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Abstract

This paper investigates the complexity of steepest descent algorithms for two
classes of discrete convex functions, M-convex functions and L-convex functions.
Simple tie-breaking rules yield complexity bounds that are polynomials in the di-
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1 Introduction

Discrete convex functions have long been attracting research interest in the area of dis-
crete optimization. Miller [15] was a forerunner in the early 1970’s. The relationship
between submodularity and convexity was discussed in Edmonds [3], and deeper under-
standing of this relationship was gained in 1980’s by Frank [5], Fujishige [6] and Lovész
[13] (see also [7]). Favati and Tardella [4] introduced integrally convex functions to show
a local characterization for global minimality, and Dress—Wenzel [2] considered valuated
matroids in terms of a greedy algorithm. Recently, Murota [17, 18, 20, 21] advocates
“discrete convex analysis,” where M-convex and L-convex functions play central roles.
M?-convex and Lf-convex functions'), introduced respectively by Murota-Shioura [22]
and Fujishige-Murota [8], are variants of M-convex and L-convex functions. It is shown
in [8] that Li-convex functions are the same as submodular integrally convex functions
considered in [4].

Minimization of discrete convex functions is most fundamental in discrete optimiza-
tion. In fact, we have recently witnessed dramatic progress of algorithms for submodular
set-function minimization; see, e.g., Iwata [10], Iwata—Fleischer—Fujishige [11], Schrijver
[23], and a survey by McCormick [14].

M-convex function minimization contains the minimum-weight matroid-base prob-
lem (see, e.g., [1]) as a very special case. Minimization of an M-convex function on
{0, 1}-vectors is equivalent to maximization of a matroid valuation, for which the greedy
algorithm of Dress—Wenzel [2] works. The first polynomial time algorithm for general
M-convex functions is given by Shioura [24], and scaling algorithms are considered by
Moriguchi-Murota—Shioura [16], Tamura [26], and Shioura [25].

For L-convex function minimization the algorithm of Favati-Tardella [4], originally
meant for submodular integrally convex functions, works with slight modifications. It is
the first polynomial time algorithm for L-convex function minimization, but is not prac-
tical, being based on the ellipsoid method. A steepest descent algorithm is proposed by
Murota [19], with a subsequent improvement by Iwata [9] using a scaling technique. The
steepest descent algorithm heavily depends on algorithms for submodular set-function
minimization.

In this paper we investigate the complexity of steepest descent algorithms for M-
convex functions and L-convex functions. With certain simple tie-breaking rules we
can obtain complexity bounds that are polynomials in the dimension n of the variables
and the size K of the effective domain. Combination of the present complexity bound
with a standard scaling approach results in an efficient algorithm for L-convex function
minimization of complexity bounded by polynomials in n and log K. This is faster than

any other known algorithms for L-convex function minimization.

D “Mb-convex” should be read “M-natural-convex,” and similarly for “Li-convex.”



Some conventions are introduced. We consider functions defined on integer lattice
points that may possibly take +oo, ie., f : Z¥ — R U {+oo} with a finite set V of
cardinality n. The effective domain of f is denoted by

dom f = {z € ZV | f(z) < +o0}, (1)
and the /1-size of dom f by
Ky = max{[|z —y|1 | z,y € dom f}, (2)

where the ¢;-norm of a vector z = (z(v) | v € V) with components indexed by V is

designated by

llells =) lz(v)l.

veV
For a subset X of V' we denote by xx the characteristic vector of X; xx(v) equals one

or zero according to whether v belongs to X or not. For u € V' we denote x(, by xu-

2 M-convex Function Minimization

M-convex functions are defined in terms of a generalization of the exchange axiom for
matroids. We say that a function f : Z" — R U {400} with dom f # () is M-convex if

it satisfies the exchange axiom

(M-EXC) For z,y € dom f and u € supp™ (x—y), there exists v € supp™ (z—
y) such that

f@)+ f(y) =2 f(@ = xu+x0) + fy + Xu = X0)- (3)
The inequality (3) implicitly imposes the condition that z — x, + x» € dom f and
Y+ Xu — Xo € dom f for the finiteness of the right-hand side. It follows from (M-EXC)
that the effective domain of an M-convex function lies on a hyperplane {z € RY |
> wey z(v) = r} for some integer 7.

Global optimality for an M-convex function is characterized by local optimality.
Lemma 1 ([17, 20, 21]) For an M-convex function f and x € dom f, we have
f@) < fly) (vyeZ’) &= f(2) < fle—xutxw) Vu,veV). n

This local characterization of global minimality naturally suggests the following al-
gorithm of steepest descent-type [16], [19], [24].

Steepest descent algorithm for M-convex function f
S0: Find a vector x € dom f.
S1: Find w,v € V (u # v) that minimize f(x — xu + Xo)-
S2: If f(x) < f(x — xu + Xv), then stop (z is a minimizer of f).
S3: Set x := x — xu + X0 and go to S1.



Step S1 can be done with n? evaluations of function f. At the termination of the
algorithm in Step S2, x is a global optimum by Lemma 1. The function value f decreases
monotonically with iterations. This property alone does not ensure finite termination in
general, although it does if f is integer-valued and bounded from below.

The following is a key property of the steepest descent algorithm for M-convex func-
tions, showing an upper bound on the number of iterations in terms of the distance to
the optimal solution rather than in terms of the function value. We denote by z° the

initial vector found in Step SO.

Lemma 2 If f has a unique minimizer, say x*, the number of iterations is bounded by
|z = 2*[1/2.

(Proof) Put 2’ = & — x,, + xv in Step S2. By Lemma 3 below we have 2*(u) < z(u)—1 =
2/ (u) and z*(v) > z(v) +1 = 2/(v), which implies ||z’ — 2*||; = || — 2*||1 — 2. Note that

||z° — 2*||; is an even integer. ]

Lemma 3 ([24]) Let f: ZV — RU{+o0o} be an M-convex function with arg min f # (.
For x € dom f \ argmin f, let u,v € V be such that

f(@ = xu+x0) = S{rtlégf(x — Xs + Xt)-
Then u # v and there exists x* € argmin f with

¥ (u) < z(u) — 1, z*(v) > z(v) + 1. |

When given an M-convex function f, which may have multiple minimizers, we con-
sider a perturbation of the function so that we can use Lemma 2. Assume now that
[ has a bounded effective domain of ¢;-size K¢ in (2). We arbitrarily fix a bijection
@©:V —{1,2,...,n} to represent an ordering of the elements of V, put v; = ¢ ~1(3) for

1=1,...,n, and define a function f. by

n

fe(x) = f(a) + D& a(vi),

i=1
where € > 0. This function is M-convex, and, for a sufficiently small ¢, it has a unique
minimizer that is also a minimizer of f. Suppose that the steepest descent algorithm is

applied to the perturbed function f.. Since
el = xu + x0) = (2 = Xu + x0) — 7 + 91,
this amounts to employing a tie-breaking rule:
Take (u,v) that lexicographically minimizes (¢(u), —p(v)), (4)

in case of multiple candidates in Step S1 of the steepest descent algorithm applied to f.
Combination of this observation with Lemma 1 yields the following complexity bound,

where F; denotes an upper bound on the time to evaluate f.
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Theorem 1 For an M-convex function f with finite Ky, the number of iterations in
the steepest descent algorithm with tie-breaking rule (4) is bounded by Ky/2. Hence, if a

vector in dom f is given, the algorithm finds a minimizer of f in O(Fy - nQKf) time. W

Although a number of algorithms of smaller theoretical complexity are already known
for M-convex function minimization [24], [25], [26], the present analysis is intended
to reveal the most fundamental fact about M-convex function minimization. The tie-
breaking rule (4) as well as the steepest descent algorithm can be adapted to M®-convex

function minimization.

3 L-convex Function Minimization

L-convex functions are defined in terms of submodularity on integer lattice points. For
integer vectors p,q € ZY we denote by pV ¢ and p A ¢ the vectors of componentwise

maxima and minima of p and g, i.e.,

(pV @)(v) =max(p(v),q(v)), (pAg(v) =min(p(v),q(v))  (veEV).
We say that a function g : Z" — R U {400} with dom g # ) is L-convex if it satisfies

(SBF) g(p) +g(q) > g9(pVa)+g(pAq) (Vp.q e ZV),
(TRF) 3r € Rsuchthat g(p+1)=g(p)+r (¥peZ"),

where 1 = (1,1,...,1) € ZY. In this paper we assume r = 0, since otherwise g is not
bounded from below and does not have a minimum.

Global optimality for an L-convex function is characterized by local optimality.

Lemma 4 ([18, 20, 21]) For an L-convex function g with r = 0 in (TRF) and p €

dom g, we have
9(p) < gle) (VgeZ') < g(p) <glp+xx) (VX CV). =

This local characterization of global minimality naturally suggests the following al-

gorithm of steepest descent-type [19]. Recall our assumption: » = 0 in (TRF).

Steepest descent algorithm for L-convex function g
S0: Find a vector p € dom g.
S1: Find X C V that minimizes g(p + xx)-
S2: If g(p) < g(p + xx), then stop (p is a minimizer of g).
S3: Set p:=p+ xx and go to Sl.



Step S1 amounts to minimizing a set-function

pp(X) = g(p + xx) — 9(p)

over all subsets X of V. As a consequence of (SBF) this function is submodular, i.e.,
pp(X) + 0p(Y) 2 pp(X UY) 4 pp(XNY)  (VX,Y C V),

and can be minimized in strongly polynomial time (see, e.g., [10], [11], [14], [23]). At
the termination of the algorithm in Step S2, p is a global optimum by Lemma 4. The
function value g decreases monotonically with iterations. This property alone does not
ensure finite termination in general, although it does if g is integer-valued and bounded
from below.

We can guarantee an upper bound on the number of iterations by introducing a

tie-breaking rule in Step S1:
Take the (unique) minimal minimizer X of p,. (5)

Let p° be the initial vector found in Step SO. If g has a minimizer at all, it has, by (TRF),
a minimizer p* satisfying p°® < p*. Let p* denote the smallest of such minimizers, which

exists since p* A ¢* € arg min g for p*, ¢* € argmin g.

Lemma 5 In Step S1, p < p* implies p+ xx < p*. Hence the number of iterations is
bounded by ||p° — p*|]1.

(Proof) Put Y = {v € V | p(v) = p*(v)} and p’ = p + xx. By submodularity we have

g(0*) +9@) > glp* V) + g Ap'),

whereas ¢g(p*) < g(p* V p') since p* is a minimizer of g. Hence g(p') > g(p* Ap). Here
we have p = p+ xx and p* Ap =p+ Xx\v, whereas X is the minimal minimizer by
the tie-breaking rule (5). This means that X \' Y = X, ie., X NY = (. Therefore,
Pl=p+xx<p" m

It is easy to find the minimal minimizer of p, using the existing algorithms for
submodular set-function minimization. For example, Schrijver’s algorithm [23] does find
the minimal minimizer with O(n®) function evaluations and O(n") arithmetic operations.
Assuming that the minimal minimizer of a submodular set-function can be computed
with O(o(n)) function evaluations and O(7(n)) arithmetic operations, and denoting by
F, an upper bound on the time to evaluate g, we can perform Step S1 in O(o(n)Fy+7(n))
time, where (o(n),7(n)) = (n®,n?) is a valid choice. We measure the size of the effective

domain of g by

~

K, =max{||lp —q||1 | p,q € domg, p(v) = q(v) for some v € V'}, (6)

where it is noted that dom g itself is unbounded by (TRF).



Theorem 2 For an L-convex function g with finite Kg, the number of iterations in the
steepest descent algorithm with tie-breaking rule (5) is bounded by R'g. Hence, if a vector
in dom g is given, the algorithm finds a minimizer of g in O((o(n)F, + T(n))f(g) time.
(Proof) We have ||p° — p*||; < K, since p°(v) = p*(v) for some v € V. Then the claim

follows from Lemma 5. ]

A function g : Z¥ — R U {+oc} is called Li-convex if the function

dpo.p) =9g(p—pol)  (po€Z,peZ) (7)

is an L-convex function in n+ 1 variables. Whereas L-convex functions are conceptually
equivalent to L-convex functions by the relation (7), the class of Li-convex functions
in n variables is strictly larger than that of L-convex functions in n variables. The
steepest descent algorithm for L-convex functions can be adapted to Li-convex function

minimization.

Steepest descent algorithm for L-convex function ¢
S0: Find a vector p € dom g.
S1: Find € € {1,—1} and X C V that minimize g(p + xx)-
S2: If g(p) < g(p+exx), then stop (p is a minimizer of g).
S3: Set p:=p+ exx and go to S1.

Step S1 amounts to minimizing a pair of submodular set functions

py(X)=gp+xx)—9®),  p,(X)=gp—xx)—9p).

Let X be the minimal minimizer of p;‘ , and X~ be the maximal minimizer of p,. The

tie-breaking rule for Step S1 reads:

(1, X*) if minp} < minp,

(. X) = { (8)

(=1,X7) if minp}; > minp,.

This is a translation of the tie-breaking rule (5) for § in (7) through the correspondence

g g
p—p+xx <<= p—Dp+(0,xx)
p—=p—xx <= p—p+(Lxnx)

where p = (0,p) € Z'*". Since (1, Xv\x-) cannot be minimal in the presence of (0, x x+),
we choose (1, X") in the case of min p;f = min p, .

In view of the complexity bound given in Theorem 2 we note that the size Kj of the
effective domain of the associated L-convex function g is bounded in terms of the size of

dom g. The ¢;-size and {oo-size of dom g are denoted, respectively, by K, in (2) and

K;° = max{|[p — ql/e | p,q € dom g}.



Lemma 6 K; < K, +nK® <min[ (n+ 1)Ky, 2nKJ° |.

(Proof) Take p = (pg,p) and ¢ = (qo, ¢) in dom g such that K; = |po — qol + ||p — ¢||1 and
either (i) po = qo or (ii) p(v) = q(v) for some v € V. We may assume py > qo and p > ¢
since pV ¢,pA g€ domgand |[|(pV q) — (PAG)I|1 =1p—q|l1- The vectors p’ =p — pol
and ¢’ = ¢ — go1 belong to dom g. In case (i), we have K5 = |[p—q|[1 = ||p/ = ¢||1 < K.
In case (ii), we have pg — qo = ¢'(v) — p/(v) and

K; = |po—qol+1lp—dlh
= (po— )+ uezv(p(U) —q(u))
= (po—a)+ Zv(p’(U) —¢'(w)) + n(po — q0)
= > () —Q:;(U)) —n(p'(v) = ¢'(v))
R
Note finally that K, < nK® and K2 < K, n

4 Discussion

4.1 Scaling algorithm

Scaling is one of the common techniques in designing efficient algorithms. This is also
the case with L- or M-convex function minimization. We deal with L-convex function
minimization to demonstrate an implication of our result stated in Theorem 2.

A scaling algorithm to minimize an L-convex function ¢ finds a minimizer of the
scaled function g,(q) = g(p° + aq) for a = a°,a°/2,a°/4,a°/8, ..., starting with a
sufficiently large a°® (a power of 2) until reaching a = 1, where p° is an initial solution.
For each «, g, is an L-convex function, which can be minimized, e.g., by the steepest

descent algorithm. The scaling algorithm reads as follows, where
R’go = max{||p — ¢||~ | p,q € dom g, p(v) = q(v) for some v € V'}
and 7 =0 in (TRF).

Scaling algorithm for L-convex function g
S0: Find a vector p € dom g, and set « := 9ogs (K3 /2n)]

S1: Find an integer vector ¢ that minimizes g(p + aq), and set p := p + aq.

S2: If @ = 1, then stop (p is a minimizer of g).

S3: Set o := /2, and go to S1.



The success of this scaling approach hinges on the efficiency of the minimization in
Step S1. By a proximity theorem due to [12] (see Proposition 8.9 in [20] and L-proximity
theorem in [21]) there exists a minimizer ¢ of g(p + aq) such that 0 < ¢ < (n — 1)1.
Our complexity bound (Lemma 5 or Theorem 2) guarantees that the steepest descent
algorithm with tie-breaking rule (5) finds the minimizer in Step S1 in O((o(n)Fy +
7(n))n?) time. The number of executions of Step S1 is bounded by [log, (R'go/Qnﬂ, and
at the termination of the algorithm in Step S2 with a = 1, p is a minimizer of g by
Lemma 4. Thus the result of the present paper guarantees the efficiency of the scaling
approach based on steepest descent algorithm.

It is in order here to compare our algorithm with the scaling algorithm of [9], which
is described in [20]. In [9] Step S1 above is performed via submodular set-function
minimization over a ring family on a ground set of cardinality < n?. This is based on
a general fact (Birkhoff’s representation theorem) that any distributive lattice can be
represented as a boolean lattice over a ground set and the size of the ground set is equal
to the length of a maximal chain of the distributive lattice. Thus the minimization
of the scaled function in Step S1 can be carried out with O(c(n?)) evaluations of g.
Although the complexity of this algorithm for Step S1 is bounded by a polynomial in
n, the algorithm is not easy to implement and will be slow in practice. Our steepest-
descent algorithm above is much simpler, both conceptually and algorithmically, and
will be faster in practice, performing the minimization of the scaled function in Step S1

2 is smaller in order than o(n?) if

with O(o(n)n?) evaluations of g. Note that o(n)n
o(n) = n® with s > 2.

As for M-convex function minimization, a similar scaling approach works, provided
that the scaled function f,(y) = f(z + ay) remains M-convex for any « and x, although
this is not always the case; see [16]. See [25] and [26] for more sophisticated scaling

algorithms for M-convex function minimization.

4.2 Integrally convex functions

Global optimality is characterized by local optimality also for integrally convex functions,
of which M-convex and L-convex functions are special cases. Namely, it is known [4]
that, for an integrally convex function f, a point z in dom f is a global minimizer of
fif and only if f(z) < f(z + xy — xz) for all disjoint subsets Y,Z C V. This fact
would naturally suggest the following generic scheme of steepest descent algorithms for

minimizing an integrally convex function.

Steepest descent scheme for integrally convex function f
S0: Find a vector x € dom f.
S1: Find disjoint Y, Z C V that minimize f(x — xy + xz)-
S2: If f(x) < f(z — xy + xz), then stop (x is a minimizer of f).



S3: Set x :=x — xy + xz and go to S1.

The steepest-descent algorithms for M-convex and L-convex functions in §2 and §3

both fit in this generic form. It is emphasized, however, that for a general integrally

convex function no efficient algorithm for Step S1 is available, whereas we do have

polynomial time algorithms for M-convex and L-convex functions.
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