
Characterization of Rankings Generated by

Linear Discriminant Analysis

Hidehiko Kamiya
Okayama University, Okayama, Japan

and
Akimichi Takemura

The University of Tokyo, Tokyo, Japan

August, 2002

Abstract

Pairwise linear discriminant analysis can be regarded as a process to
generate rankings of the populations. But in general, not all rankings are
generated. We give a characterization of generated rankings. We also
derive some basic properties of this model.
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1 Introduction

Consider the problem of linear discriminant analysis among m normal popu-

lations in Rn with equal covariance matrices: Nn(µi, Σ), i = 1, 2, . . . ,m. We

assume that Σ is known, and deal with the canonical case Σ = I (the identity

matrix). In each pairwise comparison of populations, Fisher’s discriminant hy-

perplane in this setting is just the bisector of the line segment connecting the

means of the two populations in question, and so the nearer population in the

Euclidean distance is selected (Muirhead (1982), Seber (1984)). Here, we are

identifying the populations with their means. Thus, Fisher’s linear discriminant

rule among these m populations takes the following form: Allocate a test sample

1



point x ∈ Rn to the nearest population.

But we often have an interest not only in the most probable population but

in the second most, the third most,..., and the mth most (or the least) probable

populations. That is, we want to rank the m populations from the most probable

to the least probable one. In such a case, Fisher’s rule suggests the ranking rule

according to the distances to the populations: the nearest population is ranked

first, the second nearest ranked second, and so on.

In terms of the division of the sample space Rn by discriminant hyperplanes,

this rule is equivalent to the following. The whole Rn is divided into regions

by m(m − 1)/2 discriminant hyperplanes, and the order of distances to the

populations is the same at all points in each such region. So each region can be

indexed by the ranking determined by that order. Now the rule is: Give a test

sample point the ranking which indexes the region where the point lies.

In this way, pairwise discriminant analysis can be regarded as a process to

generate rankings among the m populations. However, unless the dimension

n is large enough compared with the number of populations m, not all the m!

rankings are generated. So the questions arise as to (Q-1) how many and (Q-2)

what kind of rankings are generated.

Actually, the model discussed so far is also known as the ideal point model

or the unfolding model, and is widely used in applied statistics such as psycho-

metrics, marketing research, etc. (Carroll (1980), Carroll and De Soete (1991)).

Furthermore, many variants and generalizations of this model are devised and

utilized for practical data analysis in those fields (DeSarbo and Hoffman (1987),

Takane (1987, 1989a, 1989b), Takane, Bozdogan and Shibayama (1987)). How-

ever, although a lot of effort has been put into the development of this model for
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practical purposes, theoretical investigation does not seem to have been much

conducted.

Moreover, in social choice theory, this model has been common under the

name Euclidean preferences. One can avoid voting cycles (known as Condorcet’s

paradox) or escape the dictatorship conclusion of Arrow’s impossibility theorem

by assuming some similarity of preferences across society (Mas-Colell, Whinston

and Green (1995)). Caplin and Nalebuff (1988) assume Euclidean preferences

as a restriction on individual preferences, and, with some restriction on the

distribution of preferences, establish the existence of a super-majority winner.

The essential feature of Euclidean preferences to their results is the division of Rn

by hyperplanes, and generalization to “intermediate preferences” (Grandmont

(1978)) or “linear preferences” (Caplin and Nalebuff (1991a)) is possible from

this perspective; see Caplin and Nalebuff (1988, 1991a). However, in spite of

its considerable significance, this model has not been studied deeply enough

in the social choice literature either. For instance, concerning (Q-1) above,

Caplin and Nalebuff (1988, 1991b) only state that all m! rankings are generated

when m ≤ n + 1 and that some of the m! rankings are ruled out when m >

n + 1. (Proposition 1 of Caplin and Nalebuff (1988), Proposition 8 of Caplin

and Nalebuff (1991b)).

Recently, Kamiya and Takemura (1997, 2000) began to study theoretical

questions about this model, and gave a complete answer to question (Q-1) by

using the theory of hyperplane arrangements. But the second question (Q-2) is

much more difficult, and they gave only a partial answer.

By finding a characterization of generated rankings, the present paper pro-

vides a complete answer to (Q-2), in the sense that for each ranking we can easily
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determine whether it is a) generated as an unbounded region, b) generated as

a bounded region, or c) not generated. Also, this characterization will be used

to provide another derivation of the answer to (Q-1), i.e., the formula for the

number of generated rankings. Moreover, the paper derives a number of basic

properties of the model. For example, it is shown that a “neutral” population

can never be ranked last.

The distinction between Kamiya and Takemura (1997, 2000) and the present

paper is as follows: In Kamiya and Takemura (1997, 2000), we embedded the

sample space Rn in Rm−1—the “right” space in the sense that it is the smallest

space where all m! rankings are generated; in the present paper, on the other

hand, we embed Rn in Rn+1, and this makes central arrangements serve as a

building block in the study of non-central arrangements in Rn.

Throughout the paper, we make extensive use of the theory of hyperplane ar-

rangements. Application of hyperplane arrangements to probability and statis-

tics may also be found in Brown and Diaconis (1998) and Bidigare, Hanlon and

Rockmore (1999). For the theory of hyperplane arrangements, the reader is

referred to the excellent book by Orlik and Terao (1992). We use this book as a

general reference for definitions and results concerning arrangements of hyper-

planes. For basic concepts about lattices and order, Davey and Priestley (2002)

is a nice introduction.

The organization of this paper is as follows. In Section 2, we define several

concepts used throughout the paper. In Section 3, we derive main results of this

paper. Specifically, we give a complete characterization of generated rankings.

In addition, using this result on the characterization of generated rankings, we

give another proof of the formulae for the numbers of various rankings in Kamiya
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and Takemura (1997, 2000). In Section 4, we find some properties when there is

a neutral population. In Section 5, we suggest a future direction of our research.

2 Preliminaries

In this section, we introduce several concepts needed in the paper.

Suppose we are given ν1, . . . , νM ∈ RN .

We say that the vectors ν1, . . . , νM are lumped together iff, when regarded

as points in RN , they are contained in an open halfspace determined by a

hyperplane passing through the origin:

{ν ∈ RN : νT x > 0}, ∃x ∈ RN . (1)

That is, ν1, . . . , νM are lumped together iff νT
1 x > 0, . . . , νT

Mx > 0 for some

x ∈ RN . Unless otherwise stated, we agree that a halfspace always means one

determined by a hyperplane going through the origin, i.e., a homogeneous half-

space. We call the x in (1) the direction of that open halfspace. Furthermore,

when the last coordinate of x = (x1, . . . , xN )T is positive xN > 0 (resp. nega-

tive xN < 0), we say x is upward (resp. downward); when xN is zero, x is said

to be horizontal.

On the other hand, we say ν1, . . . , νM are spread out iff there exist non-

negative c1, . . . , cM ∈ R such that (c1, . . . , cM ) 6= (0, . . . , 0) and

c1ν1 + · · ·+ cMνM = 0.

Then we know the following fact, which is an easy consequence of Farkas’

Lemma (Ziegler (1995)).

Gordan’s Theorem. For any given ν1, . . . , νM ∈ RN , one and only one

of the following two alternatives holds: (i) ν1, . . . , νM are lumped together; (ii)
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ν1, . . . , νM are spread out.

Next we define the concept of non-degeneracy in our context. We say that

the points ν1, . . . , νM ∈ RN are non-degenerate iff for any l ≤ N, any collection

of l vectors from {νi − νj : i < j} in which more than l different points νi

appear is linearly independent. Note that our definition of non-degeneracy for

discriminant analysis is stronger than the usual definition of general position in

convex analysis (Brøndsted (1983), p.10).

3 Main results

Suppose we are given µ1, . . . , µm ∈ Rn. We write µ̃i = (µT
i ,−‖µi‖2/2)T , i =

1, . . . , m.

Throughout the paper, we make the following assumptions:

Assumptions.

(A-1) Points µ1, . . . , µm ∈ Rn are non-degenerate.

(A-2) Points µ̃1, . . . , µ̃m ∈ Rn+1 are non-degenerate.

We denote by (i1, i2, . . . , im) an ordering of {1, 2, . . . , m} in which i1 is ranked

first, i2 is ranked second, and so on. When

{x ∈ Rn : ‖x− µi1‖ < ‖x− µi2‖ < · · · < ‖x− µim‖} (2)

is non-empty, we index this region by (i1, i2, . . . , im), and say that ordering

(i1, i2, . . . , m) is generated. Moreover, we identify region (2) with ordering

(i1, i2, . . . , im) and say something like “Region (i1, i2, . . . , im) arises.” In the

so-called ideal point model, an individual with an “ideal point” x ∈ Rn ranks

given m objects µ1, . . . , µm ∈ Rn as (i1, i2, . . . , im) in order of his/her prefer-

ence iff ‖x−µi1‖ < ‖x−µi2‖ < · · · < ‖x−µim‖. So we can say that the above

indexing of regions is the one based on the ideal point model. As was explained
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Figure 1: Generated rankings for a case of n = 1, m = 4

1 2 3 4

(1,2,3,4) (2,1,3,4) (2,3,1,4)

(2,3,4,1)

(3,2,4,1) (3,4,2,1) (4,3,2,1)

in the Introduction, Fisher’s linear discriminant functions for all pairwise com-

parisons of m normal populations Nn(µi, I), i = 1, 2, . . . , m, lead to the ranking

rule based on this indexing of regions.

We first note the following equivalences:

Region (i1, i2, . . . , im) is non-empty

⇐⇒ ∃x ∈ Rn : ‖x− µi1‖ < ‖x− µi2‖ < · · · < ‖x− µim‖

⇐⇒ ∃x : µT
i1x−

‖µi1‖2
2

> µT
i2x−

‖µi2‖2
2

> · · · > µT
im

x− ‖µim‖2
2

⇐⇒ ∃x : (µij − µij+1)
T x +

(‖µij‖2
−2

− ‖µij+1‖2
−2

)
> 0, j = 1, 2, . . . , m− 1,

⇐⇒ ∃x̃ =
(

x
1

)
∈ Rn+1 : (µ̃ij − µ̃ij+1)

T x̃ > 0, j = 1, 2, . . . , m− 1.

We are now in a position to state the main results. Relabeling i1, i2, . . . , im,

we may only consider (1, 2, . . . ,m). Illustrations of the following results for a

case of n = 1, m = 4 are given in Figures 1 and 2.

(1) When µ̃1 − µ̃2, µ̃2 − µ̃3, . . . , µ̃m−1 − µ̃m (or equivalently, all µ̃i − µ̃j

with i < j) are spread out, ordering (1, 2, . . . ,m) does not arise. In this case,

neither does the reverse ordering (m,m− 1, . . . , 1).

Proof of (1). Since µ̃i − µ̃i+1, i = 1, 2, . . . , m − 1, are spread out, there

does not exist an x̃ = (xT , xn+1)T ∈ Rn+1 such that (µ̃i − µ̃i+1)T x̃ > 0, i =

1, 2, . . . , m−1; still less such an x̃ with xn+1 = 1. Therefore, ordering (1, 2, . . . , m)
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Figure 2: Characterization of rankings for n = 1, m = 4

(2,4,1,3)  not generated;   (3,4,1,2) not generated

Case (1) : (2,4,1,3)

1 2 3 4

(1,2,3,4) generated, unbounded; (4,3,2,1) generated, unbounded

Case (2-1) : (1,2,3,4) 

horizontal

1 2 3 4

(2,3,1,4) generated, bounded;    (4,1,3,2) not generated

upward

Case (2-2-1) : (2,3,1,4)

1 2 3 4

8



does not arise in this case.

Next we have to show that the reverse ordering is not generated either. But

this is obvious, since in this case µ̃i+1− µ̃i = −(µ̃i− µ̃i+1), i = 1, 2, . . . ,m− 1,

are also spread out.

This situation is illustrated by the upper part of Figure 2. Q.E.D.

(2) When µ̃1 − µ̃2, µ̃2 − µ̃3, . . . , µ̃m−1 − µ̃m (or equivalently, all µ̃i − µ̃j

with i < j) are lumped together, the situation falls into two cases:

(2-1) There exists an open halfspace containing points µ̃i−µ̃i+1 ∈ Rn+1, i =

1, 2, . . . , m − 1, whose direction is horizontal. Or equivalently, the projections

of µ̃i − µ̃i+1, i = 1, 2, . . . ,m − 1, onto the first n coordinates µi − µi+1, i =

1, 2, . . . , m − 1, are lumped together. In this case, ordering (1, 2, . . . , m) arises

as an unbounded region. Furthermore, the same is true for the reverse ordering

in this case.

Proof of (2-1). Since µ1−µ2, µ2−µ3, . . . , µm−1−µm are lumped together,

there exists an x ∈ Rn such that

(µi − µi+1)T x > 0, i = 1, 2, . . . , m− 1. (3)

For this x = (x1, . . . , xn)T , we can take xn+1 > 0 so small that (µi−µi+1)T x+
(
‖µi‖2
−2 − ‖µi+1‖2

−2

)
xn+1 > 0 for all i = 1, 2, . . . , m − 1. Dividing both sides by

xn+1, we obtain (µi − µi+1)T x′ +
(
‖µi‖2
−2 − ‖µi+1‖2

−2

)
> 0, i = 1, 2, . . . ,m − 1,

with x′ = x/xn+1. Thus we see that the region indexed by (1, 2, . . . , m) arises.

Next, since x′ satisfies (µi − µi+1)T x′ > 0, we have

(µi − µi+1)T (x0 + cx′) +
(‖µi‖2

−2
− ‖µi+1‖2

−2

)

=
{

(µi − µi+1)T x0 +
(‖µi‖2

−2
− ‖µi+1‖2

−2

)}

+c(µi − µi+1)T x′ > 0, i = 1, 2, . . . ,m− 1,
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for any c ≥ 0 and any x0 in the region. Hence, the region recedes in the direction

of x 6= 0, and this proves that ordering (1, 2, . . . , m) arises as an unbounded

region.

Finally, to see the reverse ordering also arises as an unbounded region, just

notice that µi+1 − µi = −(µi − µi+1), i = 1, 2, . . . , m − 1, are also lumped

together.

This case is illustrated by the middle part of Figure 2. In Figure 2, the thick

arrow represents the horizontal direction of the halfspace. Q.E.D.

(2-2) There does not exist an open halfspace containing points µ̃i − µ̃i+1 ∈

Rn+1, i = 1, 2, . . . , m − 1, whose direction is horizontal. Or equivalently, the

projections of µ̃i − µ̃i+1, i = 1, 2, . . . , m − 1, onto the first n coordinates µi −

µi+1, i = 1, 2, . . . , m− 1, are spread out. In this case, one and only one of the

following two situations occurs:

(2-2-1) The direction of any open halfspace containing µ̃i − µ̃i+1, i =

1, 2, . . . , m− 1, is upward, regardless of the choice of such an open halfspace.

(2-2-2) The direction of any open halfspace containing µ̃i − µ̃i+1, i =

1, 2, . . . , m−1, is downward, regardless of the choice of such an open halfspace.

Proof of (2-2). Suppose there existed x̃ = (xT , xn+1)T ∈ Rn+1, xn+1 > 0,

and ỹ = (yT , yn+1)T ∈ Rn+1, yn+1 < 0, such that (µ̃i − µ̃i+1)T x̃ > 0, (µ̃i −

µ̃i+1)T ỹ > 0, i = 1, 2, . . . ,m − 1. Then, z̃ = (zT , zn+1)T = cx̃ + (1 − c)ỹ

with c = yn+1/(yn+1 − xn+1) would satisfy (µi − µi+1)T z = (µ̃i − µ̃i+1)T z̃ =

c(µ̃i−µ̃i+1)T x̃+(1−c)(µ̃i−µ̃i+1)T ỹ > 0, i = 1, 2, . . . ,m−1, contradicting the

fact that µi − µi+1, i = 1, 2, . . . , m − 1, are spread out. The discussion above

shows that the direction of an open halfspace containing points µ̃i − µ̃i+1, i =

1, 2, . . . , m − 1, is always upward or always downward, depending only on the
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given µ̃i − µ̃i+1, i = 1, 2, . . . , m− 1. Q.E.D.

In the case of (2-2-1), ordering (1, 2, . . . , m) arises as a bounded region,

whereas the reverse ordering does not arise.

Proof. In this case, there exists an x̃ = (xT , xn+1)T ∈ Rn+1, xn+1 > 0,

such that

(µ̃i − µ̃i+1)T x̃ > 0, i = 1, 2, . . . , m− 1. (4)

Dividing both sides of this inequality by xn+1, we find that ordering (1, 2, . . . ,m)

arises in this case.

We move on to showing that the region indexed by (1, 2, . . . ,m) is bounded.

Suppose to the contrary that the region in question is unbounded. Then, the

closure of the region is a non-empty, unbounded polyhedral set. Thus this

polyhedral set recedes in a certain direction x 6= 0:

(µi − µi+1)T (x0 + cx) +
(‖µi‖2

−2
− ‖µi+1‖2

−2

)
≥ 0, i = 1, 2, . . . , m− 1, (5)

for all c ≥ 0 and x0 in the polyhedral set. Now, since µi−µi+1, i = 1, 2, . . . , m−

1, are spread out, the direction of recession x cannot satisfy (µi−µi+1)T x > 0

for all i = 1, 2, . . . , m − 1; there must be some i1 < i2 < · · · < ik such that

(µij − µij+1)T x ≤ 0, j = 1, 2, . . . , k. We claim that these inequalities are

actually all equalities, for if there existed some ij satisfying (µij−µij+1)T x < 0,

then (µij −µij+1)T (x0 +cx)+
(
‖µij

‖2
−2 − ‖µij+1‖2

−2

)
< 0 for all sufficiently large

c, in contradiction to (5). Hence we have

(µij − µij+1)T x = 0, j = 1, 2, . . . , k.

We will show that k ≤ n− 1. If k ≥ n, then in view of Assumption (A-1), any

subcollection of n vectors from {µij − µij+1 : 1 ≤ j ≤ k} would be linearly

independent, which is impossible since these n vectors lie in the orthogonal
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complement of the line spanned by vector x. So k cannot exceed n− 1. Now we

consider the following central arrangement of hyperplanes A = {Hij ,ij+1 : 1 ≤

j ≤ k}, where Hij ,ij+1 = {x ∈ Rn : (µij − µij+1)T x = 0}. By Assumption (A-

1), it can easily be checked that the Poincaré polynomial of A (Orlik and Terao

(1992), Definition 2.48) is π(A, t) = (1 + t)k. So Zaslavsky’s result (Zaslavsky

(1975) or Orlik and Terao (1992), Theorem 2.68) implies that the number of

regions of A is π(A, 1) = 2k. Therefore, we can take another point x′ ∈ Rn,

sufficiently close to x, which satisfies (µij−µij+1)T x′ > 0, j = 1, 2, . . . , k, while

keeping the relations (µi − µi+1)T x′ > 0 for i /∈ {ij : 1 ≤ j ≤ k} : that is,

(µi − µi+1)T x′ > 0

for all i = 1, 2, . . . ,m − 1. But this contradicts the fact that µi − µi+1, i =

1, 2, . . . , m− 1, are spread out. In this way, we arrive at the conclusion that the

region in question is bounded.

Finally, we prove that the reverse ordering is not generated. Suppose it

were generated. Then there would exist an x̃ = (xT , 1)T ∈ Rn+1 satisfying

(µ̃i+1 − µ̃i)T x̃ > 0, i = 1, 2, . . . , m − 1, and −x̃ = (−xT ,−1)T would meet

(µ̃i − µ̃i+1)T (−x̃) > 0, i = 1, 2, . . . , m − 1. But this is a contradiction, since

in the case we are considering, the direction of any open halfspace containing

µ̃i − µ̃i+1, i = 1, 2, . . . ,m− 1, must be upward.

This case is illustrated by the lower part of Figure 2. Q.E.D.

In the case of (2-2-2), ordering (1, 2, . . . , m) does not arise, while the reverse

ordering arises as a bounded region.

Proof. In this case, there does not exist an x̃ = (xT , xn+1)T ∈ Rn+1

satisfying (4) with xn+1 > 0, much less with xn+1 = 1. Hence, (1, 2, . . . ,m)

does not arise.
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The proof of the fact that the reverse ordering arises as a bounded region

is easy: Just notice that there exists an x̃ = (xT , xn+1)T ∈ Rn+1, xn+1 < 0,

satisfying (4), and rewrite the left-hand side of (4) as (µ̃i+1 − µ̃i)T (−x̃). Then

we can apply case (2-2-1). Q.E.D.

The indeterminacy of the first n coordinates of the direction vector x̃ corre-

sponds to the translation invariance of the discriminant analysis in Rn. When

we translate the origin by a so that

x 7→ x− a, µi 7→ µi − a, i = 1, . . . , m,

the problem remains the same. Therefore, it is natural that only the last coor-

dinate of x̃ is related to the characterization of generation of rankings.

The considerations so far are summarized in Theorem 3.1 below. Let us say

that ordering (i1, i2, . . . , im) is consistent with µ1, . . . , µm (resp. µ̃1, . . . , µ̃m) iff

µij − µij+1 , j = 1, . . . , m− 1 (resp. µ̃ij − µ̃ij+1 , j = 1, . . . ,m− 1) are lumped

together. Note that if µij − µij+1 , j = 1, . . . ,m − 1, are lumped together,

then so are all µij − µik
, j < k. Similarly for µ̃1, . . . , µ̃m. In the so-called

ideal vector model, an individual with an “ideal vector” x ranks µ1, . . . , µm as

(i1, i2, . . . , im) iff µT
i1

x > µT
i2

x > · · · > µT
im

x. But this condition can be written

as (µij − µij+1)
T x > 0, j = 1, . . . , m − 1. So we can say that (i1, i2, . . . , im)

is consistent with µ1, . . . , µm iff (i1, i2, . . . , im) is an admissible ordering in the

ideal vector model in the sense that there exists an ideal vector x ∈ Rn which

yields the ordering (i1, i2, . . . , im). The same can be said about (i1, i2, . . . , im)

being consistent with µ̃1, . . . , µ̃m.

Theorem 3.1. Assume µ1, . . . , µm ∈ Rn satisfy (A-1) and (A-2). Then we

have the following:

(1) Suppose (i1, i2, . . . , im) is not consistent with µ̃1, . . . , µ̃m. In this case,
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ordering (i1, i2, . . . , im) does not arise, and neither does the reverse ordering

(im, im−1, . . . , i1).

(2) Suppose (i1, i2, . . . , im) is consistent with µ̃1, . . . , µ̃m.

(2-1) If (i1, i2, . . . , im) is consistent also with µ1, . . . , µm, then ordering

(i1, . . . , im) arises as an unbounded region and the same is true for the reverse

ordering.

(2-2) If (i1, i2, . . . , im) is not consistent with µ1, . . . , µm, then one and only

one of the following two situations occurs:

(2-2-1) Ordering (i1, i2, . . . , im) arises as a bounded region, while the reverse

ordering does not arise.

(2-2-2) Ordering (i1, i2, . . . , im) does not arise, whereas the reverse ordering

arises as a bounded region.

Case (2-2-1) occurs when the direction of an open halfspace containing µ̃ij −

µ̃ij+1 , j = 1, 2, . . . , m−1, is upward, and case (2-2-2) occurs when such direction

is downward; whether it is upward or downward is determined uniquely by the

given µ1, . . . , µm.

Remark 3.1. If (i1, i2, . . . , im) is consistent with µ1, . . . , µm, it is neces-

sarily consistent with µ̃1, . . . , µ̃m.

Consider the pairing of orderings which are reverse to each other. In the

special case n = m− 2, at least one ordering in each pair arises:

Corollary 3.1. When n = m − 2, at least one of (i1, i2, . . . , im) and

(im, im−1, . . . , i1) arises for any ordering (i1, i2, . . . , im).

Proof. It suffices to show that µ̃ij − µ̃ij+1 , j = 1, 2, . . . , m− 1, are always

lumped together so that case (1) never happens. But by virtue of Assumption

(A-2), these m−1 = n+1 vectors µ̃i1− µ̃i2 , µ̃i2− µ̃i3 , . . . , µ̃im−1− µ̃im in Rn+1
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are linearly independent, so they are not spread out. Q.E.D.

Corollary 3.1 implies that when n = m− 2, missing rankings are completely

characterized as the reverse rankings of bounded regions.

Corollary 3.2. When n ≥ m − 1, all m! orderings are generated as un-

bounded regions.

Proof. By an argument similar to the one in the proof of Corollary 3.1, we

can see that when n ≥ m−1, vectors µij−µij+1 , j = 1, 2, . . . , m−1, are lumped

together for any ordering (i1, i2, . . . , im). In view of Remark 3.1, we conclude

that case (2-1) always happens. Q.E.D.

We have seen our main theorem implies, as its simple corollaries, the results

in Kamiya and Takemura (1997) concerning the characterization of non-arising

regions. Next we move on to seeing that the results in Kamiya and Takemura

(1997) about the numbers of various kinds of regions can also be obtained from

the same theorem. Specifically, thanks to Theorem 3.1, the problem of counting

the numbers of regions reduces to that of counting the numbers of consistent

orderings as follow.

By Theorem 3.1, we find that the number of unbounded regions is equal

to the number of orderings for which case (2-1) happens. Recalling Remark

3.1, we know that case (2-1) happens when and only when the ordering in

question, (i1, i2, . . . , im), is consistent with µ1, . . . , µm. Therefore, the number

of unbounded regions is the same as the number of orderings (i1, i2, . . . , im)

which are consistent with µ1, . . . , µm.

On the other hand, according to Theorem 3.1, the number of bounded regions

is equal to the number of orderings for which (2-2-1) occurs, which in turn is

equal to half the number of orderings for which (2-2) occurs. Now the number of
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orderings for which (2-2) happens is equal to the number of orderings for which

(2) occurs, minus the number of orderings for which (2-1) occurs, that is, the

number of orderings consistent with µ̃1, . . . , µ̃m, minus the number of orderings

consistent with µ1, . . . , µm.

Finally, the number of all arising regions is given, of course, by the sum of

the number of bounded regions and the number of unbounded ones.

Thus, we can express the numbers of regions in terms of the numbers of

consistent orderings, which are given with the help of the following proposition.

Proposition 3.1. Suppose ν1, . . . , νm ∈ RN are non-degenerate. Then the

number of orderings (i1, i2, . . . , im) for which νij − νij+1 , j = 1, 2, . . . ,m − 1,

are lumped together is given by

c(m,N) =

{
2(Sm

m−N+1 + Sm
m−N+3 + · · ·+ Sm

m ) when N is odd,
2(Sm

m−N+1 + Sm
m−N+3 + · · ·+ Sm

m−1) when N is even,

where Sm
k are the signless Stirling numbers of the first kind: t(t+1) · · · (t+m−

1) =
∑

k Sm
k tk.

For Stirling numbers, see Pólya, Tarjan and Woods (1983) or Riordan (1978).

The proof of Proposition 3.1 will be given in the Appendix.

By the argument preceding Proposition 3.1, the number of unbounded re-

gions is

c(m,n).

Similarly, the number of bounded regions is

1
2
{c(m, n + 1)− c(m,n)} .

Adding these two numbers, we get the number of all regions as

c(m, n) +
1
2
{c(m, n + 1)− c(m,n)} =

1
2
c(m, n) +

1
2
c(m, n + 1).
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In this way, we obtain the following corollary:

Corollary 3.3. Suppose µ1, . . . , µm ∈ Rn satisfy (A-1) and (A-2). Then

the number of unbounded regions is
{

2(Sm
m−n+1 + Sm

m−n+3 + · · ·+ Sm
m ) when n is odd,

2(Sm
m−n+1 + Sm

m−n+3 + · · ·+ Sm
m−1) when n is even,

the number of bounded regions is

Sm
m−n − Sm

m−n+1 + Sm
m−n+2 − · · ·+ (−1)nSm

m ,

and the number of all regions is

Sm
m−n + Sm

m−n+1 + Sm
m−n+2 + · · ·+ Sm

m .

Remark 3.2. The formulae in Corollary 3.3 are trivially true when n ≥

m− 1. This can be confirmed from Corollary 3.2 and relations (7), (8) and (9)

in the Appendix.

4 A neutral population

In this section, we examine a particular case where we have a “neutral” alterna-

tive population. By specializing to this particular situation, we can find some

more specific properties than were obtained in the preceding section.

Suppose there exists an i0 ∈ {1, 2, . . . , m} such that µi0 is contained in the

polytope spanned by the other µi, i = 1, 2, . . . , m, i 6= i0 : µi0 ∈ conv{µi : i 6=

i0}. In this case, we will say µi0 is neutral among {µ1, . . . , µm}.

Remark 4.1. Under the assumption of non-degeneracy, it can easily be

checked that µi0 is neutral among {µ1, . . . , µm} if and only if µi − µi0 , i =

1, 2, . . . , m, i 6= i0, are spread out.
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We begin by seeing that a neutral alternative can never be ranked last.

Theorem 4.1. Suppose µi0 is neutral among {µ1, . . . , µm}. Then, for any

ordering (j1, . . . , jm−1) of {1, 2, . . . , m}−{i0}, ordering (j1, . . . , jm−1, i0) is not

generated.

Proof. Without loss of generality, we can assume i0 = m and (j1, . . . , jm−1) =

(1, . . . ,m − 1). It is sufficient to show that for ordering (1, . . . , m − 1,m), case

(2) necessarily means case (2-2-2) so that cases other than (1) and (2-2-2) do

not happen. Since the problem is invariant under translation, we may assume

µm = 0.

Suppose (1, . . . , m−1,m) is consistent with µ̃1, . . . , µ̃m. Then there exists an

x̃ = (xT , xn+1)T ∈ Rn+1 such that (µ̃i − µ̃j)T x̃ > 0 for all i < j. In particular,

the following inequality holds for each i ≤ m− 1 :

µT
i x− ‖µi‖2

2
· xn+1 > 0. (6)

Since µm = 0 is neutral among {µ1, . . . , µm}, we have that µi, i = 1, 2, . . . ,m−

1, are spread out by Remark 4.1. So the first term on the left-hand side of (6) is

zero or negative for some i = 1, 2, . . . ,m− 1, which implies that xn+1 must be

negative. Therefore, case (2-2-2) occurs for (1, . . . , m−1,m), and this completes

the proof. Q.E.D.

As a simple corollary, we obtain a property concerning boundedness of

Voronoi polyhedra. Recall that the Voronoi polyhedron associated with µi0

is the set of points from which µi0 is not farther than any other alternative

µi, i 6= i0 : {x ∈ Rn : ‖x − µi0‖ ≤ ‖x − µi‖ for all i 6= i0} (Okabe, Boots and

Sugihara (2000)).

Corollary 4.1. Suppose µi0 is neutral among {µ1, . . . , µm}. Then, the

Voronoi polyhedron associated with µi0 is bounded.
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Figure 3: Neutral alternative

P

P

1

2

Proof. It is sufficient to verify that no ordering with i0 in the first position

arises as an unbounded region.

Consider the ordering

(i0, j1, . . . , jm−1),

where (j1, . . . , jm−1) is an arbitrary ordering of {1, 2, . . . , m} − {i0}. Then we

have by Theorem 4.1 that the reverse ordering (jm−1, . . . , j1, i0), with i0 ranked

last, does not arise. This implies that case (1) or (2-2-2) happens for the reverse

ordering, which in turn means that case (1) or (2-2-1) occurs for the original

ordering. In particular, case (2-1) does not happen for the original ordering, so

this ordering never arises as an unbounded region. Q.E.D.

We have seen in Theorem 4.1 that a neutral alternative µi0 cannot be ranked

last; we now show that when µi0 lies “deep inside” the polytope conv{µi : i 6=

i0}, it cannot be ranked even second last, third last, and so on. This situation is

illustrated in Figure 3. Denote the set of all vertices of a polytope P by vert(P ).

Theorem 4.2. Suppose µi0 is neutral among {µ1, . . . , µm}−vert(conv{µi :

i 6= i0}) as well as among {µ1, . . . , µm}. Then, orderings with i0 in the last or
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second last position are not generated.

Note that if µi0 is neutral among {µ1, . . . , µm} − vert(conv{µi : i 6= i0}), it

is also neutral among {µ1, . . . , µm}.

Proof. Write Alt1 = {µ1, . . . , µm}, P1 = conv(Alt1 − {µi0}) and V1 =

vert(P1).

Fix an arbitrary point x in Rn, and consider the closed ball B centered at

x with radius ‖µi0 − x‖. Since µi0 is neutral among Alt1, it is in P1 and there

exists a vertex of P1, say µj1 , which is not in B. Note that µi0 /∈ V1.

This consideration implies that when µi0 is neutral among Alt1, at least one

alternative, µj1 , is ranked lower than i0 at an arbitrary x ∈ Rn.

Repeat the argument above with Alt2 = Alt1 − V1 instead of Alt1, noticing

that µi0 ∈ Alt2. Then we obtain the existence of µj2 ∈ V2 = vert(P2), P2 =

conv(Alt2 − {µi0}), which is not in B. Here, since µj2 ∈ V2 ⊂ Alt2 − {µi0} =

(Alt1 − {µi0}) − V1 and µj1 ∈ V1, we can see that µj2 and µj1 are different.

Thus, at least two alternatives are ranked lower than i0. Q.E.D.

Actually, the proof of Theorem 4.2 contains the proof of Theorem 4.1, but

the latter is based on the argument in the preceding section.

Evidently, continuing this process, we can obtain similar conditions which

guarantee that orderings with i0 in the last three, last four,..., positions are not

generated.

In parallel with Corollary 4.1, we get the following corollary:

Corollary 4.2. Suppose µi0 is neutral among {µ1, . . . , µm}−vert(conv{µi :

i 6= i0}) as well as among {µ1, . . . , µm}. Then, the union of closures of regions

where i0 is ranked first or second is bounded.
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5 Concluding remarks

In this paper we gave a complete characterization of generated rankings. This

characterization allows us to easily determine which rankings are generated

and which of the generated rankings have unbounded regions. In addition we

investigated some properties of neutral alternatives.

However, there are some harder problems to be solved. One such problem

is to determine all possible subsets of rankings which may be obtained from

some pairwise discriminant analysis of m populations in Rn: From Corollary

3.3 we know that
∑m

k=m−n Sm
k rankings are generated from each discriminant

analysis of m populations in Rn. Suppose that we are given a particular subset

of
∑m

k=m−n Sm
k rankings. At the moment it seems difficult to determine whether

there exist µ1, . . . , µm ∈ Rn such that exactly those rankings are generated by

the discriminant analysis of µ1, . . . , µm.

6 Appendix

In this Appendix, we prove Proposition 3.1.

By the argument just before Theorem 3.1, the desired number is equal to the

number of generated orderings in the ideal vector model. Hence the problem

is equivalent to that of counting the number of regions of the arrangement of

hyperplanes A(m,N) = {Hij : 1 ≤ j < i ≤ m}, where

Hij =
{
x ∈ RN : νT

i x = νT
j x

}
.

Write the intersection poset of A(m,N) as L(m,N) = L(A(m,N)); the

partial order on L(m,N) is defined by reverse inclusion (Orlik and Terao (1992),

Definition 2.1). Then each element of L(m,N) can be indexed by a partition of
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m indices into blocks; the element of L(m,N) indexed by partition J is denoted

XJ .

Lemma 6.1 (Kamiya and Takemura (2000), Lemma 3.1). Suppose ν1, . . . , νm ∈

RN are non-degenerate with N ≤ m − 1. Then, L(m,N) is isomorphic to the

poset Im−N of partitions of m indices into one or k ≥ m − N + 1 blocks:

L(m,N) ' Im−N . That is, Im−N 3 J 7→ XJ ∈ L(m,N) is bijective, and J1 is

a refinement of J2 iff XJ1 ≤ XJ2 . Furthermore, the rank function is given by

r(XJ) =

{
m− k, J with k ≥ m−N + 1 blocks,
N, J = {{1, 2, . . . , m}}.

Now, it is well known that the partition lattice of m indices is isomorphic to

the lattice of the braid arrangement in Rm (Orlik and Terao (1992), Proposi-

tion 2.9). Moreover, the Poincaré polynomial of the braid arrangement in Rm is

known to be (1+t)(1+2t) · · · (1+(m−1)t) (Orlik and Terao (1992), Proposition

2.54), which can be written as
∑m−1

l=0 (−1)lSm
m−l(−t)l. Referring to this polyno-

mial, we immediately obtain the Poincaré polynomial of A(m,N), N ≤ m− 1,

as

π(A(m,N), t) =
N−1∑

l=0

(−1)lSm
m−l(−t)l +

{
−

N−1∑

l=0

(−1)lSm
m−l

}
(−t)N .

Applying Zaslavsky’s result, we obtain the desired result for N ≤ m− 1.

The proposition is trivially true when N > m − 1. Just notice the follow-

ing two facts: (i) For any ordering (i1, i2, . . . , im), vectors νij − νij+1 , j =

1, 2, . . . , m− 1, are linearly independent and hence lumped together. Thus, the

number of consistent orderings is m!; (ii) The generating function t(t+1) · · · (t+
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m− 1) =
∑

k Sm
k tk of Sm

k implies

Sm
k = 0, k ≤ 0, (7)

Sm
1 + Sm

2 + · · ·+ Sm
m = m!, (8)

and

−Sm
1 + Sm

2 − · · ·+ (−1)mSm
m = 0, m ≥ 2. (9)
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