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Abstract

By extracting combinatorial structures in well-solved nonlinear combinatorial optimization

problems, Murota (1996,1998) introduced the concepts of M-convexity and L-convexity to

functions defined over the integer lattice. Recently, Murota–Shioura (2000, 2001) extended

these concepts to polyhedral convex functions and quadratic functions defined over the

real space. In this paper, we consider a further extension to more general convex functions

defined over the real space. The main aim of this paper is to provide rigorous proofs for

the fundamental results of general M-convex and L-convex functions over the real space.

In particular, we prove that the conjugacy relationship holds for general M-convex and

L-convex functions over the real space.
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1 Introduction

Combinatorial optimization problems with nonlinear objective functions have been dealt with more

often than before due to theoretical interest and needs of practical applications. Extensive studies

have been done for revealing the essence of the well-solvability in nonlinear combinatorial optimiza-

tion problems [3, 5, 13, 16, 17, 29]. By extracting combinatorial structures in well-solved nonlinear

combinatorial optimization problems, Murota [18, 19] introduced the concepts of M-convexity and L-

convexity to functions defined over the integer lattice; subsequently, their variants called M \-convexity

and L\-convexity were introduced by Murota–Shioura [23] and by Fujishige–Murota [10], respectively.

Applications of M-/L-convexity can be found in mathematical economics with indivisible commodities

[4, 26, 27], system analysis by mixed polynomial matrices [20], etc. Recently, Murota–Shioura [24, 25]

extended these concepts to polyhedral convex functions and quadratic functions defined over the real

space. In this paper, we consider a further extension to more general convex functions defined over

the real space. The main aim of this paper is to provide rigorous proofs for the fundamental results

of general M-convex and L-convex functions over the real space.

The concepts of M-convexity and L-convexity are defined for polyhedral convex functions and

quadratic functions as follows. A polyhedral convex function (or quadratic function) f : R n →

R ∪ {+∞} is said to be M-convex if dom f 6= ∅ and f satisfies (M-EXC):

(M-EXC) ∀x, y ∈ dom f , ∀i ∈ supp+(x− y), ∃j ∈ supp−(x− y), ∃α0 > 0:

f(x) + f(y) ≥ f(x− α(χi − χj)) + f(y + α(χi − χj)) (∀α ∈ [0, α0]),

where supp+(x − y) = {i | x(i) > y(i)} and supp−(x − y) = {i | x(i) < y(i)}, and χi ∈ {0, 1}n

is the i-th unit vector for i = 1, 2, · · · , n. A polyhedral convex function (or quadratic function)

f : Rn → R ∪ {+∞} is said to be M\-convex if the function f̂ : R ×Rn → R ∪ {+∞} defined by

f̂(x0, x) =

{
f(x) ((x0, x) ∈ R× Rn, x0 = −

∑n
i=1 x(i)),

+∞ (otherwise)

is M-convex. On the other hand, a polyhedral convex function (or quadratic function) g : Rn →

R ∪ {+∞} is said to be L-convex if dom g 6= ∅ and g satisfies (LF1) and (LF2):

(LF1) g(p) + g(q) ≥ g(p∧ q) + g(p∨ q) (∀p, q ∈ dom g),

(LF2) ∃r ∈ R such that g(p+ λ1) = g(p) + λr (∀p ∈ dom g, λ ∈ R),

and L\-convex if the function ĝ : R ×Rn → R ∪ {+∞} defined by

ĝ(p0, p) = g(p− p01) ((p0, p) ∈ R×Rn)

is L-convex.

To fully cover the well-solved nonlinear combinatorial optimization problems, it is desirable to

further extend these concepts to more general convex functions defined over the real space on the

basis of (M-EXC), and (LF1) and (LF2), respectively. It can be easily imagined that the previous
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results of M-/L-convexity for polyhedral convex functions and quadratic functions naturally extend to

more general M-/L-convex functions. However, the proofs cannot be extended so directly to general

M-/L-convex functions, but some technical difficulties such as topological issues arise. By taking

such technical difficulties into consideration, we define M-convex and L-convex functions over the real

space as closed proper convex functions satisfying (M-EXC), and (LF1) and (LF2), respectively. The

contribution of this paper is to provide rigorous proofs of the fundamental results of general M-convex

and L-convex functions over the real space. In particular, we prove that the conjugacy relationship

holds for general M-convex and L-convex functions over the real space, as in the cases of functions

over the integer lattice [19], polyhedral convex functions [24], and quadratic functions [25].

Theorem 1.1. For f : Rn → R ∪ {+∞} with dom f 6= ∅, define its conjugate function f• : Rn →

R ∪ {+∞} by

f•(p) = sup{
n∑

i=1

p(i)x(i)− f(x) | x ∈ Rn} (p ∈ Rn).

(i) If f is M-convex, then f • is L-convex and (f •)• = f .

(ii) If g is L-convex, then g • is M-convex and (g•)• = g.

(iii) The mappings f 7→ f • (f : M-convex) and g 7→ g• (g : L-convex) provide a one-to-one correspon-

dence between the classes of M-convex and L-convex functions, and are the inverse of each other.

The organization of this paper is as follows. Section 2 provides a number of natural classes of

M-/M\-convex and L-/L\-convex functions. To develop the theory of M-/L-convexity, we also consider

the set version of M-/L-convexity in addition to M-/L-convex functions. In Sections 3.2 and 4.2. we

give definitions of M-convex and L-convex sets, and show that these sets are in fact polyhedra. We also

investigate positively homogeneous M-/L-convex functions, which are shown to be polyhedral convex

functions. Fundamental properties of M-/L-convex functions are shown in Sections 3.3 and 4.3. We

present equivalent axioms for M-/L-convex functions, and give some properties on local combinatorial

structure of M-/L-convex functions such as directional derivatives, subdifferentials, minimizers, etc.

Finally, the conjugacy relationship between M-/L-convexity is shown in Section 5.
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2 Preliminaries

2.1 Notation and Definitions

Throughout this paper, we assume that n is a positive integer, and put N = {1, 2, . . . , n}. The

cardinality of a finite set X is denoted by |X |. The characteristic vector of a subset X ⊆ N is denoted

by χX (∈ {0, 1}n), i.e., χX(i) = 1 for i ∈ X and χX(i) = 0 for i ∈ N \X . We denote 0 = χ∅, 1 = χN .

The set of reals and the set of nonnegative reals are denoted by R and by R+, respectively. For

x = (x(i) | i = 1, 2, . . . , n) ∈ Rn, we define

supp+(x) = {i ∈ N | x(i) > 0}, supp−(x) = {i ∈ N | x(i) < 0},

‖x‖1 =

n∑

i=1

|x(i)|, 〈p, x〉 =

n∑

i=1

p(i)x(i) (p ∈ Rn), x(X) =
∑

i∈X

x(i) (X ⊆ N).

For p, q ∈ Rn, we define p ∧ q, p∨ q ∈ Rn by

(p∧ q)(i) = min{p(i), q(i)}, (p ∨ q)(i) = max{p(i), q(i)} (i ∈ N).

For α ∈ R ∪ {−∞} and β ∈ R ∪ {+∞} with α ≤ β, we define the intervals [α, β] = {γ ∈ R | α ≤

γ ≤ β}, (α, β) = {γ ∈ R | α < γ < β}, and [α, β) = {γ ∈ R | α ≤ γ < β}.

A set S ⊆ Rn is said to be convex if it satisfies

(1 − α)x+ αy ∈ S (∀x, y ∈ S, ∀α ∈ [0, 1]),

and polyhedral if there exist some {pi}
k
i=1 (⊆ Rn) and {αi}

k
i=1 (⊆ R) (k ≥ 0) such that

S = {x ∈ Rn | 〈pi, x〉 ≤ αi (i = 1, 2, . . . , k)}.

A polyhedral set is also called a polyhedron.

Let f : Rn → R ∪ {±∞} be a function. The effective domain and the epigraph of f , denoted by

dom f and epif , respectively, are given by

dom f = {x ∈ Rn | −∞ < f(x) < +∞}, epif = {(x, α) ∈ Rn ×R | α ≥ f(x)}.

We denote by argmin f the set of minimizers of f , i.e., arg min f = {x ∈ Rn | f(x) ≤ f(y) (∀y ∈ Rn)},

which can be an empty set.

A function f : Rn → R ∪ {+∞} is said to be convex if epif is a convex set. If f > −∞, then f is

convex if and only if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) (∀x, y ∈ Rn, ∀α ∈ [0, 1]). (2.1)

In contrast to (2.1), we consider the following weaker condition:

f((x+ y)/2) ≤ {f(x) + f(y)}/2 (∀x, y ∈ Rn), (2.2)

called mid-point convexity. For a continuous function, mid-point convexity (2.2) is equivalent to

convexity (2.1).
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Remark 2.1. Mid-point convexity does not imply convexity in general. Let ϕ : R → R be a function

satisfying so-called Jensen’s equation:

ϕ(α) + ϕ(β) = 2ϕ((α+ β)/2) (∀α, β ∈ R). (2.3)

It is known that there are discontinuous and nonconvex functions satisfying Jensen’s equation (see,

e.g., [1, pp. 43–48], [30, p. 217]). Such a function ϕ is mid-point convex, but not convex.

For any set S ⊆ Rn, its indicator function δS : Rn → {0,+∞} is defined by

δS(x) =

{
0 (x ∈ S),

+∞ (x 6∈ S).

Note that S is a convex set if and only if δS is a convex function.

A convex function f : Rn → R ∪ {+∞} is said to be proper if dom f 6= ∅, and closed if its

epigraph epif is a closed set. For a closed proper convex function f : Rn → R ∪ {+∞}, any level

set {x ∈ Rn | f(x) ≤ η} (η ∈ R) is a closed set, and argmin f 6= ∅ if dom f is bounded. A convex

function is said to be polyhedral if its epigraph is polyhedral. Any polyhedral convex function is closed

convex.

A function f : Rn → R ∪ {±∞} is said to be positively homogeneous if

f(αx) = αf(x) (∀x ∈ Rn, ∀α > 0).

For a positively homogeneous convex function f with dom f 6= ∅, we have f(0) = 0 and

f(αx+ βy) ≤ αf(x) + βf(y) (∀x, y ∈ Rn, ∀α, β ∈ R+).

For a function f : Rn → R ∪ {±∞}, x ∈ dom f , and y ∈ Rn, we define the directional derivative

of f at x with respect to y by

f ′(x; y) = lim
α↓0

{f(x+ αy) − f(x)}/α

if the limit exists. If f is a convex function, then f ′(x; y) is well-defined and a positively homogeneous

convex function in y with f ′(x; 0) = 0. For a convex function f : Rn → R ∪ {+∞} and x ∈ dom f ,

the subdifferential of f at x, denoted by ∂f(x), is defined as

∂f(x) = {p ∈ Rn | f(y) ≥ f(x) + 〈p, y − x〉 (∀y ∈ Rn)}.

2.2 Examples

M-/M\-convex and L-/L\-convex functions have rich examples.

Example 2.2 (affine functions). For p0 ∈ Rn and β ∈ R, the function f : Rn → R ∪ {+∞} given

by

f(x) = 〈p0, x〉+ β (x ∈ dom f)
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is M-convex or M\-convex according as dom f = {x ∈ Rn |
∑n

i=1 x(i) = 0} or dom f = Rn.

For x0 ∈ Rn and ν ∈ R, the function g : Rn → R ∪ {+∞} given by

g(p) = 〈p, x0〉 + ν (p ∈ Rn)

is L-convex as well as L\-convex.

We denote by C1 the class of univariate closed proper convex functions, i.e.,

C1 = {ϕ : R → R ∪ {+∞} | ϕ : closed proper convex}.

Example 2.3. For ϕ, ψ ∈ C 1, the functions f, g : R2 → R ∪ {+∞} given by

dom f = {(x1, x2) ∈ Rn | x1 + x2 = 0}, f(x1, x2) = ϕ(x1) ((x1, x2) ∈ dom f), (2.4)

g(p1, p2) = ψ(p1 − p2) ((p1, p2) ∈ R2) (2.5)

are M-convex and L-convex, respectively. Moreover, if ϕ and ψ are conjugate to each other, then f

and g are conjugate to each other.

Example 2.4 (separable-convex functions). Let fi ∈ C1 (i = 1, 2, . . . , n) be a family of univariate

convex functions. The function f : Rn → R ∪ {+∞} defined by

f(x) =

n∑

i=1

fi(x(i)) (x ∈ Rn)

is M\-convex as well as L\-convex. The restriction of f over the hyperplane {x ∈ Rn |
∑n

i=1 x(i) = 0}

is M-convex if its effective domain is nonempty.

For functions gij ∈ C1 indexed by i, j ∈ {1, 2, . . . , n}, the function g : Rn → R∪ {+∞} defined by

g(p) =
n∑

i=1

n∑

j=1

gij(p(j)− p(i)) (p ∈ Rn)

is L-convex with r = 0 in (LF2) if dom g 6= ∅.

Example 2.5 (quadratic functions). Let A = (a(i, j))n
i,j=1 ∈ Rn×n be a symmetric matrix. Define

a quadratic function f : Rn → R by f(x) = (1/2)xTAx (x ∈ Rn). Then, f is M\-convex if and only if

xTai ≥ min{xTaj | j ∈ supp−(x)} (∀x ∈ Rn, ∀i ∈ supp+(x)),

where ai denotes the i-th column of A for i = 1, 2, . . . , n. The function f is L \-convex if and only if

a(i, j) ≤ 0 (∀i, j, i 6= j),

n∑

i=1

a(i, j) ≥ 0 (∀j = 1, 2, . . . , n).

See [25] for proofs.
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Example 2.6 (minimum cost flow/tension problems). M-convex and L-convex functions arise

from the minimum cost flow/tension problems with nonlinear cost functions.

Let G = (V,A) be a directed graph with a specified vertex subset T ⊆ V . Suppose that we are

given a family of convex functions fa ∈ C1 (a ∈ A), each of which represents the cost of flow on the

arc a. A vector ξ ∈ RA is called a flow, and the boundary ∂ξ ∈ RV of a flow ξ is given by

∂ξ(v) =
∑

{ξ(a) | arc a leaves v} −
∑

{ξ(a) | arc a enters v} (v ∈ V ).

Then, the minimum cost of a flow that realizes a supply/demand vector x ∈ RT is represented by a

function f : RT → R ∪ {±∞} defined as

f(x) = inf
ξ
{
∑

a∈A

fa(ξ(a)) | (∂ξ)(v) = −x(v) (v ∈ T ), (∂ξ)(v) = 0 (v ∈ V \ T )} (x ∈ R T ).

On the other hand, suppose that we are given another family of convex functions ga ∈ C1 (a ∈ A),

each of which represents the cost of tension on the arc a. Any vector p̃ ∈ RV is called a potential, and

the coboundary δp̃ ∈ RA of a potential p̃ is defined by δp̃(a) = p̃(u) − p̃(v) for a = (u, v) ∈ A. Then,

the minimum cost of a tension that realizes a potential vector p ∈ RT is represented by a function

g : RT → R ∪ {±∞} defined as

g(p) = inf
η,

�

p
{
∑

a∈A

ga(η(a)) | η(a) = −δp̃(a) (a ∈ A), p̃(v) = p(v) (v ∈ T )} (p ∈ R T ).

It can be shown that both f and g are closed proper convex if f(x0) and g(p0) are finite for some

x0 ∈ RT and p0 ∈ RT , which is a direct extension of the results in Iri [13] and Rockafellar [29] for the

case of |T | = 2. These functions, however, are equipped with different combinatorial structures; f is

M-convex and g is L-convex, as follows. j

Theorem 2.7. Suppose that fa and ga are conjugate to each other for all a ∈ A. Then, f and g are

M-convex and L-convex, respectively, and conjugate to each other if one of the following conditions

holds:

−∞ < f(x0) < +∞ for some x0 ∈ RT , (2.6)

−∞ < g(p0) < +∞ for some p0 ∈ RT , (2.7)

f(x0) < +∞, g(p0) < +∞ for some x0 ∈ RT , p0 ∈ RT . (2.8)

We first prove the closedness of f and g and the conjugacy relationship. For this, we use the

following duality theorem for the minimum cost flow and tension problems:

Theorem 2.8 (cf. [29, Sec. 8H]). Let G = (V,A) be a directed graph with a specified vertex subset

T ⊆ V . Also, let fa, ga ∈ C1 (a ∈ A) and fv , gv ∈ C1 (v ∈ T ) be conjugate pairs of closed convex

functions. Then, we have

inf
ξ∈RA, x∈RT

{ ∑

a∈A

fa(ξ(a)) +
∑

v∈T

fv(x(v))

∣∣∣∣ (∂ξ)(v) = −x(v) (v ∈ T ), (∂ξ)(v) = 0 (v ∈ V \ T )

}

= sup
η∈RA,

�

p∈RV

{
−

∑

a∈A

ga(η(a))−
∑

v∈T

gv(−p̃(v))

∣∣∣∣ η(a) = −δp̃(a) (a ∈ A)

}

unless inf = +∞ and sup = −∞.
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For p, x ∈ RT , we denote 〈p, x〉T =
∑

v∈T p(v)x(v).

Lemma 2.9. Let x ∈ Rn and p ∈ Rn.

(i) f(x) = sup{〈p, x〉T − g(p) | p ∈ RT } if f(x) < +∞ or g(p0) < +∞ for some p0 ∈ RT .

(ii) g(p) = sup{〈p, x〉T − f(x) | x ∈ RT } if g(p) < +∞ or f(x0) < +∞ for some x0 ∈ RT .

We see from Lemma 2.9 that three conditions (2.6), (2.7), and (2.8) are equivalent to each other.

Hence, if one of these conditions holds, then Lemma 2.9 implies that f = g •, g = f•, and both f and

g are closed convex functions with f, g > −∞.

[Proof of Lemma 2.9] To prove (i), consider functions f v , gv ∈ C1 (v ∈ T ) given as

fv(α) =

{
0 (α = x(v)),

+∞ (α 6= x(v)),
gv(β) = x(v)β (β ∈ R)

for the given x ∈ RT . The functions fv and gv are conjugate to each other for each v ∈ T . If

f(x) < +∞ or g(p0) < +∞ for some p0 ∈ RT , then Theorem 2.8 implies that

f(x) = inf
ξ∈RA

{
∑

a∈A

fa(ξ(a)) | (∂ξ)(v) = −x(v) (v ∈ T ), (∂ξ)(v) = 0 (v ∈ V \ T )}

= sup
η∈RA,

�

p∈RV

{ ∑

v∈T

p̃(v)x(v)−
∑

a∈A

ga(η(a))

∣∣∣∣ η(a) = −δp̃(a) (a ∈ A)

}

= sup{〈p, x〉T − g(p) | p ∈ RT }.

To prove (ii), consider functions fv , gv ∈ C1 (v ∈ T ) given as

fv(α) = −p(v)α (α ∈ R), gv(β) =

{
0 (β = −p(v)),

+∞ (β 6= −p(v)).

If g(p) < +∞ or f(x0) < +∞ for some x0 ∈ RT , then Theorem 2.8 implies that

g(p) = inf
η∈RA

{ ∑

a∈A

ga(η(a))

∣∣∣∣ η(a) = −δp̃(a) (a ∈ A), p̃(v) = p(v) (v ∈ T )

}

= sup
ξ∈RA, x∈RT

{
〈p, x〉T −

∑

a∈A

fa(ξ(a))

∣∣∣∣ (∂ξ)(v) = −x(v) (v ∈ T ), (∂ξ)(v) = 0 (v ∈ V \ T )

}

= sup{〈p, x〉T − f(x) | x ∈ RT}.

We then prove the M-convexity of f and the L-convexity of g.

[(M-EXC) for f ] Let x, y ∈ dom f and u ∈ supp+(x− y). For any ε > 0 there exist ξx, ξy ∈ RA with

∑

a∈A

fa(ξx(a)) ≤ f(x) + ε, (∂ξx)(v) = −x(v) (v ∈ T ), (∂ξx)(v) = 0 (v ∈ V \ T ),

∑

a∈A

fa(ξy(a)) ≤ f(y) + ε, (∂ξy)(v) = −y(v) (v ∈ T ), (∂ξy)(v) = 0 (v ∈ V \ T ).

By a standard augmenting path argument, there exist π : A → {0,±1} and v ∈ supp−(x − y) (⊆ T )

such that

supp+(π) ⊆ supp+(ξy − ξx), supp−(π) ⊆ supp−(ξy − ξx), ∂π = χu − χv ,
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where we can assume the following inequality with m = |A|, n = |V |:

min{|ξx(a)− ξy(a)| | a ∈ A, π(a) = ±1} ≥ {x(u)− y(u)}/mn.

Putting α0 = {x(u)− y(u)}/mn, we have

fa(ξx(a) + απ(a)) + fa(ξy(a)− απ(a)) ≤ fa(ξx(a)) + fa(ξy(a)) (α ∈ [0, α0])

for all a ∈ A. Hence follows that

f(x− α(χu − χv)) + f(y + α(χu − χv))

≤
∑

a∈A

{fa(ξx(a) + απ(a)) + fa(ξy(a) − απ(a))}

≤
∑

a∈A

{fa(ξx(a)) + fa(ξy(a))} ≤ f(x) + f(y) + 2ε (α ∈ [0, α0]).

Since ε > 0 can be chosen arbitrarily and T is a finite set, there exists some v = v∗ satisfying

f(x− α(χu − χv)) + f(y + α(χu − χv)) ≤ f(x) + f(y) (α ∈ [0, α0]),

implying (M-EXC) for f .

[L-convexity for g] Let p, q ∈ dom g. For any ε > 0 there exist p̃, q̃ ∈ RV with

∑

a∈A

ga(−δp̃(a)) ≤ g(p) + ε, p̃(v) = p(v) (v ∈ T ),

∑

a∈A

ga(−δq̃(a)) ≤ g(q) + ε, q̃(v) = q(v) (v ∈ T ).

It holds that (p̃ ∧ q̃)(v) = (p ∧ q)(v), (p̃∨ q̃)(v) = (p ∨ q)(v) for all v ∈ T , and

ga(−δ(p̃∧ q̃)(a)) + ga(−δ(p̃∨ q̃)(a)) ≤ ga(−δp̃(a)) + ga(−δq̃(a)) (a ∈ A)

by convexity of ga. Hence follows that

g(p∧ q) + g(p∨ q) ≤
∑

a∈A

ga(−δ(p̃∧ q̃)(a)) +
∑

a∈A

ga(−δ(p̃∨ q̃)(a)) ≤ g(p) + g(q) + 2ε.

Since ε > 0 can be chosen arbitrarily, we have g(p) + g(q) ≥ g(p∧ q) + g(p∨ q).

The property (LF2) for g is immediate from the equation δ(p̃+λ1) = δp̃ for p̃ ∈ RV and λ ∈ R.
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3 M-convex Functions over the Real Space

3.1 Definitions of M-convex and M\-convex Functions

We call a function f : Rn → R∪ {+∞} M-convex if it is closed proper convex and satisfies (M-EXC):

(M-EXC) ∀x, y ∈ dom f , ∀i ∈ supp+(x− y), ∃j ∈ supp−(x− y), ∃α0 > 0:

f(x) + f(y) ≥ f(x− α(χi − χj)) + f(y + α(χi − χj)) (∀α ∈ [0, α0]). (3.1)

As shown later in Proposition 3.2, the effective domain dom f of an M-convex function f is con-

tained in a hyperplane {x ∈ Rn | x(N) = r} for some r ∈ R. Hence, no information is lost when an M-

convex function is projected onto an (n−1)-dimensional space. We call a function f : Rn → R∪{+∞}

M\-convex if the function f̂ : R
�

N → R ∪ {+∞} defined by

f̂(x0, x) =

{
f(x) ((x0, x) ∈ R

�

N , x0 = −x(N)),

+∞ (otherwise)
(3.2)

is M-convex, where N̂ = {0} ∪ N . M\-convexity of f is characterized by the following exchange

property (cf. [23, 24, 25]):

(M\-EXC) ∀x, y ∈ dom f , ∀i ∈ supp+(x− y), ∃j ∈ supp−(x− y) ∪ {0}, ∃α0 > 0:

f(x) + f(y) ≥ f(x− α(χi − χj)) + f(y + α(χi − χj)) (∀α ∈ [0, α0]),

where χ0 = 0 by convention.

Theorem 3.1. A closed proper convex function f : Rn → R ∪ {+∞} is M\-convex if and only if it

satisfies (M\-EXC).

Proof. The “only if” part is obvious from the definition. The “if” part is proven later in Section 5.

We denote by Mn (resp. M\
n) the class of M-convex (resp. M\-convex) functions in n variables:

Mn = {f | f : Rn → R ∪ {+∞}, M-convex}, M\
n = {f | f : Rn → R ∪ {+∞}, M\-convex}.

As is obvious from the definitions, M\-convex function is essentially equivalent to M-convex function,

whereas the class of M\-convex functions contains that of M-convex functions as a proper subclass.

This relationship between M-convexity and M\-convexity can be summarized as

Mn ⊂ M\
n ' Mn+1.

From the definition of M\-convex functions, every property of M-convex functions can be restated

in terms of M\-convex functions, and vice versa. In this paper, we primarily work with M-convex

functions, making explicit statements for M \-convex functions when appropriate.

We also define the set version of M-convexity and M\-convexity. We call a set B ⊆ Rn M-convex

(resp. M\-convex) if its indicator function δB : Rn → {0,+∞} is an M-convex (resp. M\-convex)

function. Equivalently, an M-convex set is defined as a nonempty closed set satisfying the exchange

property (B-EXC):
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(B-EXC) ∀x, y ∈ B, ∀i ∈ supp+(x− y), ∃j ∈ supp−(x− y), ∃α0 > 0:

x− α(χi − χj) ∈ B, y + α(χi − χj) ∈ B (∀α ∈ [0, α0]).

In fact, M-convex and M\-convex sets are polyhedral as shown later in Section 3.2. Hence, these

concepts coincide with those of M-convex and M\-convex polyhedra introduced in [24]. In particular,

M-convex and M\-convex sets are nothing but the base polyhedra of submodular systems [9] and

generalized polymatroids [7, 8], respectively.

We now prove that the effective domain of an M-convex function is contained in a hyperplane of

the form {x ∈ Rn | x(N) = r} for some r ∈ R.

Proposition 3.2.

(i) For an M-convex set B ⊆ Rn, we have x(N) = y(N) (∀x, y ∈ B).

(ii) For an M-convex function f : Rn → R ∪ {+∞}, we have x(N) = y(N) (∀x, y ∈ dom f). In

particular, dom f satisfies (B-EXC), and is an M-convex set if it is a closed set.

Proof. Let f : Rn → R∪{+∞} be an M-convex function, and x, y ∈ dom f . Assume, to the contrary,

that x(N) > y(N) holds for some x, y ∈ dom f . Put

S = {z ∈ Rn | x ∧ y ≤ z ≤ x ∨ y, f(z) ≤ max{f(x), f(y)}},

which is a bounded closed set. Let x∗, y∗ ∈ S minimize the value ||x∗−y∗||1 among all pairs of vectors

in S with x∗(N) = x(N) and y∗(N) = y(N). The property (M-EXC) for x∗ and y∗ implies

f(x∗) + f(y∗) ≥ f(x∗ − α(χi − χj)) + f(y∗ + α(χi − χj))

for some i ∈ supp+(x∗ − y∗), j ∈ supp−(x∗ − y∗), and a sufficiently small α > 0. Putting x̂ =

x∗ − α(χi − χj) and ŷ = y∗ + α(χi − χj), we have x̂ ∈ S or ŷ ∈ S, a contradiction to the choice of x∗

and y∗ since ||x̂− y∗||1 < ||x∗ − y∗||1 and ||x∗ − ŷ||1 < ||x∗ − y∗||1. The property (B-EXC) for dom f

is immediate from (M-EXC) for f , and (i) is a special case of (ii).

Remark 3.3. The property (B-EXC) alone, without closedness, is independent of good properties

such as convexity and connectivity. An example is the set

{(x1, x2) ∈ R2 | x1 + x2 = 0, x1 < 0} ∪ {(x1, x2) ∈ R2 | x1 + x2 = 1, x1 > 1},

which satisfies (B-EXC); however, it is neither convex nor connected, and not contained in a hyperplane

{x ∈ Rn | x(N) = r} for some r ∈ R (cf. Proposition 3.2 (i)). Even if convexity assumption is

added, (B-EXC) is still independent of nice combinatorial properties. A typical example is {x ∈ R n |∑n
i=1 x(i)

2 < γ, x(N) = 0} (γ > 0), which is an open ball in a hyperplane.

Remark 3.4. The property (M-EXC) alone is independent of good properties such as convexity and

continuity. Consider a function ϕ : R → R satisfying Jensen’s equation (2.3) such that ϕ is neither

continuous nor convex, and define a function f : R2 → R ∪ {+∞} as in (2.4). Then, (M-EXC) for f

follows immediately from Jensen’s equation for ϕ; however, f is neither convex nor continuous.
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Remark 3.5. The effective domain of an M-convex function is not a closed set in general. An example

is the function f : R2 → R ∪ {+∞} given by

dom f = {(x1, x2) | x1 + x2 = 0, x1 > 0}, f(x1, x2) = 1/x1 ((x1, x2) ∈ dom f).

3.2 M-convex Sets and Positively Homogeneous M-convex Functions

M-convex sets and positively homogeneous M-convex functions constitute important subclasses of M-

convex functions, which appear as local structure of general M-convex functions such as minimizers

and directional derivative functions (see Theorem 3.16). We show that M-convex sets and positively

homogeneous M-convex functions are polyhedral sets and polyhedral convex functions, respectively.

Theorem 3.6.

(i) Any M-convex set is a polyhedron.

(ii) Any positively homogeneous M-convex function is a polyhedral convex function.

In the following, we prove Theorem 3.6. For a nonempty set B ⊆ Rn, we define a set function

ρB : 2N → R ∪ {+∞} by ρB(X) = sup{x(X) | x ∈ B} (X ⊆ N).

Lemma 3.7. Let B ⊆ Rn be a nonempty bounded closed set with (B-EXC), and {Xk}
h
k=1 be subsets

of N with X1 ⊂ X2 ⊂ · · · ⊂ Xh. Then, there exists x∗ ∈ B with x∗(Xk) = ρB(Xk) (∀k = 1, 2, . . . , h).

Proof. The claim is shown by induction on the value h. Let xh ∈ B be a vector with xh(Xh) =

ρB(Xh). By the induction hypothesis, there exists a vector x ∈ B satisfying x(Xk) = ρB(Xk) (k =

1, 2, · · · , h − 1), and assume that x minimizes the value ‖x − xh‖1 of all such vectors. Suppose that

x(Xh) < ρB(Xh). By (B-EXC), there exist i ∈ supp+(x− xh) \Xh and j ∈ supp−(x− xh) such that

x′ = x− α(χi − χj) ∈ B for a sufficiently small α > 0. Here j ∈ N \Xh−1 holds since i ∈ N \Xh−1

and x′(Xh−1) ≤ ρB(Xh−1) = x(Xh−1). Therefore, x′ satisfies x′(Xk) = ρB(Xk) (∀k = 1, 2, · · · , h− 1)

and ‖x′ − xh‖1 = ‖x− xh‖1 − 2α, a contradiction. Therefore, x(Xh) = ρB(Xh).

Let ρ : 2N → R ∪ {+∞} be a set function. We call ρ submodular if it satisfies

ρ(X) + ρ(Y ) ≥ ρ(X ∩ Y ) + ρ(X ∪ Y ) (∀X, Y ∈ dom ρ), (3.3)

where domρ = {X ⊆ N | ρ(N) < +∞}. We define a polyhedron B(ρ) ⊆ Rn by

B(ρ) = {x ∈ Rn | x(X) ≤ ρ(X) (X ⊆ N), x(N) = ρ(N)}. (3.4)

For any convex set S ⊆ Rn, a point x ∈ S is called an extreme point of S if there are no

y1, y2 ∈ S \ {x} and α ∈ (0, 1) such that x = αy1 + (1− α)y2.

Theorem 3.8 ([9, Theorem 3.22]). Let ρ : 2N → R∪{+∞} be a submodular function with ρ(∅) =

0 and ρ(N) < +∞. Then, x ∈ Rn is an extreme point of B(ρ) if and only if there exists {Xk}
n
k=0 ⊆

dom ρ such that ∅ = X0 ⊂ X1 ⊂ · · · ⊂ Xn = N and x(Xk) = ρ(Xk) for all k = 0, 1, . . . , n.
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Proof of Theorem 3.6 (i). Let B ⊆ Rn be a nonempty closed set with (B-EXC). It suffices to show

B = B(ρB) since B(ρB) is a polyhedron. The inclusion B ⊆ B(ρB) is easy to see; therefore we prove

the reverse inclusion.

We first assume that B is bounded. Let X, Y ∈ domρB (= 2N ). From Lemma 3.7, there exists

x∗ ∈ B with x∗(X ∩ Y ) = ρB(X ∩ Y ) and x∗(X ∪ Y ) = ρB(X ∪ Y ), which implies the inequality

ρB(X) + ρB(Y ) ≥ x∗(X) + x∗(Y ) = x∗(X ∩ Y ) + x∗(X ∪ Y ) = ρB(X ∩ Y ) + ρB(X ∪ Y ).

Therefore, ρB is a submodular function. By Lemma 3.7 and Theorem 3.8, any extreme point of B(ρB)

is contained in B. Hence we have B(ρB) ⊆ B.

Next, assume that B is unbounded. For a fixed x0 ∈ B, define Bk = {x ∈ B | x(i) − x0(i) ≤

k (i ∈ N)} and put ρk = ρBk
for k = 0, 1, 2, . . . . Since each Bk is a bounded M-convex set, we have

Bk = B(ρk). To prove B(ρB) ⊆ B, let y be any vector in B(ρB). Then, there exists a sequence of

vectors {xk}∞k=0, such that xk ∈ B(ρk) ⊆ B (k = 0, 1, 2, · · ·) and limk→∞ xk = y. Since B is a close

set, we have y ∈ B, i.e., B(ρB) ⊆ B.

We then prove Theorem 3.6 (ii). For a convex function f : Rn → R ∪ {+∞}, x ∈ dom f , and

i, j ∈ N , we define

f ′(x; j, i) = f ′(x;χj − χi).

For a function γ : N ×N → R ∪ {±∞}, we define fγ : Rn → R ∪ {±∞} by

fγ(x) = inf{
∑

(i,j)∈A

λijγ(i, j) |
∑

(i,j)∈A

λij(χj − χi) = x, λij ≥ 0 ((i, j) ∈ A)} (x ∈ Rn), (3.5)

where A = {(i, j) | i, j ∈ N, γ(i, j)< +∞}.

Proof of Theorem 3.6 (ii). Let f : Rn → R∪ {+∞} be a positively homogeneous M-convex function,

and define γ : N × N → R ∪ {+∞} by γ(i, j) = f(χj − χi) (i, j ∈ N). Then, it suffices to show that

f(x) = fγ(x) holds for any x ∈ Rn.

We first claim that there exists {λ ij}i,j∈N (⊆ R+) satisfying
∑

i,j∈N λij(χj − χi) = x and f(x) ≥∑
i,j∈N λijf

′(x; j, i), which implies f(x) ≥ fγ(x). We prove this claim by induction on the cardinality

of the set {i ∈ N | x(i) 6= 0}, where we may assume x 6= 0. By (M-EXC) for f , there exist some

h ∈ supp+(x) and k ∈ supp−(x) such that

f(x) = f(x) + f(0) ≥ f(x− α(χh − χk)) + f(α(χh − χk)) = f(x− α(χh − χk)) + αγ(k, h)

for any α ∈ [0,min{x(h),−x(k)}], where we use the fact that f is positively homogeneous. Put x ′ =

x−α0(χh −χk) with α0 = min{x(h),−x(k)}. By the induction hypothesis, there exists {λ ′
ij}i,j∈N (⊆

R+) satisfying
∑

i,j∈N λ′ij(χj −χi) = x′ and f(x′) ≥
∑

i,j∈N λ′ijf
′(x; j, i). Putting λhk = λ′hk +α0 and

λij = λ′ij for (i, j) 6= (h, k), we have the claim.

On the other hand, we have f(x) ≤
∑

i,j∈N λijf(χj − χi) for any {λij}i,j∈N (⊆ R+) with∑
i,j∈N λij(χj − χi) = x since f is positively homogeneous convex. Hence f(x) ≤ fγ(x) follows.
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3.3 Fundamental Properties of M-convex Functions

We firstly show that an M\-convex function has supermodularity over Rn.

Proposition 3.9 ([28, Cor. 7.5.1]). For any closed proper convex function f : Rn → R ∪ {+∞}

x ∈ Rn, and y ∈ dom f , we have f(x) = limλ↑1 f(λx+ (1− λ)y).

Lemma 3.10. Let f : Rn → R∪{+∞} be an M-convex function, and x, y ∈ dom f satisfy supp−(x−

y) = {k} for some k ∈ N . Then, for any i ∈ supp+(x−y) we have x−{x(i)−y(i)}(χi−χk) ∈ dom f ,

y + {x(i)− y(i)}(χi − χk) ∈ dom f , and

f(x) + f(y) ≥ f(x− {x(i)− y(i)}(χi − χk)) + f(y + {x(i)− y(i)}(χi − χk)). (3.6)

Proof. Put α = x(i)− y(i), and define functions ϕx, ϕy : [0, α] → R ∪ {+∞} by

ϕx(α) = f(x− α(χi − χk)), ϕy(α) = f(y + {α− α}(χi − χk)) (α ∈ [0, α]).

Claim 1. Let α ∈ [0, α].

(i) If ϕx(α) < +∞, then ϕx((α+ α)/2) < +∞. (ii) If ϕy(α) < +∞, then ϕy(α/2) < +∞.

[Proof of Claim 1] We prove (i) only. It may be assumed that α < α. Put x̂ = x− α(χ i − χk) and

α∗ = sup{β | f(x̂− β(χi − χk)) + f(y + β(χi − χk)) ≤ f(x̂) + f(y), β ≤ {x̂(i)− y(i)}/2}.

It follows from Proposition 3.9 that f(x̂ − α ∗(χi − χk)) + f(y + α∗(χi − χk)) ≤ f(x̂) + f(y). Put

x̃ = x̂− α∗(χi − χk), ỹ = y + α∗(χi − χk). Assume, to the contrary, that α∗ < {x̂(i)− y(i)}/2. Then,

we have i ∈ supp+(x̃− ỹ). By Proposition 3.2 for x̂, y ∈ dom f , we also have y(k)− x̂(k) ≥ x̂(i)− y(i),

from which supp−(x̃ − ỹ) = {k} follows. Hence, (M-EXC) for x̃ and ỹ implies that there exists a

sufficiently small β > 0 satisfying

f(x̂) + f(y) ≥ f(x̃) + f(ỹ) ≥ f(x̃− β(χi − χk)) + f(ỹ + β(χi − χk)),

a contradiction to the choice of α∗. Hence, α∗ = {x̂(i) − y(i)}/2, and we have ϕx((α + α)/2) =

f(x̂− α∗(χi − χk)) < +∞. [End of Claim 1]

We also define a function ϕ : [0, α] → R ∪ {±∞} by ϕ(α) = ϕx(α) − ϕy(α) (α ∈ [0, α]). Since

ϕx and ϕy are closed convex functions with ϕx(0) < +∞, ϕy(α) < +∞, we have ϕx(α) < +∞

(∀α ∈ [0, α)) and ϕy(α) < +∞ (∀α ∈ (0, α]) by Claim 1. Hence, Proposition 3.9 for ϕ x and ϕy implies

that ϕ is continuous on (0, α), and ϕ(0) = lim
α↓0

ϕ(α), ϕ(α) = lim
α↑α

ϕ(α). To prove (3.6), it suffices to

show that ϕ(α) is nonincreasing on [0, α], which follows from Claim 2 below:

Claim 2. ϕ′(α; 1) ≤ 0 and ϕ′(α;−1) ≥ 0 for all α ∈ (0, α).

We now prove Claim 2. It is noted that the values ϕ ′(α;±1) = ϕ′
x(α;±1)−ϕ′

y(α;±1) are well-defined

for all α ∈ (0, α). We here prove ϕ ′(α; 1) ≤ 0 only since ϕ′(α;−1) ≥ 0 can be proven similarly. Put

x′ = x− α(χi − χk) and y′δ = y + {α − α− δ}(χi − χk) for δ > 0. Then, we have i ∈ supp+(x′ − y′δ)

and supp−(x′ − y′δ) = {k}. By (M-EXC), there exists some β0 > 0 such that

f(x′) + f(y′δ) ≥ f(x′ − β(χi − χk)) + f(y′δ + β(χi − χk)) (∀β ∈ [0, β0]),

implying ϕ′
x(α; 1) ≤ −ϕ′

y(α+ δ;−1). Hence follows ϕ′
x(α; 1) ≤ − limδ↓0 ϕ

′
y(α+ δ;−1) = ϕ′

y(α; 1).
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Theorem 3.11. An M\-convex function f : Rn → R ∪ {+∞} satisfies the supermodular inequality:

f(x) + f(y) ≤ f(x ∧ y) + f(x ∨ y) (x, y ∈ Rn). (3.7)

Proof. We show (3.7) by induction on the cardinality of the sets supp+(x − y) and supp−(x− y). If

|supp+(x − y)| ≤ 1 or |supp−(x − y)| ≤ 1, then (3.7) follows from Lemma 3.10 and the definition of

M\-convex functions. Hence, we consider the case when |supp+(x− y)| > 1 and |supp−(x − y)| > 1.

We may assume x ∧ y, x∨ y ∈ dom f , since otherwise (3.7) holds immediately. Let j ∈ supp−(x− y).

Then, we have (x∧y)+{y(j)−x(j)}χj ∈ dom f by Lemma 3.10, and the induction assumption implies

f(x)− f(x ∧ y) ≤ f(x+ {y(j)− x(j)}χj)− f((x∧ y) + {y(j)− x(j)}χj) ≤ f(x ∨ y)− f(y).

We then present two equivalent definitions of M-convex functions. The property (M-EXC) is

equivalent to the following stronger property:

(M-EXCs) ∀x, y ∈ dom f , ∀i ∈ supp+(x− y), ∃j ∈ supp−(x− y):

f(x) + f(y) ≥ f(x− α(χi − χj)) + f(y + α(χi − χj)) (0 ≤ ∀α ≤ {x(i)− y(i)}/2t),

where t = |supp−(x− y)|.

Theorem 3.12. For a closed proper convex function f : Rn → R ∪ {+∞}, (M-EXC) ⇐⇒ (M-

EXCs).

Proof. We assume (M-EXC) and show (M-EXCs) for f . Let x0, y0 ∈ dom f , and i ∈ supp+(x0 − y0).

Put supp−(x0 − y0) = {j1, j2, · · · , jt}. For h = 1, 2, · · · , t, we iteratively define a function ϕh : R →

R ∪ {+∞}, a real number αh ∈ R, and vectors xh, yh ∈ Rn by

ϕh(α) = f(xh−1 − α(χi − χjh
)) + f(yh−1 + α(χi − χjh

)) (α ∈ R),

αh = sup{α | ϕh(α) ≤ ϕh(0), α ≤ min[xh−1(i)− yh−1(i), yh−1(jh)− xh−1(jh)]/2},

xh = xh−1 − αh(χi − χjh
), yh = yh−1 + αh(χi − χjh

).

Since each ϕh is closed proper convex, Proposition 3.9 implies

xh, yh ∈ dom f, f(xh) + f(yh) ≤ f(xh−1) + f(yh−1) (h = 1, 2, . . . , t). (3.8)

Assume, to the contrary, that
∑t

h=1 αh < {x0(i)−y0(i)}/2. Since i ∈ supp+(xt−yt), there exist some

jh ∈ supp−(xt − yt) ⊆ supp−(x0 − y0) and a sufficiently small α > 0 such that

f(xt) + f(yt) ≥ f(xt − α(χi − χjh
)) + f(yt + α(χi − χjh

)). (3.9)

Putting x̃h = xh − α(χi − χjh
) and x̃t = xt − α(χi − χjh

), we have

xh(k) = min{x̃h(k), xt(k)}, x̃t(k) = max{x̃h(k), xt(k)} (∀k ∈ N \ {i}).
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Therefore, Theorem 3.11 implies

f(xh − α(χi − χjh
)) + f(xt) ≤ f(xh) + f(xt − α(χi − χjh

)). (3.10)

Similarly, we have

f(yh + α(χi − χjh
)) + f(yt) ≤ f(yh) + f(yt + α(χi − χjh

)). (3.11)

From (3.9), (3.10), and (3.11) follows f(x h − α(χi − χjh
)) + f(yh + α(χi − χjh

)) ≤ f(xh) + f(yh), a

contradiction to the definition of xh and yh. Let s be the index with αs = max{αh | 1 ≤ h ≤ t}. For

α ∈ [0, αs], we have

{f(x− α(χi − χjs ))− f(x)}+ {f(y + α(χi − χjs ))− f(y)}

≤ {f(xs−1 − α(χi − χjs ))− f(xs−1)}+ {f(ys−1 + α(χi − χjs)) − f(ys−1)} ≤ 0,

where the first inequality is by Theorem 3.11 and the second by (3.8) and convexity of f . This shows

(M-EXCs) for f since αs ≥ {x(i)− y(i)}/2t.

We can rewrite the exchange property (M-EXC) in terms of directional derivative.

(M-EXC ′) ∀x, y ∈ dom f , ∀i ∈ supp+(x− y), ∃j ∈ supp−(x− y):

f ′(x; j, i)< +∞, f ′(y; i, j)< +∞, and f ′(x; j, i) + f ′(y; i, j)≤ 0.

Note that (M-EXC ′) for f yields (B-EXC) for dom f since f ′(x; j, i) < +∞ implies x+ α(χj − χi) ∈

dom f (∀α ∈ [0, α0]) for some α0 > 0.

Theorem 3.13. For a closed proper convex function f : Rn → R ∪ {+∞}, (M-EXC) ⇐⇒ (M-

EXC ′).

Proof. It suffices to show (M-EXC ′) =⇒ (M-EXC). Assume (M-EXC ′) for f . Let x, y ∈ dom f and

i ∈ supp+(x− y). We prove that there exist some j ∈ supp−(x− y) and α0 > 0 satisfying

f ′(x− α(χi − χj); j, i)+ f ′(y + α(χi − χj); i, j)≤ 0 (∀α ∈ [0, α0]), (3.12)

which, together with convexity of f , yields the desired inequality (3.1).

Put x∗ = x− |J |βχi + βχJ and y∗ = y + |J |βχi − βχJ with a sufficiently small β > 0 and

J = {j ∈ supp−(x− y) | f ′(x; j, i)< +∞, f ′(y; i, j)< +∞}.

By the convexity of dom f , we have x∗, y∗ ∈ dom f . By (M-EXC ′) applied to x∗, y∗ and i ∈ supp+(x∗−

y∗), there exists j0 ∈ supp−(x∗ − y∗) with f ′(x∗; j0, i) + f ′(y∗; i, j0) ≤ 0. Since f ′(x∗; j0, i) < +∞, we

have x′ = x∗ +α(χj0 −χi) ∈ dom f for some α > 0. Since j0 ∈ supp+(x′−x) and supp−(x′−x) = {i},

the property (B-EXC) for dom f implies x+ α′(χj0 − χi) ∈ dom f for a sufficiently small α′ > 0, from

which f ′(x; j0, i) < +∞ follows. Similarly, we have f ′(y; i, j0) < +∞. Hence, j0 ∈ J .
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The inequality f ′(x∗; j0, i) + f ′(y∗; i, j0) ≤ 0, together with the convexity of f , implies

f ′(x∗; i, j0) + f ′(y∗; j0, i) ≥ 0. (3.13)

For α ∈ [0, β/2], we put xα = x−α(χi−χj0 ) ∈ dom f and yα = y+α(χi −χj0) ∈ dom f . The property

(M-EXC ′) implies

f ′(x∗; i, j0) + f ′(xα; j0, i) ≤ 0 (3.14)

since j0 ∈ supp+(x∗ − xα) and supp−(x∗ − xα) = {i}. Similarly, we have

f ′(yα; i, j0) + f ′(y∗; j0, i) ≤ 0. (3.15)

Combining (3.13), (3.14), and (3.15), we have (3.12) with j = j 0 and α0 = β/2.

Global optimality of an M-convex function is characterized by local optimality in terms of finite

number of directional derivatives.

Theorem 3.14. Let f : Rn → R ∪ {+∞} be an M-convex function. For x ∈ dom f , we have

f(x) ≤ f(y) (∀y ∈ Rn) if and only if f ′(x; j, i) ≥ 0 (∀i, j ∈ N).

Proof. We show the “if” part by contradiction. Assume, to the contrary, that f(x 0) < f(x) holds for

some x0 ∈ dom f . Put S = {y ∈ Rn | f(y) ≤ f(x0)}, which is a closed set since f is closed convex.

Let x∗ ∈ S be a vector with ‖x∗ − x‖1 = inf{‖y − x‖1 | y ∈ S}. By (M-EXC) applied to x and x∗,

there exist some i ∈ supp+(x− x∗), j ∈ supp−(x− x∗), and a sufficiently small α > 0 such that

f(x∗)− f(x∗ + α(χi − χj)) ≥ f(x− α(χi − χj))− f(x) ≥ f ′(x; j, i) ≥ 0.

Hence, we have f(x∗ + α(χi − χj)) ≤ f(x∗) ≤ f(x0), which contradicts the choice of x∗ since ‖(x∗ +

α(χi − χj))− x‖1 < ‖x∗ − x‖1.

Although an M-convex function is not assumed to be polyhedral convex, its directional derivative

functions and subdifferentials have nice polyhedral structure such as M-/L-convexity. For p ∈ Rn, we

define f [p] : Rn → R ∪ {+∞} by f [p](x) = f(x) + 〈p, x〉 (x ∈ Rn). For a function γ : N × N →

R ∪ {+∞}, we define a set D(γ) ⊆ Rn by

D(γ) = {p ∈ Rn | p(j)− p(i) ≤ γ(i, j) (i, j ∈ N)}. (3.16)

Recall the definition of fγ in (3.5).

Lemma 3.15. Let f : Rn → R∪{+∞} be an M-convex function, x0, y0 ∈ dom f , i ∈ supp+(x0−y0),

and supp−(x0 − y0) = {j1, j2, · · · , jt}, where t = |supp−(x0 − y0)|. Then, there exist yh ∈ dom f and

αh ∈ R+ (h = 1, 2, . . . , t) satisfying
∑t

h=1 αh = x0(i)− y0(i) and

yh = yh−1 + αh(χi − χjh
), f(yh) − f(yh−1) + αhf

′(x; jh, i) ≤ 0 (h = 1, 2, . . . , t).

Proof. Proof is quite similar to that for Theorem 3.12 and therefore omitted.
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Theorem 3.16. Let f : Rn → R∪{+∞} be an M-convex function and x ∈ dom f . Define a function

γx : N × N → R ∪ {±∞} by γx(i, j) = f ′(x; j, i) (i, j ∈ N).

(i) γx satisfies γx(i, i) = 0 (i ∈ N) and the triangle inequality γx(i, j)+γx(j, k) ≥ γx(i, k) (i, j, k ∈ N).

(ii) The subdifferential ∂f(x) is represented as

∂f(x) = D(γx) = {p ∈ Rn | p(j)− p(i) ≤ f ′(x; j, i) (i, j ∈ N)}.

In particular, ∂f(x) is an L-convex set if γx > −∞.

(iii) We have f ′(x; ·) = fγx . In particular, f ′(x; ·) is positively homogeneous M-convex if f ′(x; ·)> −∞.

Proof. (i): For i, j, k ∈ N , Lemma 3.10 implies

γx(i, j)+ γx(j, k) = lim
α↓0

(1/α){f(x+ α(χj − χi)) + f(x+ α(χk − χj)) − 2f(x)}

≥ lim
α↓0

(1/α){f(x+ α(χk − χi)) − f(x)} = γx(i, k).

(ii): Since p ∈ ∂g(x) is equivalent to x ∈ argmin f [−p], the equation ∂f(x) = D(γ x) follows from

Theorem 3.14. L-convexity of the set ∂f(x) follows from (i) (see [24, Th. 3.23]).

(iii): Due to the property (i), it suffices to prove f ′(x; d) = fγx(d) for d ∈ Rn (see [24, Th. 4.19]).

Since f ′(x; ·) is a positively homogeneous convex function, we have

f ′(x; d) = f ′(x;
∑

i,j∈N

λij(χj − χi)) ≤
∑

i,j∈N

λijf
′(x; j, i)

for any {λij}i,j∈N (⊆ R+) satisfying
∑

i,j∈N λij(χj − χi) = d. Hence, we have f ′(x; d) ≤ fγx(d).

On the other hand, repeated application of Lemma 3.15 implies that for any α > 0 there exists

{λij}i,j∈N (⊆ R+) satisfying
∑

i,j∈N λij(χj − χi) = d and

f(x+ αd) − f(x) ≥ α
∑

i,j∈N

λijf
′(x; j, i) ≥ αfγx(d).

This implies f ′(x; d) ≥ fγx(d). Hence, we have f ′(x; d) = fγx(d).

The next theorem shows that each “face” of the epigraph of an M-convex function is a polyhedron

given by an M-convex set. The proof is obvious and therefore omitted.

Theorem 3.17. Let f : Rn → R ∪ {+∞} be an M-convex function. For p ∈ Rn, argmin f [p] is

M-convex if it is nonempty.
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4 L-convex Functions over the Real Space

4.1 Definitions of L-convex and L\-convex Functions

We call a function g : Rn → R ∪ {+∞} L-convex if g is a closed proper convex function satisfying

(LF1) and (LF2):

(LF1) g(p) + g(q) ≥ g(p∧ q) + g(p∨ q) (∀p, q ∈ dom g),

(LF2) ∃r ∈ R such that g(p+ λ1) = g(p) + λr (∀p ∈ dom g, ∀λ ∈ R).

Due to the property (LF2), an L-convex function loses no information other than r when restricted

to a hyperplane {p ∈ Rn | p(i) = 0} for any i ∈ N . We call a function g : Rn → R∪ {+∞} L\-convex

if the function ĝ : R
�

N → R ∪ {+∞} defined by

ĝ(p0, p) = g(p− p01) ((p0, p) ∈ R
�

N )

is L-convex, where N̂ = {0} ∪N . L\-convexity of g is characterized by the following property:

(L\F) g(p) + g(q) ≥ g(p∨ (q − λ1)) + g((p+ λ1) ∧ q) (∀p, q ∈ dom g, ∀λ ≥ 0).

Theorem 4.1 ([24, Th. 4.39]). A closed proper convex function f : Rn → R ∪ {+∞} is L\-convex

if and only if it satisfies (L\F).

We denote by Ln (resp. L\
n) the class of L-convex (resp. L\-convex) functions in n variables, i.e.,

Ln = {g | g : Rn → R ∪ {+∞}, L-convex}, L\
n = {g | g : Rn → R ∪ {+∞}, L\-convex}.

As is obvious from the definitions, L\-convex function is essentially equivalent to L-convex function,

whereas the class of L\-convex functions contains that of L-convex functions as a proper subclass. This

relationship between L-convexity and L\-convexity can be summarized as

Ln ⊂ L\
n ' Ln+1.

From the definition of L\-convex functions, every property of L-convex functions can be restated

in terms of L\-convex functions, and vice versa. In this paper, we primarily work with L-convex

functions, making explicit statements for L\-convex functions when appropriate.

We also define the set version of L-convexity and L\-convexity. We call a set D ⊆ Rn L-convex

(resp. L\-convex) if its indicator function δD : Rn → {0,+∞} is an L-convex (resp. L\-convex) function.

Equivalently, an L-convex set is defined as a nonempty closed set satisfying (LS1) and (LS2):

(LS1) p, q ∈ D =⇒ p ∧ q, p ∨ q ∈ D, (LS2) p ∈ D =⇒ p+ λ1 ∈ D (∀λ ∈ R).

In fact, L-convex and L\-convex sets are polyhedral as shown later in Section 4.2. Hence, these

concepts coincide with those of L-convex and L\-convex polyhedra introduced in [24].

Proposition 4.2. For an L-convex function g : Rn → R ∪ {+∞}, dom f satisfies (LS1) and (LS2),

and is an L-convex set if it is a closed set.
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The properties (LS1) and (LS2), without closedness, imply convexity for sets.

Theorem 4.3. If D ⊆ Rn satisfies (LS1) and (LS2), then D is a convex set.

Proof. We show that (1 − α)p + αq ∈ D holds for any p, q ∈ D and α ∈ [0, 1]. By the property

(LS2), we may assume p ≤ q. Then, we have q = p +
∑k

h=1 λhχNh
for some λh > 0 and Nh ⊆ N

(h = 1, 2, . . . , k) such that ∅ 6= N1 ⊂ N2 ⊂ · · · ⊂ Nk. In the following, we prove by induction that

p′j ≡ p + α
∑j

h=1 λhχNh
∈ D holds for j = 0, 1, . . . , k. We have p ′0 = p ∈ D. Suppose that p′j−1 ∈ D

for j − 1 < k. Since p+
∑j

h=1 λhχNh
= p ∨ (q −

∑k
h=j+1 λh1) ∈ D, we have

p′j = p′j−1 + αλjχNj
= (p′j−1 + αλj1)∧ (p+

j∑

h=1

λhχNh
) ∈ D.

Hence, p′k = (1− α)p+ αq ∈ D follows.

Remark 4.4. The properties (LF1) and (LF2) imply mid-point convexity (see Theorem 4.9 below);

however, they are independent of convexity and continuity.

Consider the function ψ : R → R satisfying Jensen’s equation (2.3) such that ψ is neither contin-

uous nor convex. Define a function g : R2 → R∪ {+∞} as in (2.5). Then, g satisfies the submodular

inequality (LF1) with equality and (LF2) with r = 0, and is neither convex nor continuous.

Remark 4.5. There exists no function which is both M-convex and L-convex, i.e., Mn ∩ Ln = ∅

(Proof: Proposition 3.2 (ii) implies x(N) = y(N) for any f ∈ M n and x, y ∈ dom f , whereas (LF2)

implies that x + λ1 ∈ dom f for any λ ∈ R.) On the other hand, the classes of M \-convex and

L\-convex functions have nonempty intersection, as shown in Example 2.4.

Remark 4.6. The effective domain of an L-convex function is not a closed set in general. For example,

the function g : R2 → R ∪ {+∞} defined by

g(p1, p2) =

{
1/(p1 − p2) ((p1, p2) ∈ R2, p1 − p2 > 0),

+∞ (otherwise)

is L-convex, and dom g = {(p1, p2) | p1 − p2 > 0} is not a closed set.

4.2 L-convex Sets and Positively Homogeneous L-convex Functions

L-convex sets and positively homogeneous L-convex functions constitute important subclasses of L-

convex functions, which appear as local structure of general L-convex functions such as minimizers

and directional derivative functions (see Theorem 4.11). We show that L-convex sets and positively

homogeneous L-convex functions are polyhedral sets and polyhedral convex functions, respectively.

Theorem 4.7.

(i) Any L-convex set is a polyhedron.

(ii) Any positively homogeneous L-convex function is a polyhedral convex function.

In the following, we prove Theorem 4.7. Recall the definition of a set D(γ) ⊆ Rn in (3.16).
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Proof of Theorem 4.7 (i). Let D ⊆ Rn be a nonempty closed set with satisfying (LS1) and (LS2). We

define a function γD : N × N → R ∪ {+∞} by γD(i, j) = supp∈D{p(j) − p(i)} (i, j ∈ N). To prove

(i), it suffices to show D = D(γD) since D(γD) is a polyhedron. The inclusion D ⊆ D(γD) is easy to

see; to show the reverse inclusion, we prove that q ∈ D holds for any q ∈ D(γD).

For any ε > 0 and any i, j ∈ N there exists pε
ij ∈ D with pε

ij(j)− p
ε
ij(i)+ ε > γD(i, j) ≥ q(j)− q(i),

where we may assume that pε
ij(i) = q(i) and pε

ij(j) + ε > q(j) by (LS2). For i ∈ N , we define

pε
i =

∨
i∈N pε

ij, which is contained inD by (LS1). The vector pε
i satisfies pε

i (i) = q(i) and pε
i (j)+ε > q(j)

for j ∈ N . We then define pε ∈ D by pε =
∧

i∈N pε
i , which satisfies q(i) − ε < pε(i) ≤ q(i) for i ∈ N ,

and hence limε→0 p
ε = q. Hence, the closedness of D implies q ∈ D.

We then prove Theorem 4.7 (ii).

Lemma 4.8 ([24, Lemma 4.28]). Let g : Rn → R ∪ {+∞}. Then, g satisfies (LF1) and (LF2) if

and only it satisfies

g(p) + g(q) ≥ g(p∨ (q − λ1)) + g((p+ λ1)∧ q) (∀p, q ∈ dom g, ∀λ ∈ R).

In particular, if g satisfies (LF1) and (LF2), then we have

g(p) + g(q) ≥ g(p+ λχX) + g(q − λχX) (∀p, q ∈ dom g, ∀λ ∈ [0, λ1 − λ2]), (4.1)

where λ1 = max{q(i)− p(i) | i ∈ N}, X = {i ∈ N | q(i) − p(i) = λ 1}, and λ2 = max{q(i)− p(i) | i ∈

N \X}.

For a set function ρ : 2N → R ∪ {±∞}, we define gρ : Rn → R ∪ {±∞} by

gρ(p) =

k∑

j=1

(λj − λj+1)ρ(Nj), (4.2)

where λ1 > λ2 > · · · > λk are distinct values in {p(i)} i∈N , λk+1 = 0, and Nj = {i ∈ N | p(i) ≥ λj}

(j = 1, 2, . . . , k). The function gρ is called the Lovász extension of ρ [9, 16].

Proof of Theorem 4.7 (ii). Let g : Rn → R ∪ {+∞} be a positively homogeneous L-convex function,

and define ρ : 2N → R ∪ {+∞} by ρg(X) = g(χX) (X ⊆ N). We prove that g(p) = gρ(p) holds for

p ∈ Rn, which shows that g is a polyhedral convex function.

We may assume that p ≥ 0 since (LF2) for g implies g(p)−gρ(p) = g(p+λ1)−gρ(p+λ1) (λ ∈ R).

Define λj and Nj (j = 1, 2, . . . , k) as in the Lovász extension (4.2), and put λ k+1 = 0. Since g is

positively homogeneous convex, we have g(p) ≤
∑k

j=1(λj − λj+1)g(χNj
) = gρ(p). On the other hand,

it follows from Lemma 4.8 that

g(

k∑

j=h

(λj − λj+1)χNj
)− g(

k∑

j=h+1

(λj − λj+1)χNj
) ≥ g((λh − λh+1)χNh

) − g(0)

= (λh − λh+1)ρ(Nh) (h = 1, 2, . . . , k).

This implies g(p) ≥
∑k

j=1(λh − λh+1)ρ(Nh) = gρ(p). Hence, we have g(p) = gρ(p).
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4.3 Fundamental Properties of L-convex Functions

We show various properties of L-convex functions. Note that some of the properties below are implied

by (LF1) and (LF2) only, and independent of closed convexity of functions.

Theorem 4.9. If g : Rn → R ∪ {+∞} satisfies (LF1) and (LF2), then g is mid-point convex.

Proof. We show the inequality (2.2) by induction on the cardinality of supp(p − q) ≡ supp+(p −

q) ∪ supp−(p − q). We may assume p(i) < q(i) for some i ∈ N . Putting λ = {q(i) − p(i)}/2,

p′ = p ∨ (q − λ1) and q′ = (p + λ1) ∧ q, we have g(p) + g(q) ≥ g(p′) + g(q′) by Lemma 4.8. Since

supp(p′ − q′) ⊆ supp(p − q) \ {i}, the induction hypothesis yields g(p ′) + g(q′) ≥ 2g({p′ + q′}/2) =

2g({p+ q}/2).

Global optimality of an L-convex function is characterized by local optimality in terms of finite

number of directional derivatives.

Theorem 4.10 ([24, Th. 4.29]). Let g : Rn → R ∪ {+∞} be a convex function with (LF1) and

(LF2). For p ∈ dom g, we have g(p) ≤ g(q) (∀q ∈ Rn) if and only if g ′(p;χX) ≥ 0 (∀X ⊂ N) and

g′(p; 1) = 0.

Proof. We show the sufficiency by contradiction. Suppose that there exists some q ∈ Rn with g(q) <

g(p), and assume that q minimizes the number of distinct values in {q(i)− p(i)} n
i=1 of all such vectors.

Let λ1 > λ2 > · · · > λk be the distinct values in {q(i) − p(i)}n
i=1. From (LF2) and g ′(p; 1) = 0, we

have k ≥ 2. By the inequality (4.1) with λ = λ1 − λ2 and g′(p;χX) ≥ 0, we have g(q ′) ≤ g(q) < g(p)

with q′ = q − (λ1 − λ2)χX . This inequality, however, is a contradiction since the number of distinct

values in {q′(i)− p(i)}n
i=1 is k − 1.

Although an L-convex function is not assumed to be polyhedral convex, its directional derivative

functions and subdifferentials have nice polyhedral structure such as L-/M-convexity. For x ∈ Rn, we

define g[x] : Rn → R ∪ {+∞} by g[x](p) = g(p) + 〈p, x〉 (p ∈ Rn). Recall the definitions of B(ρ) and

gρ in (3.4) and in (4.2), respectively.

Theorem 4.11. Let g : Rn → R ∪ {+∞} be an L-convex function and q ∈ dom g. Define a function

ρq : 2N → R ∪ {±∞} by ρq(X) = g ′(q;χX) (X ⊆ N).

(i) ρq satisfies ρq(∅) = 0, −∞ < ρq(N) < +∞, and the submodular inequality (3.3).

(ii) The subdifferential ∂g(q) is represented as

∂g(q) = B(ρq) = {x ∈ Rn | x(X) ≤ g ′(q;χX) (∀X ⊂ N), x(N) = g ′(q; 1)}.

In particular, ∂g(q) is an M-convex set if ρq > −∞.

(iii) The function g ′(q; ·) satisfies (LF1), (LF2), and g ′(q; ·) = gρq . In particular, g′(q; ·) is a positively

homogeneous L-convex function if g ′(q; ·)> −∞.

Proof. We first prove (iii) and then (ii); (i) is immediate from (iii).

(iii): For any p ∈ Rn and ε > 0, there exists some µ > 0 such that g ′(q; p) > (1/µ){g(q + µp) −

g(q)} − ε. Hence, (LF1) and (LF2) for g ′(q; ·) follow from (LF1) and (LF2) for g.
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We then prove g′(q; p) = gρq(p) (p ∈ Rn). Since g′(q; ·) is a positively homogeneous convex

function, we have

gρq(p) =

k∑

j=1

(λj − λj+1)g
′(q;χNj

) ≥ g′(q;

k∑

j=1

(λj − λj+1)χNj
) = g′(q; p),

where λj and Nj (j = 1, 2, . . . , k) are defined as in the Lovász extension (4.2) and λ k+1 = 0. Put

q0 = q + p, qj = qj−1 − (λj − λj+1)χNj
(j = 1, 2, · · · , k),

where qk = q. By Lemma 4.8, we obtain

g(qj−1)− g(qj) ≥ g(q + (λj − λj+1)χNj
)− g(q) ≥ (λj − λj+1)g

′(q;χNj
) (j = 1, 2, . . . , k),

from which follows

g(q + p) − g(q) ≥
k∑

k=1

(λj − λj+1)g
′(q;χNj

) = gρq(p).

Since the inequality above holds for any p ∈ Rn, we have g(q + µp) − g(q) ≥ gρq(µp) = µgρq(p),

implying g ′(q; p) ≥ gρq(p). Thus, g ′(q; p) = gρq(p) follows.

(ii) Since x ∈ ∂g(q) is equivalent to q ∈ argmin g[−x], we have ∂g(q) = B(ρ q) by Theorem 4.10.

Since ρq is a submodular function, ∂g(q) is an M-convex set (see [24, Th. 3.3]).

The next theorem shows that each “face” of the epigraph of an L-convex function is a polyhedron

given by an L-convex set. The proof is obvious and therefore omitted.

Theorem 4.12. Let g : Rn → R ∪ {+∞} be an L-convex function. For x ∈ Rn, argmin g[x] is

L-convex if it is nonempty.
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5 Conjugacy

For a function f : Rn → R ∪ {+∞} with dom f 6= ∅, its (convex) conjugate f • : Rn → R ∪ {+∞} is

defined by

f•(p) = sup{〈p, x〉 − f(x) | x ∈ Rn} (p ∈ Rn).

Theorem 5.1 ([28, Theorem 12.2]). For a closed proper convex function f : Rn → R ∪ {+∞},

the conjugate function f• : Rn → R ∪ {+∞} is also closed proper convex, and f•• = f .

Hence, the conjugacy operation f 7→ f• induces a symmetric one-to-one correspondence in the class

of all closed proper convex functions on Rn. In this section, we show that M-convex and L-convex

functions are conjugate to each other.

Theorem 5.2.

(i) For f ∈ Mn, we have f• ∈ Ln and f•• = f . (ii) For g ∈ Ln, we have g• ∈ Mn and g•• = g.

(iii) The mappings f 7→ f • (f ∈ Mn) and g 7→ g• (g ∈ Ln) provide a one-to-one correspondence

between Mn and Ln, and are the inverse of each other.

In the following, we first prove “f ∈ Mn =⇒ f• ∈ Ln” and then “g ∈ Ln =⇒ g• ∈ Mn.” The

other claims are immediate from these and Theorem 5.1.

Lemma 5.3. If a function f : R2 → R ∪ {+∞} in two variables is supermodular, then its conjugate

f• : R2 → R ∪ {+∞} is submodular.

Proof. It suffices to show

f•(λ, µ) + f •(λ′, µ′) ≤ f•(λ, µ′) + f•(λ′, µ) (5.1)

for (λ, µ), (λ ′, µ′) ∈ R2 with λ ≥ λ′ and µ ≥ µ′. We claim that

[λα+ µβ − f(α, β)] + [λ′α′ + µ′β′ − f(α′, β′)] ≤ f•(λ, µ′) + f•(λ′, µ) (5.2)

holds for any (α, β), (α ′, β′) ∈ R2. The inequality (5.1) is immediate from (5.2), since the supremum

of the left-hand side of (5.2) over (α, β) and (α ′, β′) coincides with the left-hand side of (5.1).

We now prove (5.2). If α ≥ α′ and β ≥ β′, we have f(α, β) + f(α′, β′) ≥ f(α, β′) + f(α′, β) by the

supermodularity of f , and therefore

LHS of (5.2) ≤ [λα+ µ′β′ − f(α, β′)] + [λ′α′ + µβ − f(α′, β)] ≤ RHS of (5.2).

If α ≤ α′, we have λα+ λ′α′ ≤ λα′ + λ′α and therefore

LHS of (5.2) ≤ [λα′ + µ′β′ − f(α′, β′)] + [λ′α + µβ − f(α, β)] ≤ RHS of (5.2).

We can prove (5.2) similarly for the case β ≤ β ′.

Lemma 5.4. For f ∈ Mn, we have f• ∈ Ln.
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Proof. Let f ∈ Mn. By Theorem 5.1, the conjugate f • is a proper closed convex function with

f• > −∞. Hence, we have only to show (LF1) and (LF2) for f •.

We firstly show (LF2) for f •. Put r = x(N) by some x ∈ dom f , which is independent of the

choice of x by Proposition 3.2. For p ∈ dom f • and λ ∈ R, we have

f•(p+ λ1) = sup{〈p+ λ1, x〉 − f(x) | x ∈ dom f}

= sup{〈p, x〉 − f(x) | x ∈ dom f} + λx(N) = f •(p) + λr.

To prove the submodularity (LF1) for f •, we first assume that dom f is bounded. Since dom f • =

Rn, the submodularity of f • is equivalent to the local submodularity (see, e.g., [24, Theorem 4.27]):

f•(p+ λχi) + f•(p+ µχj) ≥ f•(p) + f •(p+ λχi + µχj), (5.3)

where p ∈ Rn, i, j ∈ N are distinct indices, and λ, µ ∈ R+. We fix p ∈ Rn, and define functions

g̃ : R2 → R ∪ {+∞} and f̃ : R2 → R ∪ {+∞} by

g̃(λ, µ) = f •(p+ λχi + µχj) (λ, µ ∈ R),

f̃(α, β) = inf{f(x)− 〈p, x〉 | x ∈ dom f, x(i) = α, x(j) = β} (α, β ∈ R).

Then, f̃ is a supermodular function, as shown below, and g̃ = (f̃)• holds. Hence, the function g̃ is a

submodular function by Lemma 5.3, implying the inequality (5.3).

We now prove that f̃ is a supermodular function.

Claim. For any (α, β), (α ′, β′) ∈ dom f̃ with α > α′ and β ≥ β′, there exists δ0 > 0 satisfying

f̃(α, β) + f̃(α′, β′) ≥ f̃(α− δ, β) + f̃(α′ + δ, β′) (∀δ ∈ [0, δ0]).

[Proof of Claim] We may assume p = 0 since f(x)−〈p, x〉 is also M-convex as a function in x. Since

f is a closed proper convex function with bounded effective domain, there exist x, x ′ ∈ dom f satisfying

x(i) = α, x(j) = β, f̃(α, β) = f(x), and x′(i) = α′, x′(j) = β ′, f̃ (α′, β′) = f(x′), respectively. We

have i ∈ supp+(x− x′), and therefore (M-EXC) for f implies that there exist k ∈ supp−(x− x′) and

δ0 > 0 satisfying

f̃(α, β) + f̃ (α′, β′) = f(x) + f(x′) ≥ f(x− δ(χi − χk)) + f(x′ + δ(χi − χk))

≥ f̃(α− δ, β) + f̃(α′ + δ, β′) (∀δ ∈ [0, δ0]),

where it is noted that k 6= j since j 6∈ supp−(x− x′). [End of Claim]

Using Claim above as well as the fact that f̃ is closed proper convex, we can show the supermod-

ularity of f̃ in the same way as in Lemma 3.10. This concludes the proof of (LF1) for f • when dom f

is bounded.

Finally, we consider the case when dom f is unbounded. For a fixed vector x0 ∈ dom f , we define

fk : Rn → R ∪ {+∞} (k = 1, 2, . . .) by

fk(x) =

{
f(x) (x ∈ Rn, |x(i)− x0(i)| ≤ k for all i ∈ N),

+∞ (otherwise).
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Since fk ∈ Mn and dom fk is bounded, f•k fulfills (LF1). Hence, for any p, q ∈ dom f • we have

f•(p) + f •(q) = lim
k→∞

{f•k (p) + f •k (q)} ≥ lim
k→∞

{f•k (p ∧ q) + f•k (p ∨ q)} = f•(p∧ q) + f•(p ∨ q).

We then prove the claim “g ∈ Ln =⇒ g• ∈ Mn.” Recall that for x ∈ Rn the function g[−x] :

Rn → R ∪ {+∞} is defined by g[−x](p) = g(p)− 〈p, x〉 (p ∈ Rn).

Lemma 5.5. Let g ∈ Ln, and x, y ∈ Rn be vectors with argmin g[−x] 6= ∅ and argmin g[−y] 6= ∅.

Then, for any i ∈ supp+(x− y), there exists j ∈ supp−(x− y) such that

p(j)− p(i) ≤ q(j)− q(i) (∀p ∈ arg min g[−x], ∀q ∈ argmin g[−y]). (5.4)

Proof. First we note that x(N) = y(N) = r, where r ∈ R is the value in (LF2) for g. Since

arg min g[−x] and arg min g[−y] are L-convex sets by Theorem 4.12, the inequality (5.4) can be rewrit-

ten as p(j) ≤ q(j) (∀p ∈ Dx, ∀q ∈ Dy), where

Dx = {p ∈ Rn | p ∈ argmin g[−x], p(i) = 0}, Dy = {p ∈ Rn | p ∈ argmin g[−y], p(i) = 0}.

Assume, to the contrary, that for any j ∈ supp−(x−y), there exists a pair of vectors pj ∈ Dx, qj ∈ Dy

such that pj(j) > qj(j). Putting

px =
∨

{pj | j ∈ supp−(x− y)}, qy =
∧

{qj | j ∈ supp−(x− y)},

we have px ∈ Dx, qy ∈ Dy, and supp−(x − y) ⊆ supp+(px − qy). We also put S+ = supp+(px − qy),

λ = min{px(j)− qy(j) | j ∈ S+} (> 0). Then, Lemma 4.8 implies

g(px) + g(qy) ≥ g((px − λ1) ∨ qy) + g(px ∧ (qy + λ1)). (5.5)

Since

((px − λ1)∨ qy)(j) =

{
px(j)− λ (j ∈ S+),

qy(j) (j ∈ N \ S+),
(px ∧ (qy + λ1))(j) =

{
qy(j) + λ (j ∈ S+),

px(j) (j ∈ N \ S+),

we have

〈(px − λ1) ∨ qy, x〉+ 〈px ∧ (qy + λ1), y〉 − 〈px, x〉 − 〈qy, y〉

= λ
∑

j∈S+

{y(j)− x(j)}+
∑

j∈N\S+

{qy(j)− px(j)}{x(j)− y(j)}

≥ λ
∑

j∈S+

{y(j)− x(j)} ≥ λ
∑

v∈N\{i}

{y(j)− x(j)} = λ{x(i)− y(i)} > 0, (5.6)

where the inequalities follow from supp−(x− y) ⊆ S+. From (5.5) and (5.6) follows

g[−x]((px − λ1) ∨ qy) + g[−y](px ∧ (qy + λ1)) < g[−x](px) + g[−y](qy),

which is a contradiction to the fact that px ∈ argmin g[−x], qy ∈ argmin g[−y].
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Proposition 5.6 (cf. [28, Th. 23.4]). Let f : Rn → R∪ {+∞} be a convex function with dom f =

{x ∈ Rn | x(N) = r} for some r ∈ R. Then, for any x ∈ dom f we have ∂f(x) 6= ∅ and f ′(x; y) =

sup{〈p, y〉 | p ∈ ∂f(x)} (y ∈ Rn).

Lemma 5.7. For g ∈ Ln, we have g• ∈ Mn.

Proof. It is easy to see that the conjugate function g• satisfies dom g• ⊆ {x ∈ Rn | x(N) = r}, where

r ∈ R is the value in (LF2) for g. We firstly consider the case when dom g • = {x ∈ Rn | x(N) = r}.

Let x, y ∈ dom g• and i ∈ supp+(x− y). From Proposition 5.6 follows argmin g[−x] = ∂g •(x) 6= ∅ and

arg min g[−y] = ∂g•(y) 6= ∅. By Lemma 5.5, there exists j ∈ supp−(x− y) satisfying (5.4), implying

(g•)′(x; j, i)+ (g•)′(y; i, j)

= sup{p(j)− p(i) | p ∈ argmin g[−x]}+ sup{q(i)− q(j) | q ∈ arg min g[−y]} ≤ 0,

where the equality is by Proposition 5.6. This shows (M-EXC ′) for g•, which, together with Theorem

3.13, yields M-convexity of g •.

We then consider the general case. For fixed j0 ∈ N and q ∈ dom g with q(j0) = 0, we define

gk : Rn → R ∪ {+∞} (k = 1, 2, · · ·) by

gk(p) =

{
g(p) (p ∈ Rn, |p(i)− p(j0) − q(i)| ≤ k for all i ∈ N),

+∞ (otherwise).

It can be easily shown that each gk is an L-convex function with dom g•k = {x ∈ Rn | x(N) = r}.

Therefore, the discussion above shows that each g•k is M-convex, and therefore satisfies (M-EXCs) by

Theorem 3.12. For x, y ∈ dom g• (⊆ dom g•k) and i ∈ supp+(x−y), there exists some jk ∈ supp−(x−y)

such that

g•k(x) + g•k(y) ≥ g•k(x− α(χi − χjk
)) + g•k(y + α(χi − χjk

)) (∀α ∈ [0, {x(i)− y(i)}/2t])

with t = |supp−(x− y)|. Since supp−(x− y) is a finite set, we may assume that jk = j∗ (k = 1, 2, . . .)

for some j∗ ∈ supp−(x− y). Then, for any α ∈ [0, {x(i)− y(i)}/2t] we have

g•(x) + g•(y) = lim
k→∞

{g•k(x) + g•k(y)} ≥ lim
k→∞

{g•k(x− α(χi − χj∗)) + g•k(y + α(χi − χj∗))}

= g•(x− α(χi − χj∗)) + g•(y + α(χi − χj∗)).

Thus, (M-EXCs) holds for g•, which shows M-convexity of g• by Theorem 3.12.

This concludes the proof of Theorem 5.2.

As an application of Theorem 5.2, we give the proof for the characterization of M \-convex functions

by the property (M\-EXC).

Proof of Theorem 3.1. Let f : Rn → R ∪ {+∞} be a closed proper convex function satisfying (M\-

EXC). We shall show the M-convexity of the function f̂ : R
�

N → R∪{+∞} in (3.2), which is equivalent

to the L-convexity of f̂• = (f̂)• by Theorem 5.2. We prove the L-convexity of f̂• in a similar way as in
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Lemma 5.4. In particular, the proof of Lemma 5.4 shows that it suffices to prove the following claim.

For i ∈ N and j ∈ N̂ with i 6= j, define a function f̂ij : R2 → R ∪ {±∞} by

f̂ij(α, β) = inf{f̂(x̂)− 〈p̂, x̂〉 | x̂ ∈ dom f̂ , x̂(i) = α, x̂(j) = β}

=

{
inf{f(x) − 〈p, x〉+ p0x(N) | x ∈ dom f, x(i) = α, x(j) = β} (j ∈ N),

inf{f(x) − 〈p, x〉+ p0x(N) | x ∈ dom f, x(i) = α, x(N) = −β} (j = 0),

where p̂ = (p0, p) ∈ R
�

N .

Claim. Suppose that dom f is bounded. Then, each f̂ij satisfies the following property:

∀(α, β), (α′, β′) ∈ dom f̂ij with α > α′ and β ≥ β′, ∃δ0 > 0:

f̂ij(α, β) + f̂ij(α
′, β′) ≥ f̂ij(α− δ, β) + f̂ij(α

′ + δ, β′) (∀δ ∈ [0, δ0]). (5.7)

We now prove the claim above. We may assume that p = 0 and p0 = 0 since f(p0,p)(z) =

f(z) − 〈p, z〉 + p0z(N) (z ∈ Rn) also satisfies (M\-EXC). We consider the case j = 0 only, since the

case of j ∈ N can be dealt with similarly and more easily.

Since f is a closed proper convex function with bounded effective domain, there exist x, x ′ ∈ dom f

satisfying

x(i) = α, x(N) = −β, f̂ij(α, β) = f(x),

x′(i) = α′, x′(N) = −β ′, f̂ij(α
′, β′) = f(x′).

We assume that x minimizes the value ||x− x ′||1 among all such vectors. It suffices to show that

f(x) + f(x′) ≥ f(x− δ(χi − χk)) + f(x′ + δ(χi − χk)) (∀δ ∈ [0, δ0]) (5.8)

for some k ∈ supp−(x − x′) and δ0 > 0 since the RHS of (5.8) is larger than or equal to f̂ij(α −

δ, β) + f̂ij(α
′ + δ, β′). By the property (M\-EXC) for x, x′, and i ∈ supp+(x − x′), there exist

s ∈ supp−(x− x′) ∪ {0} and δ1 > 0 such that

f(x) + f(x′) ≥ f(x− δ(χi − χs)) + f(x′ + δ(χi − χs)) (∀δ ∈ [0, δ1]). (5.9)

Since x(i) > x′(i) and x(N) ≤ x′(N), there exists some r ∈ supp+(x′ − x). By (M\-EXC), there exist

t ∈ supp−(x′ − x) ∪ {0} and δ2 > 0 such that

f(x′) + f(x) ≥ f(x′ − δ(χr − χt)) + f(x+ δ(χr − χt)) (∀δ ∈ [0, δ2]). (5.10)

We consider the following four cases.

[Case 1: s ∈ supp−(x− x′)] (5.9) gives the desired inequality (5.8) with k = s and δ 0 = δ1.

[Case 2: t = i ∈ supp−(x′ − x)] (5.10) gives the desired inequality (5.8) with k = r and δ 0 = δ2.

[Case 3: t ∈ supp−(x′ − x) \ {i}] Putting xδ = x + δ(χr − χt) with a sufficiently small δ > 0,

we have xδ(i) = α, xδ(N) = −β, and ||xδ − x′||1 < ||x − x′||1. By (5.10), the vector xδ satisfies

f̂ij(α, β) = f(xδ), a contradiction to the choice of x.
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[Case 4: s = t = 0] Convexity of f as well as the inequalities (5.9) and (5.10) imply

f(x) + f(x′) ≥ (1/2){f(x− δχi) + f(x+ δχr)}+ (1/2){f(x′ + δχi) + f(x′ − δχr)}

≥ f(x− (1/2)δ(χi − χr)) + f(x′ + (1/2)δ(χi − χr)) (0 ≤ ∀δ ≤ min{δ1, δ2}).

Hence, we have the desired inequality (5.8) with k = r and δ0 = (1/2) min{δ1, δ2}.
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