y =

2 −2 0 0 0
−2 2 0 0 0

0 0 0 0 0
0 0 0 0 0

+

1 0 0 −2 1
0 1 0 0 −1

−1 −1 2 0 0
0 0 −2 2 0

= 2M2(1, 2; 1, 2) + Y ′

Note that there is no cancellation of signs in any cell and the remaining pattern, Y ′ = Y −
2M2(1, 2; 1, 2), is again in F0(S). Hence we can consider a further decomposition of Y ′. We
observe that the six cells, y′

11, y
′
14, y

′
44, y

′
43, y

′
33, y

′
31, are the locations of the nonzero elements of

the degree 3 loop M3(1, 4, 3; 1, 4, 3), and the remaining pattern is M4(1, 4, 3, 2; 5, 4, 3, 2). Now
the following decomposition of Y is obtained.

Y =

2 −2 0 0 0
−2 2 0 0 0

0 0 0 0 0
0 0 0 0 0

+

1 0 0 −1 0
0 0 0 0 0

−1 0 1 0 0
0 0 −1 1 0

+

0 0 0 −1 1
0 1 0 0 −1
0 −1 1 0 0
0 0 −1 1 0

= 2M2(1, 2; 1, 2) + M3(1, 4, 3; 1, 4, 3) + M4(1, 4, 3, 2; 5, 4, 3, 2)

It should be noted that this is not the only decomposition of Y .

Y = M2(1, 2; 1, 2) + M2(1, 2; 5, 2) + M3(1, 4, 3; 1, 4, 3) + M4(1, 4, 3, 2; 1, 4, 3, 2)

is another decomposition of Y , satisfying the condition of Lemma 1. Lemma 1 describes the
relation between Definition 2 and a Markov chain over F({xi·}, {x·j}, S). Suppose X , X ′ ∈
F({xi·}, {x·j}, S). Then the difference Y = X − X ′ is in F0(S). Hence to move from X to
X ′, we can add a sequence of loops in Definition 2 to X, without forcing negative entries on
the way. In other words, a set of all the loops of degree 2, . . . , min{I, J} constitute a trivial
Markov basis.

From the definition, we have the relations

Mr(i1, . . . , ir; j1, . . . , jr) = Mr(i2, . . . , ir, i1; j2, . . . , jr, j1)
= −Mr(ir−1, ir−2, . . . , i2, i1, ir; jr, jr−1, . . . , j2, j1).

Using these relations, we have 2r equivalent representations for a degree r loop. For example,
a degree 4 loop used above

0 0 0 −1 1
0 1 0 0 −1
0 −1 1 0 0
0 0 −1 1 0

is expressed as either as

M4(1, 4, 3, 2; 5, 4, 3, 2), M4(4, 3, 2, 1; 4, 3, 2, 5), M4(3, 2, 1, 4; 3, 2, 5, 4),
M4(2, 1, 4, 3; 2, 5, 4, 3), −M4(3, 4, 1, 2; 2, 3, 4, 5), −M4(4, 1, 2, 3; 3, 4, 5, 2),
−M4(1, 2, 3, 4; 4, 5, 2, 3), −M4(2, 3, 4, 1; 5, 2, 3, 4).
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Then if there is no structural zero cells, there are

min{I,J}∑
r=2

(
I

r

)(
J

r

)
(r!)2

2r

distinct loops in I × J contingency tables.
It is well known that the set of all basic moves constitutes a Markov basis for the case of

no structural zero cells. Moreover, it is shown in Takemura and Aoki (2002) that this is the
unique minimal Markov basis. Similarly in the presence of structural zeros, the set of loops is
generally not a minimal basis. In this paper, we give an explicit characterization of the unique
minimal Markov basis for an arbitrary configuration of structural zero cells. The next definition
provides a key tool.

Definition 3 A loop Mr(i1, . . . , ir; j1, . . . , jr) is called df 1 if for all a, 1 ≤ a ≤ r, neither
R(i1, . . . , ia−1, ia+1, . . . , ir; j1, . . . , jr) nor R(i1, . . . , ir; j1, . . . , ja−1, ja+1, . . . , jr) contains support
of any loop on S of degree 2, . . . , r − 1, where

R(i1, . . . , ir; j1, . . . , jr) = {(i, j) | i ∈ {i1, . . . , ir}, j ∈ {j1, . . . , jr}}.
Here the term df is intended as “degree of freedom”. To clarify the meaning of this definition,
we give an equivalent condition to Definition 3 in the following lemma.

Lemma 2 Mr(i1, . . . , ir; j1, . . . , jr) is df 1 if and only if R(i1, . . . , ir; j1, . . . , jr) contains exactly
two elements in S in every row and column.

Proof. The case r = 2 is obvious. Consider r ≥ 3.
(Sufficiency) We argue by contradiction. By permuting the rows and columns, without loss

of generality suppose that Mr(1, . . . , r; 1, . . . , r) is a degree r loop which does not satisfy the
statement of the lemma. We also suppose (1, a) ∈ S, 3 ≤ ∃a ≤ r, without loss of generality.
Then this loop is decomposed as

Mr(1, . . . , r; 1, . . . , r) = Mr−a+2(1, a, a + 1, . . . , r; 1, a, a + 1, . . . , r)

+Ma−1(1, 2, . . . , a − 1; a, 2, 3, . . . , a − 1). (5)

An example of r = 5, a = 4 is displayed as follows.

+1 −1 [0] 0 [0]
[0] +1 −1 [0] [0]
[0] [0] +1 −1 [0]
[0] [0] [0] +1 −1
−1 [0] [0] [0] +1

=

+1 0 [0] −1 [0]
[0] 0 0 [0] [0]
[0] [0] 0 0 [0]
[0] [0] [0] +1 −1
−1 [0] [0] [0] +1

+

0 −1 [0] +1 [0]
[0] +1 −1 [0] [0]
[0] [0] +1 −1 [0]
[0] [0] [0] 0 0
0 [0] [0] [0] 0

Here, the nonzero cells of the two loops, Mr−a+2(1, a, a + 1, . . . , r; 1, a, a + 1, . . . , r)
and Ma−1(1, 2, . . . , a − 1; a, 2, 3, . . . , a − 1) overlap at (1, a) ∈ S only. Therefore R(1, a, a +
1, . . . , r; 1, a, a + 1, . . . , r) and R(1, . . . , a − 1; 2, . . . , a) contain the support Mr−a+2(1, a, a +
1, . . . , r; 1, a, a + 1, . . . , r) and Ma−1(1, 2, . . . , a − 1; a, 2, 3, . . . , a − 1), respectively, which are
loops on S. Hence Mr(1, . . . , r; 1, . . . , r) is not df 1.
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(Necessity) Suppose that Mr(1, . . . , r; 1, . . . , r) is a degree r loop such that R(1, . . . , r; 1, . . . , r)
contains exactly two elements in S in every row and column. Without loss of generality, it is
sufficient to show that R(1, . . . , r − 1; 1, . . . , r) does not contain support of any loop on S. An
example of R(1, 2, 3, 4; 1, 2, 3, 4, 5) is displayed as follows.

m11 m12 [0] [0] [0]
[0] m22 m23 [0] [0]
[0] [0] m33 m34 [0]
[0] [0] [0] m44 m45

From the assumption, (1, 1) is the only cell in S in R(1, . . . , r−1; 1), since Mr(1, . . . , r; 1, . . . , r)
has exactly two nonzero elements there, i.e., m11 = +1 and mr1 = −1. Hence m11 is zero
in any loop in R(1, . . . , r − 1; 1, . . . , r). Moreover, by using the constraints m1· = m·2 =
m2· = · · · = mr−1· = 0, it is shown that only the element of F0(S) that can be contained in
R(1, . . . , r − 1; 1, . . . , r) is the zero contingency table. Q.E.D.

Lemma 2 describes the forms of the df 1 loops. The displays below are examples of df 1
loops of degree 2,3,4 in 4 × 5 contingency tables.

+1 −1 0 0 0
−1 +1 0 0 0
0 0 0 0 0
0 0 0 0 0

+1 −1 [0] 0 0
−1 [0] +1 0 0
[0] +1 −1 0 0
0 0 0 0 0

+1 −1 [0] [0] 0
−1 [0] +1 [0] 0
[0] +1 [0] −1 0
[0] [0] −1 +1 0

Obviously, every basic move is df 1. The term df 1 is motivated by the following con-
sideration. Denote the positive and the negative part of a loop Mr(i1, . . . , ir; j1, . . . , jr) as
M+

r (i1, . . . , ir; j1, . . . , jr) and M−
r (i1, . . . , ir; j1, . . . , jr), respectively, i.e.,

m+
ij = max(mij , 0), m−

ij = max(−mij , 0).

Then

Mr(i1, . . . , ir; j1, . . . , jr) = M+
r (i1, . . . , ir; j1, . . . , jr) − M−

r (i1, . . . , ir; j1, . . . , jr). (6)

Here, consider the set of contingency tables which have the same marginal totals and the
configuration of S as M+

r (i1, . . . , ir; j1, . . . , jr) or M−
r (i1, . . . , ir; j1, . . . , jr), in other words,

F({m+
i· }, {m+

·j}, S) = F({m−
i·}, {m−

·j}, S).

Then we see that this set is a two-elements set with M+
r (i1, . . . , ir; j1, . . . , jr) and M−

r (i1, . . . , ir;
j1, . . . , jr) being the only members.

Here we give our main theorem.

Theorem 1 The set of df 1 loops of degree 2, . . . , min{I, J} constitutes a unique minimal
Markov basis for I × J contingency tables.
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Proof. We have already seen that the set of loops forms a Markov basis. We also note that
every minimal Markov basis has to contain all loops of degrees 2, . . . , min{I, J} on S. This is
because, as we have seen in (6), df 1 loop is written as the difference of the two elements of
F({xi·}, {x·j}, S), which is exactly the two-elements set. Following the arguments of Takemura
and Aoki (2002), we only need to verify that the set of the df 1 loops is itself a Markov basis.
In order to show this, we argue by induction. We start from the trivial Markov basis consisting
of all loops. We look at a non-df-1 loop of the highest degree. Below we show that this loop
can be replaced by a combination of loops of smaller degrees, so that the resulting set is still
a Markov basis. Then by induction on the highest degree of non-df-1 loops, it follows that the
set of df 1 loops is a Markov basis.

In order to show that a non-df-1 loop of the highest degree can be replaced by combi-
nation of loops of lower degrees we again use the decomposition of loops that we have al-
ready seen. Suppose a Markov basis contains non-df-1 loops. Without loss of generality let
Mr(1, . . . , r; 1, . . . , r) be a non-df-1 loop of the highest degree and (1, a) ∈ S, 3 ≤ ∃a ≤ r. Then
this loop is decomposed as (5). Here, the two loops, Mr−a+2(1, a, a + 1, . . . , r; 1, a, a + 1, . . . , r)
and Ma−1(1, 2, . . . , a − 1; a, 2, 3, . . . , a − 1), overlap, i.e., have nonzero element in common po-
sition, only at (1, a) ∈ S. Since (1, a) elements of these loops are −1 and +1, respectively,
we can add or subtract these loops in an appropriate order to X ∈ F({xi·}, {x·j}, S) without
forcing negative entries on the way, instead of adding or subtracting Mr(1, . . . , r; 1, . . . , r) to
X. Therefore Mr(1, . . . , r; 1, . . . , r) can be removed from the Markov basis and the remaining
set is still a Markov basis. Q.E.D.

We clarify the last step of the above proof by an example. Let X and X ′ be

X =

0 1 [0] 0 [0]
[0] 0 1 [0] [0]
[0] [0] 0 1 [0]
[0] [0] [0] 0 1
1 [0] [0] [0] 0

, X ′ =

1 0 [0] 0 [0]
[0] 1 0 [0] [0]
[0] [0] 1 0 [0]
[0] [0] [0] 1 0
0 [0] [0] [0] 1

.

X and X ′ are in the same F({xi·}, {x·j}, S) and the difference X ′ − X is expressed as a
non-df-1 loop,

M5(1, 2, 3, 4, 5; 1, 2, 3, 4, 5) =

+1 −1 [0] 0 [0]
[0] +1 −1 [0] [0]
[0] [0] +1 −1 [0]
[0] [0] [0] +1 −1
−1 [0] [0] [0] +1

.

However we have already seen the decomposition

M5(1, 2, 3, 4, 5; 1, 2, 3, 4, 5) =

+1 0 [0] −1 [0]
[0] 0 0 [0] [0]
[0] [0] 0 0 [0]
[0] [0] [0] +1 −1
−1 [0] [0] [0] +1

+

0 −1 [0] +1 [0]
[0] +1 −1 [0] [0]
[0] [0] +1 −1 [0]
[0] [0] [0] 0 0
0 [0] [0] [0] 0

= M3(1, 4, 5; 1, 4, 5) + M3(1, 2, 3; 4, 2, 3).
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Seeing that the (1, 4) element of M3(1, 2, 3; 4, 2, 3) is positive, it follows X +M3(1, 2, 3; 4, 2, 3) ∈
F({xi·}, {x·j}, S) as

X + M3(1, 2, 3; 4, 2, 3) =

0 0 [0] 1 [0]
[0] 1 0 [0] [0]
[0] [0] 1 0 [0]
[0] [0] [0] 0 1
1 [0] [0] [0] 0

.

Now, seeing that (1, 4), (4, 5), (5, 1) elements are positive, we can add M3(1, 4, 5; 1, 4, 5) to X +
M3(1, 2, 3; 4, 2, 3) and obtain X ′. Hence it is shown that the non-df-1 loop M5(1, 2, 3, 4, 5; 1, 2, 3, 4, 5)
is redundant. It should also be noted that the two loops, M3(1, 4, 5; 1, 4, 5) and M3(1, 2, 3; 4, 2, 3),
are both df 1 and hence cannot be removed.

Example. Comparison of the minimal basis and the reduced Gröbner basis.
Consider 6 × 6 contingency tables of the following form.

[0] x12 x13 [0] [0] x16

x21 [0] x23 x24 [0] [0]
x31 x32 [0] [0] x35 [0]
[0] [0] x43 [0] x45 x46

x51 [0] [0] x54 [0] x56

[0] x62 [0] x64 x65 [0]

By the algebraic algorithm described in Diaconis and Sturmfels (1998), we calculated the re-
duced Gröbner basis using the degree reverse lexicographical ordering. The result was composed
of 3 basic moves, 20 degree 3 loops, 10 degree 4 loops and 3 degree 5 loops. The following is a
list of these loops.

M2(1, 4; 6, 3) M2(2, 5; 4, 1) M2(3, 6; 5, 2)
M3(1, 2, 3; 2, 3, 1) M3(1, 2, 5; 6, 3, 1) M3(1, 2, 5; 6, 3, 4)
M3(1, 3, 4; 6, 2, 5) M3(1, 3, 5; 6, 2, 1) M3(1, 4, 3; 2, 3, 5)
M3(1, 6, 2; 3, 2, 4) M3(1, 6, 4; 3, 2, 5) M3(1, 6, 4; 6, 2, 5)
M3(1, 6, 5; 6, 2, 4) M3(2, 3, 6; 4, 1, 2) M3(2, 4, 3; 1, 3, 5)
M3(2, 5, 4; 3, 1, 6) M3(2, 5, 4; 3, 4, 6) M3(2, 6, 3; 1, 4, 5)
M3(2, 6, 4; 3, 4, 5) M3(3, 5, 4; 5, 1, 6) M3(3, 5, 6; 5, 1, 4)
M3(3, 6, 5; 1, 2, 4) M3(4, 5, 6; 5, 6, 4)
M4(1, 2, 3, 4; 6, 3, 1, 5) M4(1, 2, 6, 3; 2, 3, 4, 5) M4(1, 3, 2, 5; 6, 2, 1, 4)
M4(1, 3, 5, 4; 3, 2, 1, 6) M4(1, 5, 6, 3; 2, 6, 4, 5) M4(1, 6, 5, 4; 3, 2, 4, 6)
M4(1, 6, 5, 2; 3, 2, 4, 1) M4(2, 3, 6, 4; 3, 1, 2, 5) M4(2, 5, 4, 3; 1, 4, 6, 5)
M4(3, 6, 4, 5; 1, 2, 5, 6)
M5(1, 3, 2, 5, 4; 3, 2, 1, 4, 6) M5(1, 3, 2, 6, 4; 3, 2, 1, 4, 5) M5(1, 3, 5, 6, 4; 3, 2, 1, 4, 5)

This list is very confusing and we cannot recognize the structure of the basis at first sight. One
reason for the difficulty is that the above list is not minimal. (Note that the reduced Gröbner
basis may not be a minimal basis.) It can be easily checked that the loops of degree 4 and 5
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are not df 1. On the other hand, all the 20 loops of degree 3 are df 1. Hence from Theorem 1,
the above 3 basic moves and 20 degree 3 loops constitute the unique minimal Markov basis.

In Section 5, a simple algorithm to list all the elements of the unique minimal Markov basis
is given.

5 Algorithms for enumerating elements of a minimal ba-

sis

In this section, we discuss how to list all the elements of the unique minimal basis. As we have
seen, the elements of the unique minimal Markov basis have a simple structure described in
Lemma 2. Considering this structure, we have an explicit form of a minimal basis for some
typical situations, which play important roles in applications. We consider these special cases
first and then consider general cases.

Separable tables Separability is one of the most important concepts for analyzing incomplete
contingency tables. The definition of the separability is as follows (Mantel, 1970, Bishop et al.,
1975). In a two-way contingency table two cells are associated if they do not contain structural
zeros and if they are either in the same row or the same column. A set of non-structural zero
cells is connected if every pairs of cells can be linked by a chain of cells, any two consecutive
members of which must be associated. Finally, an incomplete two-way table is connected if its
non-structural zero cells form a connected set. An incomplete table that is not connected is said
to be separable. Separable two-way contingency tables can be rearranged to a block diagonal
form with connected subtables by permuting the rows and columns. Table 1 is an example of
separable table from Harris (1910). By permuting the rows and columns, we see that this table
is separable with exactly two connected subtables as displayed in Table 2.

Table 1: An example of a separable table:
Relationship between radial asymmetry and locular
composition in Staphylea (Series A of Harris, 1910)

locular coefficient of radial asymmetry
composition 0.00 0.47 0.82 0.94 1.25 1.41 1.63 1.70 1.89
3 even, 0 odd 462 [0] [0] 130 [0] [0] 2 [0] 1
2 even, 1 odd [0] 614 138 [0] 21 14 [0] 1 [0]
1 even, 2 odd [0] 443 95 [0] 22 8 [0] 5 [0]
0 even, 3 odd 103 [0] [0] 35 [0] [0] 1 [0] 0

We see easily that the minimal Markov basis for this example consists of basic moves only.
This is obvious from the fact that the two connected subtables do not contain structural zero
cells respectively. When the connected subtables contain some structural zero cells, the minimal
Markov basis for the whole table is a union of the minimal Markov bases for these subtables.
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Table 2: Data from Table 1 after rearrangement of rows and columns
locular coefficient of radial asymmetry
composition 0.00 0.94 1.63 1.89 0.47 0.82 1.25 1.41 1.70
3 even, 0 odd 462 130 2 1 [0] [0] [0] [0] [0]
0 even, 3 odd 103 35 1 0 [0] [0] [0] [0] [0]
2 even, 1 odd [0] [0] [0] [0] 614 138 21 14 1
1 even, 2 odd [0] [0] [0] [0] 443 95 22 8 5

For example, the minimal Markov basis for the following separable 6 × 7 contingency table

x11 x12 x13 [0] [0] [0] [0]
[0] [0] x23 x24 [0] [0] [0]
x31 x32 [0] x34 [0] [0] [0]
[0] [0] [0] [0] x45 x46 [0]
[0] [0] [0] [0] [0] x56 x57

[0] [0] [0] [0] x65 [0] x67

is the union of the minimal Markov basis for two subtables,

x11 x12 x13 [0]
[0] [0] x23 x24

x31 x32 [0] x34

and
x45 x46 [0]
[0] x56 x57

x65 [0] x67

.

We see it is {M2(1, 3; 1, 2), M3(1, 2, 3; 1, 3, 4), M3(1, 2, 3; 2, 3, 4), M3(4, 5, 6; 5, 6, 7)}.

Block triangular tables Another typical situation is that an incomplete table is in block
triangular form, i.e., after suitable permutation of rows and columns, (i, j) /∈ S implies (k, l) /∈ S
for all k ≥ i and l ≥ j (Goodman, 1968, Bishop et al., 1975). The following tables are examples
of block triangular tables.

x11 x12 x13 x14

x21 x22 x23 [0]
x31 x32 [0] [0]
x41 [0] [0] [0]

[0] [0] x13 x14

[0] [0] x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

x11 x12 x13 x14

[0] x22 x23 x24

[0] x32 x33 x34

[0] [0] x43 x44

[0] [0] x53 x54

Table 3 shows an example of a block triangle contingency table from Bishop and Fienberg
(1969). The minimal Markov bases for these tables are simple, i.e., the set of basic moves
constitutes the minimal Markov basis. Hence a Metropolis-Hasting sampling can be constructed
simply by choosing pairs of rows and columns, which intersect at non-structural zero cells.

Square tables with diagonal elements being structural zeros There are many situa-
tions that the contingency tables are square and all the diagonal elements are structural zero
cells. Table 4 is an example of such tables. It is obvious that the minimal Markov basis for
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Table 3: An example of a block triangular table:
Initial and final ratings on disability of stroke patients

final state
initial state A B C D E

E 11 23 12 15 8
D 9 10 4 1 [0]
C 6 4 4 [0] [0]
B 4 5 [0] [0] [0]
A 5 [0] [0] [0] [0]

Source: Bishop and Fienberg (1969).

Table 4: An example of a square table
with diagonal elements being structural zeros

passive participant
active participant R S T U V W

R [0] 1 5 8 9 0
S 29 [0] 14 46 4 0
T 0 0 [0] 0 0 0
U 2 3 1 [0] 28 2
V 0 0 0 0 [0] 1
W 9 25 4 6 13 [0]

Source: Ploog (1967).

such tables contains degree 3 loops which correspond to every triplet of the structural zeros.
For examples, degree 3 loops such as

[0] −1 +1 0 0 0
+1 [0] −1 0 0 0
−1 +1 [0] 0 0 0
0 0 0 [0] 0 0
0 0 0 0 [0] 0
0 0 0 0 0 [0]

or

[0] 0 0 0 0 0
0 [0] 0 0 +1 −1
0 0 [0] 0 0 0
0 0 0 [0] 0 0
0 −1 0 0 [0] +1
0 +1 0 0 −1 [0]

are needed to construct a connected Markov chain. It is seen that for I × I contingency tables,

there are

(
I
2

)(
I − 2

2

)
basic moves and

(
I
3

)
df 1 degree 3 loops in the minimal Markov

basis.
For such types of contingency tables, the hypothesis of quasi-symmetry is also of interest in

many situations (Smith et al., 1996). We also derive the unique minimal Markov basis for the
case of a quasi-symmetry hypothesis in Appendix.

General incomplete tables We have seen some typical situations which frequently appear
in applications. Now we give some rules and algorithms to list all the elements in the minimal
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Markov basis for arbitrary configuration of structural zeros. Table 5 is an example of incomplete
tables which cannot be categorized as any type discussed above. In view of Lemma 2, it may

Table 5: Classification of Purum marriages
Sib of husband

Sib of wife Marrim Makan Parpa Thao Kheyang
Marrim [0] 5 17 [0] 6
Makan 5 [0] 0 16 2
Parpa [0] 2 [0] 10 11
Thao 10 [0] [0] [0] 9
Kheyang 6 20 8 0 1

Source: White (1963), based on data of Das (1945).

be easy to list all the elements of the unique minimal basis for many situations, especially when
there are only a few structural zero cells.

It is also easy to obtain an upper bound of the degree of loops which is in the minimal
basis, simply by counting the number of structural zero cells in each row and column. It should
be noted that if the minimal Markov basis contains a degree r loop, then there are at least r
rows and r columns which have r − 2 structural zero cells. Hence for Table 5, we see that the
degree of the loops contained in the minimal Markov basis is at most 3. For these types of
contingency tables, simple enumeration algorithms may be effective. Indeed, for Table 5, we
see that M3(1, 2, 3; 2, 3, 4) is the only degree 3 loop in the minimal basis by considering every
triplet of structural zero cells located in distinct rows and columns.

In general, we can make use of the following recursive algorithm to list all the elements in the
minimal basis. This algorithm works especially well in some situations that the contingency
table is near separable, or semi-separable (Mantel, 1970), i.e., when the table can be made
separable into two or more connected subtables by the removal of a single row or a single
column. The following tables are examples of semi-separable tables.

(i)
x11 x12 [0] [0] [0]
x21 x22 [0] [0] x25

[0] [0] x33 x34 x35

[0] [0] x43 x44 [0]
[0] [0] x53 x54 x55

(ii)
x11 x12 [0] [0] [0]
x21 x22 [0] [0] [0]
[0] [0] x33 x34 x35

[0] [0] x43 x44 [0]
x51 x52 [0] x54 x55

We see that these tables are made to be separable by removal of (i) the row 2 or the column 5
and (ii) the row 5, respectively. Now we give a simple recursive algorithm.

Input: I0 = {1, . . . , I}, J0 = {1, . . . , J}, S
Output: elements of a minimal basis

ListMoves(I0; J0)

{
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Choose i∗ ∈ I0 and J∗ = {j | (i∗, j) ∈ S};
List df 1 moves which have ±1 elements in R(i∗; J∗);
ListMoves(I0 − {i∗}; J0);

}

To illustrate the meanings of this algorithm, we reanalyze the 6 × 6 example discussed in
Section 4, which is displayed below.

1 2 3 4 5 6
1 [0] x12 x13 [0] [0] x16

2 x21 [0] x23 x24 [0] [0]
3 x31 x32 [0] [0] x35 [0]
4 [0] [0] x43 [0] x45 x46

5 x51 [0] [0] x54 [0] x56

6 [0] x62 [0] x64 x65 [0]

It has been already mentioned that the minimal Markov basis for this table is a set of basic
moves and 20 degree 3 loops. To see this, first we choose i∗ = 1 and hence J∗ = {2, 3, 6}. We

also denote Ĩ = I0 − {i∗} = {2, 3, 4, 5, 6}, J̃ = J0 − J∗ = {1, 4, 5}.
J̃ J∗

1 4 5 2 3 6
i∗ 1 [0] [0] [0] x12 x13 x16

2 x21 x24 [0] [0] x23 [0]
3 x31 [0] x35 x32 [0] [0]

Ĩ 4 [0] [0] x45 [0] x43 x46

5 x51 x54 [0] [0] [0] x56

6 [0] x64 x65 x62 [0] [0]

Next step of the algorithm is to list all df 1 loops which have ±1 elements in R(i∗; J∗). It is easy

to do this because such loop has exactly one +1 and one −1 both in R(i∗; J∗) and R(Ĩ; J∗).
Hence we can list such loops by listing all pairs of columns in J∗. In this case,

• if select (2, 3) from J∗ then M3(1, 2, 3; 2, 3, 1), M3(1, 6, 2; 3, 2, 4), M3(1, 4, 3; 2, 3, 5) and
M3(1, 6, 4; 3, 2, 5) are listed,

• if select (2, 6) from J∗ then M3(1, 3, 4; 6, 2, 5), M3(1, 3, 5; 6, 2, 1), M3(1, 6, 4; 6, 2, 5) and
M3(1, 6, 5; 6, 2, 4) are listed,

• if select (3, 6) from J∗ then M2(1, 4; 6, 3), M3(1, 2, 5; 6, 3, 1) and M3(1, 2, 5; 6, 3, 4) are
listed.

These are all the df 1 loops which have ±1 in this i∗ = 1-th row. Now all we have to consider
is the subtable R(Ĩ; J0), to which we can apply the similar procedure, and finally the solution
described in Section 4 is given.

In general case, it is effective to select i∗ so that there are as many structural zero cells in
R(i∗; J0) as possible. Hence i∗ should be chosen as

i∗ = arg max
i

#{j | (i∗, j) /∈ S}.
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However, if the table is semi-separable, it is also effective to select i∗ so that the remaining
table R(Ĩ; J0) becomes separable.

6 Computational example

Using the Markov basis obtained above, we can perform various tests by the Monte Carlo
method. In this section, we show an example of testing the hypothesis of quasi-independence
for a given data set. Table 6 shows a data collected by Vidmar (1972) for discovering the possible
effects on decision making of limiting the number of alternatives available to the members of
a jury panel. This is a 4 × 7 contingency table which has 9 structural zero cells. The degrees

Table 6: Effects of decision alternatives on the verdicts
and social perceptions of simulated jurors

condition
alternative 1 2 3 4 5 6 7
first-degree 11 [0] [0] 2 7 [0] 2
second-degree [0] 20 [0] 22 [0] 11 15
manslaughter [0] [0] 22 [0] 16 13 5
not guilty 13 4 2 0 1 0 2

Source: Vidmar (1972).

of freedom for testing quasi-independence is 9. The maximum likelihood estimate under the
hypothesis of quasi-independence is calculated by iterative method as displayed in Table 7. See
Bishop et al.(1975) for maximum likelihood estimation of incomplete tables.

Table 7: Maximum likelihood estimate for Table 6
condition

alternative 1 2 3 4 5 6 7
first-degree 14.05 [0] [0] 2.61 3.64 [0] 1.70
second-degree [0] 21.93 [0] 19.55 [0] 13.75 12.77
manslaughter [0] [0] 20.95 [0] 17.78 8.95 8.32
not guilty 9.95 2.07 3.05 1.84 2.58 1.30 1.21

As the discrepancy measure from the hypothesis of quasi-independence, we use the likelihood-
ratio statistic

G2 = 2
∑

S

xij log
xij

m̂ij

,

where m̂ij is the MLE of the expectation parameter mij . The observed value of G2 is 18.816
and the corresponding asymptotic p value is 0.0268 from the asymptotic distribution χ2

9.
To perform the Markov chain Monte Carlo method, first we obtain the minimal Markov

basis. From the considerations in the above sections, we see easily that a set of basic moves and
a degree 3 loop M3(1, 2, 3; 5, 4, 6) constitute the unique minimal Markov basis. Using this basis,
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we construct a connected chain, which is modified so as to have the null distribution (2) as
the stationary distribution by the Metropolis-Hasting procedure. The estimated exact p value
is 0.0444, with estimated standard deviation 0.00052. (We use a batching method to obtain
an estimate of variance. See Hastings, 1970, or Ripley, 1987.) Figure 1 shows a histogram of
the Monte Carlo sampling generated from the exact distribution of the likelihood ratio statistic
under the quasi-independence hypothesis, along with the corresponding asymptotic distribution
χ2

9. We see that the asymptotic distribution understates the probability that the test statistic

0
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Figure 1: Asymptotic and Monte Carlo estimated exact distribution
for the likelihood ratio statistic under the quasi-independence model

is greater than the observed value, and overemphasize the significance.

7 Basis reduction for the case of positive marginals

The minimality of the basis considered in the previous sections is based on the condition that
the values of the marginal totals are arbitrary. However, for performing exact conditional tests
to a given data set, we can assume without loss of generality that xi·, x·j > 0 for all i, j because
all cell values in rows or columns with zero marginals are necessarily zeros and such rows or
columns can be ignored in the conditional analysis.

Under the assumption of positive marginal totals, there may be cases, where some elements
of the minimal basis obtained in Section 4 are not needed to construct a connected chain.
Therefore it is worth investigating further reduction of the minimal basis to F({xi·}, {x·j}, S)
for fixed positive values of xi· and x·j. From practical viewpoint it is important to give a
sufficient condition on xi· and x·j , such that a df 1 loop of degree r ≥ 3 can be replaced by a
series of basic moves. A simple example is the following 3 × 4 contingency table.

[0] x12 x13 x14

x21 [0] x23 x24

x31 x32 [0] x34
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From the considerations of Section 4, we know that the 4 loops, M2(1, 3; 2, 4), M2(1, 2; 3, 4),
M2(2, 3; 1, 4) and M3(1, 3, 2; 3, 2, 1), constitute the unique minimal Markov basis. They are
displayed as follows.

0 +1 0 −1
0 0 0 0
0 −1 0 +1

,
0 0 +1 −1
0 0 −1 +1
0 0 0 0

,
0 0 0 0

+1 0 0 −1
−1 0 0 +1

,
0 −1 +1 0

+1 0 −1 0
−1 +1 0 0

.

However, under the assumption that all the marginal totals are positive, it is shown that
M3(1, 3, 2; 3, 2, 1) is not needed to construct a connected chain. To see this, suppose 3×4 tables
X, X ′ are in F({xi·}, {x·j}, S = {(1, 1), (2, 2), (3, 3)}) and X ′−X = M3(1, 3, 2; 3, 2, 1). In this
case, two states X and X ′ are mutually reachable by adding or subtracting M3(1, 3, 2; 3, 2, 1).
These two states can be written as

X =
[0] a1 + 1 a2 a3

a4 [0] a5 + 1 a6

a7 + 1 a8 [0] a9

and X ′ =
[0] a1 a2 + 1 a3

a4 + 1 [0] a5 a6

a7 a8 + 1 [0] a9

where a1, . . . , a9 ∈ N. Here an important point is that at least one of a3, a6, a9 is positive because
x·4 > 0. Then we can add or subtract the above 3 basic moves one by one in appropriate order
to X to reach X ′. We show this procedure in the following when a3 ≥ 1.

X =
[0] a1 + 1 a2 a3(≥ 1)
a4 [0] a5 + 1 a6

a7 + 1 a8 [0] a9

−→
+M2(1, 2; 3, 4)

[0] a1 + 1 a2 + 1 a3 − 1
a4 [0] a5 a6 + 1

a7 + 1 a8 [0] a9

−→
+M2(2, 3; 1, 4)

[0] a1 + 1 a2 + 1 a3 − 1
a4 + 1 [0] a5 a6

a7 a8 [0] a9 + 1

−→
−M2(1, 3; 2, 4)

[0] a1 a2 + 1 a3

a4 + 1 [0] a5 a6

a7 a8 + 1 [0] a9

= X ′

The above consideration gives a decomposition of a df 1 degree r loop into r basic moves,
by using one additional row or column. If this row or column is known to contain at least
one positive cell, a connected chain can simply be constructed by using basic moves, instead of
using this degree r loop.

We summarize the above consideration in the following lemma.

Lemma 3 Under the assumption of positive marginals, a df 1 loop Mr(i1, . . . , ir; j1, . . . , jr), r ≥
3, can be replaced by a series of basic moves, if one of the following conditions is satisfied.

(a) There exists i∗ �= ik, 1 ≤ k ≤ r, such that (i∗, jk) ∈ S for all k = 1, . . . , r and xi∗· >
∑
j∈A

x·j
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where A = {j | j �= jk, 1 ≤ k ≤ r and xi∗j ∈ S}.

(b) There exists j∗ �= jk, 1 ≤ k ≤ r, such that (ik, j
∗) ∈ S for all k = 1, . . . , r and x·j∗ >

∑
i∈A

xi·

where A = {i | i �= ik, 1 ≤ k ≤ r and xij∗ ∈ S}.

Proof. It is sufficient to show the lemma for the case (a). It holds that

Mr(i1, . . . , ir; j1, . . . , jr) =
r−1∑
t=1

M2(it, i
∗; it, it+1) + M2(ir, i

∗; ir, 1). (7)

It should be noted that the r basic moves of the right hand side constitute a cycle, of which
the consecutive two basic moves have only one nonzero cell in common. Moreover, at least
one of xi∗j1 , xi∗j2, . . . , xi∗jr have to be positive for all the elements in F({xi·}, {x·j}, S) from
the positiveness of xi∗·, x·j. Hence we can add or subtract these r basic moves one by one to
or from X ∈ F({xi·}, {x·j}, S) without forcing negative entries on the way, instead of using
Mr(i1, . . . , ir; j1, . . . , jr). Q.E.D.

To illustrate the argument of this lemma, let M4(1, 2, 3, 4; 1, 2, 3, 4) be df 1 loop and and for
example let i∗ = 5 satisfy the condition (a). Then the decomposition (7) is written as

M4(1, 2, 3, 4; 1, 2, 3, 4) = M2(1, 5; 1, 2) + M2(2, 5; 2, 3) + M2(3, 5; 3, 4) + M2(4, 5; 4, 1). (8)

In the case of I = 5, J = 4, this is displayed as

+1 −1 [0] [0]
[0] +1 −1 [0]
[0] [0] +1 −1
−1 [0] [0] +1
0 0 0 0

=

+1 −1 [0] [0]
[0] 0 0 [0]
[0] [0] 0 0
0 [0] [0] 0
−1 +1 0 0

+

0 0 [0] [0]
[0] +1 −1 [0]
[0] [0] 0 0
0 [0] [0] 0
0 −1 +1 0

+

0 0 [0] [0]
[0] 0 0 [0]
[0] [0] +1 −1
0 [0] [0] 0
0 0 −1 +1

+

0 0 [0] [0]
[0] 0 0 [0]
[0] [0] 0 0
−1 [0] [0] +1
+1 0 0 −1

.

It should be noted that, in the above example, A = ∅ in the condition (a) and hence at least
one of x51, . . . , x54 must be positive from x5· > 0. Now consider adding M4(1, 2, 3, 4; 1, 2, 3, 4) to
some X ∈ F({xi·}, {x·j}, S). If X +M4(1, 2, 3, 4; 1, 2, 3, 4) is again in F({xi·}, {x·j}, S), at least
4 entries of X, x12, x23, x34, x41, must be positive. Then if at least one of x51, . . . , x54 is positive,
we can add some basic moves in the right hand side of (8). Suppose x52 > 0, for example, then
X + M2(2, 5; 2, 3) ∈ F({xi·}, {x·j}, S) holds. Now the (5, 3) element of X + M2(2, 5; 2, 3) is
positive, hence next basic move, M2(3, 5; 3, 4), can be added without forcing negative entries.
In the similar way, we can add all the basic moves in the right hand side of (7) without forcing
negative entries and df 1 loop Mr(i1, . . . , ir; j1, . . . , jr) is shown to be redundant.
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We now consider another case not covered by Lemma 3. The following display is df 1
degree 3 loop M 3(1, 2, 3, 2, 3, 1) in 5×5 square contingency table with diagonal elements being
structural zeros.

[0] +1 −1 0 0
−1 [0] +1 0 0
+1 −1 [0] 0 0
0 0 0 [0] 0
0 0 0 0 [0]

Of course, we can decompose this loop to 3 basic moves as directed in Lemma 3 as

M 3(1, 2, 3; 2, 3, 1) =

[0] +1 −1 0 0
0 [0] 0 0 0
0 0 [0] 0 0
0 −1 +1 [0] 0
0 0 0 0 [0]

+

[0] 0 0 0 0
−1 [0] +1 0 0
0 0 [0] 0 0

+1 0 −1 [0] 0
0 0 0 0 [0]

+

[0] 0 0 0 0
0 [0] 0 0 0

+1 −1 [0] 0 0
−1 +1 0 [0] 0
0 0 0 0 [0]

.

However, it is not guaranteed that we can apply some of the above basic moves to every state
which satisfies either of x12, x23, x31 > 0 or x13, x21, x32 > 0, because we cannot exclude the
possibility that x41 = x42 = x43 = 0 even under the assumption of positive marginals. To deal
with such cases, we give another decomposition of df 1 degree r loop into r + 1 basic moves in
the next lemma.

Lemma 4 Under the assumption of positive marginals, a df 1 loop Mr(i1, . . . , ir; j1, . . . , jr), r ≥
3, can be replaced by a series of basic moves, if one of the following conditions is satisfied.

(a) There exists i∗ �= ik, 1 ≤ k ≤ r, such that (i∗, jk) ∈ S for all k = 1, . . . , r and for all j such
that (i∗, j) ∈ S, j �= jk, k = 1, . . . , r, there exists i(j) ∈ {i1, . . . , ir} such that (i(j), j) ∈ S.

(b) There exists j∗ �= jk, 1 ≤ k ≤ r, such that (ik, j
∗) ∈ S for all k = 1, . . . , r and for all i such

that (i, j∗) ∈ S, i �= ik, k = 1, . . . , r, there exists j(i) ∈ {j1, . . . , jr} such that (i, j(i)) ∈ S.

Proof. It is again sufficient to show the lemma for (a). Suppose that both X and X +
Mr(i1, . . . , ir; j1, . . . , jr) are in F({xi·}, {x·j}, S). If this X has some positive entries at (i∗, j1), . . . ,
(i∗, jr), the decomposition in Lemma 3 can be applied and Mr(i1, . . . , ir; j1, . . . , jr) can be re-
placed by r basic moves. Hence it is sufficient to consider the case of xi∗j1 + · · ·+ xi∗jr = 0. In
this case, there exists some j �= jk, k = 1, . . . , r, such that xi∗j > 0, (i∗, j) ∈ S from xi∗· > 0.
We denote this j by j∗. Now from the condition (a), there exists some i ∈ {i1, . . . , ir} such that
(i, j∗) ∈ S. We assume that i1 satisfies this condition without loss of generality. Here, consider
the following decomposition

Mr(i1, . . . , ir; j1, . . . , jr) = M2(i1, i
∗; j1, j

∗)+M2(i1, i
∗; j∗, j2)+

r−1∑
t=2

M2(it, i
∗; it, it+1)+M2(ir, i

∗; ir, j1).

It is again observed that the r + 1 basic moves of the right hand side constitute a cycle, of
which the consecutive two basic moves have only one nonzero cell in common. Moreover, since
xi∗j∗ > 0, X + M2(i1, i

∗; j∗, j2) is in F({xi·}, {x·j}, S). From these considerations, we can add
these r + 1 basic moves one by one to X without forcing negative entries on the way, instead
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of adding Mr(i1, . . . , ir; j1, . . . , jr) to X , and the lemma is proved. Q.E.D.

An example of the decomposition of M4(1, 2, 3, 4; 1, 2, 3, 4) is displayed as follows.

+1 −1 [0] [0] 0
[0] +1 −1 [0] [0]
[0] [0] +1 −1 [0]
−1 [0] [0] +1 [0]
0 0 0 0 0

=

+1 0 [0] [0] −1
[0] 0 0 [0] [0]
[0] [0] 0 0 [0]
0 [0] [0] 0 [0]
−1 0 0 0 +1

+

0 −1 [0] [0] +1
[0] 0 0 [0] [0]
[0] [0] 0 0 [0]
0 [0] [0] 0 [0]
0 +1 0 0 −1

+

0 0 [0] [0] 0
[0] +1 −1 [0] [0]
[0] [0] 0 0 [0]
0 [0] [0] 0 [0]
0 −1 +1 0 0

+

0 0 [0] [0] 0
[0] 0 0 [0] [0]
[0] [0] +1 −1 [0]
0 [0] [0] 0 [0]
0 0 −1 +1 0

+

0 0 [0] [0] 0
[0] 0 0 [0] [0]
[0] [0] 0 0 [0]
−1 [0] [0] +1 [0]
+1 0 0 −1 0

Lemma 3 and 4 are concerned with replacing a particular degree r loop by a series of basic
moves. We now consider the case, where all loops of degree r ≥ 3 can be replaced by basic
moves, so that a connected Markov chain over F({xi·}, {x·j}, S) can be constructed by basic
moves only.

Following Smith et al. (1996), consider the situation that the contingency table is I × I and
the diagonal cells are structural zeros. By symmetry and as a direct consequence of Lemma
3, we see that the set of basic moves are sufficient to construct a connected chain under the
assumption of positive marginals for 4 × 4 contingency tables with diagonal elements being
structural zeros. For the case of I ≥ 5, we see that the degree 3 loop M3(1, 2, 3; 2, 3, 4) in Table
5 satisfies the condition of Lemma 4. Considering the symmetry again, we see the set of basic
moves constitutes a connected Markov chain. Therefore we obtain the following corollary to
Lemma 4.

Corollary 1 A connected chain can be constructed by a set of basic moves for I×I contingency
tables, I ≥ 4, with only diagonal elements being structural zeros under the assumption of positive
marginals.

Lemma 3 and Lemma 4 give convenient sufficient conditions that a df 1 loop of degree r ≥ 3
can be replaced by a series of basic moves. Hence for the situations that do not satisfy the
conditions of Lemma 3 nor Lemma 4, we may have to use df 1 loops of degree r ≥ 3, to ensure
the connectivity of the chain. To demonstrate the importance of the minimal basis, we give an
example where the set of the basic moves does not constitute a connected chain even if all the
marginals are positive as follows.

x11 x12 [0] x14 1
[0] x22 x23 x24 1
x31 [0] x33 [0] 1
[0] x42 x43 x44 1
1 1 1 1
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In this case, there are 6 elements in F({xi·}, {x·j}, S) displayed as

F({xi·}, {x·j}, S)

=


1 0 [0] 0
[0] 1 0 0
0 [0] 1 [0]
[0] 0 0 1

,

1 0 [0] 0
[0] 0 0 1
0 [0] 1 [0]
[0] 1 0 0

,

0 1 [0] 0
[0] 0 1 0
1 [0] 0 [0]
[0] 0 0 1

,

0 1 [0] 0
[0] 0 0 1
1 [0] 0 [0]
[0] 0 1 0

,

0 0 [0] 1
[0] 1 0 0
1 [0] 0 [0]
[0] 0 1 0

,

0 0 [0] 1
[0] 0 1 0
1 [0] 0 0
[0] 1 0 0

 .

We see that these 6 elements are not mutually reachable simply by the basic moves. To connect
all the elements, we have to use degree 3 loops.

Conversely, when some of the conditions of Lemma 3 or 4 are satisfied, there is a possibility
that we do not have to consider all the elements of the minimal basis. For example, if we can per-
mute rows and columns to {I1, I2}, {J1, J2}, where the elements of R(I1; J2), R(I2; J1), R(I2; J2)
are all in S and there are at least one cells of S in every row and column of R(I1; J1), we know
that a set of basic moves constitutes a connected Markov chain regardless of the remaining
pattern of R(I1; J1).

8 Conclusion

As we mentioned in the introduction, a Markov chain Monte Carlo approach is extensively
used in various settings of contingency tables. In our analysis of an example data displayed
in Table 6, the asymptotic goodness-of-fit test overemphasizes the significance of the data and
is misleading. Indeed, for many sparse tables where large sample theory does not work well,
a Markov chain Monte Carlo method is a valuable tool to calculate p values for various test
statistics. To construct a connected chain, a concept of the Markov basis described in this
paper is essential. In this paper, we give an explicit characterization of the elements of the
unique minimal Markov basis for arbitrary configurations of structural zero cells. Using the
algorithm described in Section 5, we can easily obtain all the elements of the minimal basis for
various problems, and we can implement a Markov chain Monte Carlo program for calculating
exact p values for various test statistics. Moreover, the basis reduction described in Section 7
makes the algorithm very brief for many problems. Our experience shows that there are many
problems where the set of basic moves constitutes a connected chain. For these problems, a
Markov chain Monte Carlo algorithm is simply implemented by choosing pairs of rows and
columns randomly.
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Appendix: Minimal Markov basis for the hypothesis of

quasi-symmetry

For some types of square contingency tables, the hypothesis of quasi-symmetry is of interest
(Bishop et al., 1975, for example). Quasi-symmetry corresponds to symmetric off-diagonal
association, which implies that the interaction parameters in a log-linear model for symmetri-
cally opposite cells are equal, but makes no assumption on the diagonal interaction parameters.
Hence it is represented as H1 : γij = γji, i �= j in the log-linear model (1). Quasi-symmetry
model is also related to Bradley-Terry model.

For the quasi-symmetry hypothesis, an exact conditional test can also be constructed (Smith
et al., 1996). For this case, a sufficient statistic is {xi·}, {x·j}, {xij + xji} and the conditional
distribution is proportional to

∏
ij(xij !)

−1. See Smith et al. (1996) for detail.
To perform the exact tests of quasi-symmetry, the Markov chain Monte Carlo approach is

also useful if a complete enumeration is infeasible. In this case, a connected Markov chain over
the reference set

F({xi·}, {x·j}, {xij + xji}) =

{
Y

∣∣∣∣∣
J∑

j=1

yij = xi·,
I∑

i=1

yij = x·j , yij + yji = xij + xji, yij ∈ N

}
can be modified to give a connected and aperiodic Markov chain with stationary distribution
as the conditional null distribution under the quasi-symmetry hypothesis by the Metropolis
procedure. Similarly to the quasi-independence hypothesis, our interest is a minimal basis for
a connected chain over F({xi·}, {x·j}, {xij + xji}). The result is summarized as follows.

Definition 4 A loop of degree r is an I ×I contingency table M∗
r (i1, . . . , ir), 1 ≤ i1, . . . , ir ≤ I,

where M∗
r (i1, . . . , ir) has the elements

m∗
i1i2 = m∗

i2i3 = · · · = m∗
ir−1ir = m∗

iri1 = +1,

m∗
i2i1 = m∗

i3i2 = · · · = m∗
irir−1

= m∗
i1ir = −1,

and all the other elements are zero. Specifically, we call degree 3 loop M∗
3 (i1, i2, i3) a basic move.

Theorem 2 The set of the loops described in Definition 4 of degree r = 3, . . . , I constitutes a
unique minimal Markov basis for I×I contingency tables under the quasi-symmetry hypothesis.

That the set of loops described above is a Markov basis is straightforward. Uniqueness and
minimality is due to the fact that M∗

r (i1, . . . , ir) can be written as the difference of the elements
of F({xi·}, {x·j}, {xij + xji}) which is a two-elements set.

We have the relations

M∗
r (i1, . . . , ir) = M∗

r (i2, i3, . . . , ir, i1) = −M∗
r (i1, ir, ir−1, . . . , i2)

and there are
I∑

r=3

I(I − 1)(I − 2) · · · (I − r + 1)

2r

loops in the minimal Markov basis for I × I case. Hence the algorithm can be constructed
simply by generating a sequence i1 · · · ir, 3 ≤ r ≤ I randomly.

Similarly to Section 7, a basis reduction is also possible if all the sufficient statistics are
positive.
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Lemma 5 If xi·, x·j > 0 for all i, j and xij + xji > 0 for all i �= j, the set of basic moves
M∗

3 (i1, i2, i3) constitutes a connected chain.

This lemma follows from the decomposition

M∗
r (i1, . . . , ir) = M∗

a (i1, . . . , ia) + M∗
r−a+2(ia, ia+1, . . . , ir, i1),

because the two loops of the right hand side have only two nonzero cells m∗
iai1 , m

∗
i1ia in common

and at least one of xi1ia and xiai1 is positive for every element in F({xi·}, {x·j}, {xij + xji})
since xij + xji > 0.
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