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Abstract
We consider the asymptotic joint distribution of the eigenvalues and eigenvectors of Wishart matrix
when the population eigenvalues become infinitely dispersed. We show that the normalized sample
eigenvalues and the relevant elements of the sample eigenvectors are asymptotically all mutually
independently distributed. The limiting distributions of the normalized sample eigenvalues are
chi-squared distributions with varying degrees of freedom and the distribution of the relevant
elements of the eigenvectors is the standard normal distribution. As an application of this result,
we investigate tail minimaxity in the estimation of the population covariance matrix of Wishart
distribution with respect to Stein’s loss function and the quadratic loss function. Under mild
regularity conditions, we show that the behavior of a broad class of minimax estimators is identical
when the sample eigenvalues become infinitely dispersed.

Keywords and phrases
asymptotic distribution, covariance matrix, minimax estimator, quadratic loss, singular parameter,
Stein’s loss, tail minimaxity.
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1 Introduction

Let W = (wij) be distributed according to Wishart distribution W p(n,Σ), where p is the di-
mension, n is the degrees of freedom and Σ is the covariance matrix. We are interested in the
joint distribution of the eigenvalues and the eigenvectors of W . Because the exact distribution in
terms of hypergeometric function of matrix arguments is cumbersome to handle, various types of
asymptotic approximations have been investigated in literature.

The usual large sample theory (n →∞) of the sample eigenvalues and eigenvectors was given
by Anderson (1963) and developed by many authors. Higher order asymptotic expansions for the
case of distinct population roots were given by Sugiura (1973) and Muirhead and Chikuse (1975).
For a review of related works see Section 3 of Muirhead (1978) and Section 10.3 of Siotani et al.
(1985). Large sample theory under non-normality was studied by Tyler (1981, 1983).

The null case Σ = Ip is of particular interest and there are two other types of asymptotics,
different from the usual large sample asymptotics. One approach is the tube method (see Kuriki
and Takemura (2001) and the references therein), which gives asymptotic expansion of the tail
probability of the largest root of Wishart matrix. Another approach is related to the field of
random matrix theory and gives asymptotic distribution of the largest root for large dimension p
(see Johnstone (2001) and the references therein).

In this paper we consider yet another type of asymptotics, where the population eigenvalues
become infinitely dispersed. Denote the spectral decompositions of W and Σ by

W = GLG0, Σ = ΓΛΓ0, (1)

where G, Γ are p × p orthogonal matrices and L = diag(l1, . . . , lp), Λ = diag(λ1, . . . , λp) are
diagonal matrices with the eigenvalues l1 ≥ . . . ≥ lp > 0, λ1 ≥ . . . ≥ λp > 0 of W and Σ,
respectively. We use the notations l = (l1, . . . , lp) and λ = (λ1, . . . , λp) hereafter. We say that the
population eigenvalues become infinitely dispersed when

ρ = ρ(Σ) = max(
λ2

λ1

,
λ3

λ2

, . . . ,
λp

λp−1

) → 0. (2)

This limiting process includes many cases. For example, λ = (λ1, . . . , λp) may be of the following
forms:

ak(c, ac, a2c, . . . , ap−1c), a ↓ 0,

(aj−1c, aj−2c, . . . , ac, c, bc, . . . , bp−jc), a ↑ ∞, b ↓ 0,

where k ∈ R and c > 0 are fixed. In the parameter space of positive definite covariance matrices,
the case of infinitely dispersed population eigenvalues corresponds to an extreme boundary of the
parameter space.

We investigate the asymptotic distribution of the sample eigenvalues (l1, . . . , lp) and the sam-
ple eigenvectors G under the the limiting process (2). We will prove that after appropriate stan-
dardization, l1, . . . , lp and relevant elements of G are asymptotically all mutually independently
distributed. The limiting distributions of the sample eigenvalues are chi-squared distributions
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with varying degrees of freedom and the distribution of the relevant elements of G is the standard
normal distribution.

The main motivation of the above result is the investigation of the tail minimaxity in the
sense of Berger (1976) in the estimation problem of Σ of Wishart distribution with respect to
Stein’s loss function and the quadratic loss function. For the case of the estimation of a location
vector, Berger (1976) gave sufficient conditions of tail minimaxity in a general multivariate location
family. Under mild regularity conditions, we show that the behavior of a broad class of minimax
estimators is identical when the sample eigenvalues become infinitely dispersed. This corresponds
to a necessary condition of tail minimaxity in the estimation of Σ.

The organization of this paper is as follows. In Section 2 we derive asymptotic distributions
of l and G. In Section 3 we prove tail minimaxity result for minimax estimation of Σ. All proofs
of the results are given in Section 4. Some additional technical results are given in Appendix.

2 Asymptotic distributions of eigenvalues and eigenvec-

tors

In this section we derive the asymptotic distribution of the sample eigenvalues and eigenvectors
when the population eigenvalues become infinitely dispersed. After preparing a lemma, we prove
the consistency of the sample eigenvectors in Theorem 1 and derive the asymptotic distribution
in Theorem 2. Proofs of the results are given in Section 4.

First we prove the following lemma concerning the tightness of the distribution of li/λi, i =
1, . . . , p.

Lemma 1 For any ε > 0 there exist C1, C2, 0 < C1 < C2, such that

P

(
C1 <

li
λi

< C2, 1 ≤ ∀i ≤ p

)
> 1− ε, ∀Σ.

Note that C1, C2 above do note depend on Σ. From this lemma we can easily show that the sample
eigenvalues become infinitely dispersed in probability, when the population eigenvalues become
infinitely dispersed. We omit the proof of the following corollary.

Corollary 1 Let

r = r(W ) = max(
l2
l1

,
l3
l2

, . . . ,
lp

lp−1

). (3)

Then as ρ = ρ(Σ) = max(λ2/λ1, . . . , λp/λp−1) → 0

r
p→ 0

in the sense that ∀ε > 0, ∃δ > 0,

ρ(Σ) < δ ⇒ P (r(W ) > ε) < ε.
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From Lemma 1 we can prove the consistency of sample eigenvectors as the population eigen-
values become infinitely dispersed. Consider the spectral decomposition of W and Σ in (1). Here
we are only considering the case where the population eigenvalues λ1, . . . , λp are all distinct. Even
in the case of the distinct population eigenvalues, the population eigenvectors are determined up
to their signs. Various convenient rules (e.g. non-negativeness of the diagonal elements of G or Γ)
are used to determine the signs of the eigenvectors in the case of distinct roots. For the sample
W these rules determine the signs of eigenvectors with probability 1, because the boundary set of
these rules (e.g. the set of G with 0 diagonal elements) is of measure 0. However for the population
covariance matrix Σ, it is cumbersome to state the consistency result for Σ in the boundary set.
Here we prefer to identify two eigenvectors of opposite signs γ and −γ. Let O(p) denote the set
of orthogonal matrices and let

O(p)/{−1, 1}p

denote the quotient set, where two orthogonal matrices Γ1 and Γ2 are identified if there exists
a diagonal matrix D = diag(±1, . . . ,±1) such that Γ1 = Γ2D. Write two arbitrary orthogonal
matrices Γi, i = 1, 2, as Γ1 = (γ1, . . . , γp), Γ2 = (β1, . . . , βp). The elements of O(p)/{−1, 1}p are
sometimes called frames in the field of geometric probability (see Chapter 6 of Klain and Rota
(1997)). The quotient topology of O(p)/{−1, 1}p induced from O(p) can be metrized, for example,
by the squared distance

d2(Γ1,Γ2) =
p∑

i=1

tr(γiγ
′
i − βiβ

′
i)

2 = 2
p∑

i=1

(1− (γ ′iβi)
2). (4)

We say that Γn converges to Γ in O(p)/{−1, 1}p if d(Γn,Γ) converges to 0 as n →∞. Note that
d is orthogonally left invariant; i.e.,

d(Γ1,Γ2) = d(GΓ1, GΓ2), G ∈ O(p).

Furthermore, noting that Γ01Γ2 = (γ ′iβj) is an orthogonal matrix, it is easily shown that

d(Γ1,Γ2) → 0 ⇔ (γ ′iβj)
2 → 0, 1 ≤ ∀j < ∀i ≤ p. (5)

Now we can state the consistency of G in O(p)/{−1, 1}p.

Theorem 1 Let W = GLG0, Σ = ΓΛΓ0 be the spectral decompositions of W and Σ. Then
as ρ = ρ(Σ) → 0

G
p→ Γ

in O(p)/{−1, 1}p, in the sense that ∀ε > 0,∃δ > 0,

ρ(Σ) < δ ⇒ PΣ(d(G,Γ) > ε) < ε.

The next theorem deals with the asymptotic distributions of standardized sample eigenvalues
and sample eigenvectors. Here again we have to deal with the problem of indeterminacy of the
signs of the eigenvectors. Let Σ = ΓΛΓ0 have distinct roots. We assume that the signs of the
columns of Γ are chosen in some way and fixed. Let

G̃ = (g̃ij) = Γ0G.
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Following Anderson (1963), we assume that the signs of the columns of G is determined by
requiring that the diagonal elements g̃ii of G̃ are non-negative. Then it follows from Theorem 1
that G̃ converges to the identity matrix Ip in probability in the ordinary sense as the population
eigenvalues become infinitely dispersed. The correct normalization for the sample eigenvalues and
relevant elements of the eigenvectors are given by

fi =
li
λi

, 1 ≤ i ≤ p,

qij = g̃ijl
1
2
j λ

− 1
2

i = g̃ijf
1
2
j λ

1
2
j λ

− 1
2

i , 1 ≤ j < i ≤ p.

Note that the relevant elements of G̃ are the elements in the lower triangular part of G̃ (not
including the diagonals). The asymptotic distribution of fi and qij is given in the following
theorem.

Theorem 2 As ρ = max(λ2/λ1, . . . , λp/λp−1) → 0,

fi
d→ χ2

n−i+1, 1 ≤ i ≤ p,

qij
d→ N(0, 1), 1 ≤ j < i ≤ p,

and fi (1 ≤ i ≤ p), qij (1 ≤ j < i ≤ p) are asymptotically mutually independently distributed.

Concerning this theorem, we again discuss the indeterminacy of the signs of the eigenvectors.
In this theorem we chose the signs of sample eigenvectors by requiring non-negativeness of the
diagonal elements of G̃ = Γ0G. This choice of the signs depends on the predetermined signs of the
population eigenvectors, which are unknown in the setting of estimation. Although this choice is
customary in standard large sample asymptotics, it might not be totally satisfactory. If we insist
on choosing the signs of the sample eigenvectors independently of Γ, there seem to be two ways
of dealing with the indeterminacy of the signs. One way is to specify the sign of one element from
each column of G. This determines the signs with probability 1. Then Theorem 2 holds except
for Σ in the corresponding boundary set. An alternative way is to choose the signs of the columns
of G randomly, i.e., independently of the values of the elements of G. Then it can be shown that
Theorem 2 holds for all Σ.

In Theorem 2 the asymptotic distribution of G̃ is described by its elements in the strictly lower
triangular part. Note that we have the correct number of random variables because dimO(p) =
p(p− 1)/2. As discussed in Appendix B, in a neighborhood of Ip, G is determined by its strictly
lower triangular part,

(g21, g31, . . . , gp1, g32, . . . , gp,p−1) = u = (uij)1≤j<i≤p. (6)

All the other elements gij, 1 ≤ i ≤ j ≤ p, are C∞ functions of u on some open set U such that
0 = (0, . . . , 0) ∈ U ⊂ Rp(p−1)/2. We write G(u) = (gij(u)) with gij(u) = uij, 1 ≤ j < i ≤ p.
By Taylor expansion of gij(u) (1 ≤ i ≤ j ≤ p), we can study the asymptotic distributions of the
upper part of G. It turns out that the result can not be simply expressed because it depends on
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the individual rates of the convergence of the ratios λi+1/λi, 1 ≤ i ≤ p− 1, to zero. This point is
also discussed in Appendix B.

Finally we present a technical lemma concerning the convergence of the expectation of a
function of W and λ, which will be used in the next section. Actually Theorem 2 is its corollary.
Fix Γ ∈ O(p). For any function x(G, l,λ) we define a compound function, xΓ(f , q,λ), as

xΓ(f , q,λ) = x(ΓG(u(f , q,λ)), l(f ,λ),λ), (7)

where

f = (f1, . . . , fp), q = (qij)1≤j<i≤p, u(f , q,λ) = (qijf
− 1

2
j λ

− 1
2

j λ
1
2
i )1≤j<i≤p,

l(f , λ) = (f1λ1, . . . , fpλp).

The domain of xΓ as a function of (f , q) is

{(f , q) | u(f , q, λ) ∈ U, f1λ1 > . . . > fpλp},

which expands to Rp × Rp(p−1)/2 as ρ → 0. xΓ(f , q,λ) describes the local behavior of x(G, l, λ)
around Γ with the coordinate (f , q,λ). We call xΓ the local expression of x around Γ hereafter.
Though it is not easy to calculate the explicit form of G(u), hence xΓ(f , q, λ), we only need to
know the limit of xΓ(f , q, λ) in the following lemma.

Lemma 2 Fix Γ ∈ O(p) and let ρ = ρ(Λ) → 0 in Σ = ΓΛΓ0. Assume that xΓ(f , q, λ)
converges to a function x̄Γ(f , q) a.e. in (f , q) as ρ(Λ) → 0. Furthermore assume that

∃a <
1

2
, ∃b > 0, sup

λ
|x(ΓG, l,λ)| ≤ b etr(aGLG0Λ−1) a.e. in (G, l). (8)

Then as ρ(Λ) → 0,
E[x(G, l,λ)] → E[x̄Γ(f , q)],

where the expectation on the right hand side is taken with respect to the asymptotic distribution of
(f , q) given in Theorem 2.

3 Application to tail minimaxity in estimation of covari-

ance matrix

The main motivation for the asymptotic theory in the previous section is the investigation of tail
minimaxity in the estimation of the covariance matrix. In this section we derive some necessary
conditions for an estimator Σ̂ of Σ to be minimax with respect to Stein’s (entropy) loss function
as well as the quadratic loss function. Assuming mild regularity conditions we prove one lemma
and two theorems. Lemma 3 shows that estimated eigenvectors are consistent for estimators of
bounded risks. Then in Theorem 3 and 4 we show that the behavior of a broad class of minimax
estimators is identical when the sample eigenvalues become infinitely dispersed. This corresponds
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to a necessary condition for tail minimaxity in the sense of Berger (1976). For the case of the
estimation of a location vector, Berger (1976) gave sufficient conditions of tail minimaxity in a
general multivariate location family. Our result, being a necessary condition, is in a sense weaker
than the result of Berger (1976). On the other hand, the problem of estimating Σ seems to be
technically harder. It would be of interest to investigate sufficient conditions for tail minimaxity
in our setting.

Before going into technical details, we prefer to present a motivation for our results on identical
tail behavior of a broad class of minimax estimators. By definition, risks of minimax estimators
have to approach the minimax risk somewhere in the parameter space. It seems reasonable to
expect that risk functions of shrinkage type minimax estimators approach the minimax risk as
ρ(Σ) → 0. Wishart distributions, being an exponential family, possess the completeness of the
sufficient statistic W , even if the parameter space is restricted to any open set, where ρ is small.
The completeness suggests that minimax estimators with their risks close to the minimax risk
should be close to each other. Clearly it might not be true that the risk function of every minimax
estimator approaches the minimax risk smoothly as ρ → 0. For example, consider multiple
shrinkage type minimax estimators in the sense of George (1986a, b) with possibly infinite number
of shrinkage points. The risk function of such an estimator might fluctuate even when ρ → 0. In
any case, the above argument is only a plausible motivation and below we need to impose several
regularity conditions on existence of appropriate limits to justify our results.

Now we briefly prepare some notations of the covariance estimation. For a survey of the
estimation problem of Σ or Σ−1 in W p(n,Σ), see Pal (1993). Stein’s loss function is one of the
most frequently used loss functions for the estimation of Σ and it is given by

L1(Σ̂,Σ) = tr(Σ̂Σ�1)− log |Σ̂Σ�1| − p.

The first minimax estimator was given by James and Stein (1961). It is defined by

Σ̂
JS

= T diag(δJS
1 , . . . , δJS

p )T ′, (9)

where T is the lower triangular matrix with positive diagonal elements satisfying W = TT 0 and

δJS
i =

1

n + p + 1− 2i
, 1 ≤ i ≤ p. (10)

This type of estimators, Σ̂ = TDT ′, D = diag(δ1, . . . , δp), are called triangularly equivariant;

i.e., for any lower triangular matrix S with positive diagonal elements, Σ̂(SWS′) = SΣ̂(W )S′.

The estimator Σ̂
JS

has the constant minimax risk, which is given by

R̄1 = −
p∑

i=1

log δJS
i −

p∑

i=1

E[log χ2
n−i+1]. (11)

Another important loss function is the quadratic loss function given by

L2(Σ̂,Σ) = tr(Σ̂Σ−1 − Ip)
2.
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Define a p× p matrix A = (aij) and a p× 1 vector b = (bi) by

aij =





(n + p− 2i + 1)(n + p− 2i + 3), if i = j,
(n + p− 2i + 1), if i > j,
(n + p− 2j + 1), if j > i,

(12)

bi = n + p + 1− 2i, i = 1, . . . , p. (13)

and let
δ = (δOS

1 , . . . , δOS
p )′ = A−1b. (14)

Then the minimax risk is given by

R̄2 = p− b′A−1b = p− δ′Aδ, (15)

(Olkin and Selliah (1977), Sharma and Krishnamoorthy (1983)) and the estimator

Σ̂
OS

= T diag(δOS
1 , . . . , δOS

p )T ′

has the constant minimax risk, where T is defined as in (9).
Let Σ̂ = Σ̂(W ) = Σ̂(G, l) be an estimator of Σ and let

Σ̂(W ) = H(W )D(W )H 0(W )

be the spectral decomposition of Σ̂(W ), where

H(W ) ∈ O(p), D(W ) = diag(d1(W ), . . . , dp(W )).

In accordance with the definition of G, we determine the sign of H(W ) by (Γ0H)ii ≥ 0, 1 ≤
∀i ≤ p. We also use the notation

ci(W ) =
di(W )

li
=

di(G, l)

li
, i = 1, . . . , p.

An estimator of the form

Σ̂ = GΨ(L)G0, Ψ(L) = diag(ψ1(l), . . . , ψp(l)). (16)

is called orthogonally equivariant; i.e., Σ̂(GWG′) = GΣ̂(W )G′, ∀G ∈ O(p). For orthogonally
equivariant estimators we have

H(W ) = G,

ci(W ) = ci(l) =
ψi(l)

li
, 1 ≤ i ≤ p.

Here we mention the orthogonally equivariant minimax estimator Σ̂
SDS

derived independently
by Stein and by Dey and Srinivasan (1985). This estimator is defined by

ψi(l) = liδ
JS
i , 1 ≤ i ≤ p,
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where δJS
i is given in (10). Σ̂

SDS
is of simple form but has substantially better risk than the M.L.E.,

W /n, and also dominates Σ̂
JS

with respect to Stein’s loss. See Dey and Srinivasan (1985) and
Sugiura and Ishibayashi (1997) for more details. Order preservation among ψi(l), i = 1, . . . , p, is
discussed in Sheena and Takemura (1992).

The orthogonally equivariant estimator, Σ̂
KG

, defined by

ψi(l) = liδ
OS
i , 1 ≤ i ≤ p

with δOS
i in (14) has been considered to be minimax from an analogy between Σ̂

SDS
and Σ̂

KG
.

(See Krishnamoorthy and Gupta (1989).) For the case p = 2, this conjecture was proved by
Sheena (2001).

Now we introduce some regularity conditions on Σ̂. Let r = r(l) be defined in (3). For the rest
of this section, we fix an arbitrary Γ ∈ O(p) and consider the limit ρ = ρ(Λ) → 0 in Σ = ΓΛΓ0.
This is the same setup as in Lemma 2. Correspondingly, in view of Corollary 1 and Theorem 1,
we consider behavior of the estimators when r(l) is small and G is close to Γ. The reason for
this setup is that as ρ → 0, G converges to Γ in probability and hence the risk function of an
estimator should depend only on G close to Γ.

First we make an assumption on the convergence of ci(G, l).

Assumption 1 There exist 0 < c̄i(Γ) < ∞, 1 ≤ i ≤ p, such that as G → Γ and r → 0,

ci(G, l) → c̄i(Γ), 1 ≤ i ≤ p.

Next we assume boundedness of the following expectation.

Assumption 2 There exists M = M(Γ) < ∞ such that

E[tr Σ̂(W )Σ�1] < M (17)

for all Λ in Σ = ΓΛΓ0.

Under these assumptions we have the following result.

Lemma 3 Let Σ̂(W ) = H(W )D(W )H 0(W ) be an estimator of Σ = ΓΛΓ0 satisfying As-
sumptions 1 and 2. Then as ρ = ρ(Λ) → 0,

H(W )
p→ Γ.

Note that tr Σ̂(W )Σ�1 is a component of both Stein’s loss function and the quadratic loss
function. Therefore estimators with bounded risks under either loss function are supposed to
satisfy (17). Note that a minimax estimator has a bounded risk by definition.

Note that G
p→ Γ by Theorem 1 and H(W )

p→ Γ by Lemma 3. Therefore H(W )−G
p→ 0.

Since r
p→ 0 by Corollary 1, this intuitively implies H(W ) = H(G, l) → Γ as G → Γ and r → 0.

However at present it seems difficult to prove this implication without assuming the existence of
the limit. Therefore we state another assumption concerning the existence of the limit of H(G, l).
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Assumption 3 There exists H̄(Γ) ∈ O(p), such that

H(G, l) → H̄(Γ)

as G → Γ and r → 0.

Combining Assumption 3 and Lemma 3, we can easily prove the following theorem.

Theorem 3 Let Σ̂(W ) be an estimator satisfying Assumptions 1, 2 and 3. Then H̄(Γ) = Γ.

Let H̃(G, l) = (h̃ij(G, l)) = Γ0H(G, l). Theorem 3 says that for a reasonable estimator,

H̃(G, l) → Ip as G → Γ and r → 0; i.e., h̃ij(G, l) → 0, 1 ≤ ∀j < ∀i ≤ p. Actually from the

proof of Lemma 3 we see that h̃ij is of the same order as g̃ij, i.e., h̃ij = Op(λ
1
2
i /λ

1
2
j ). Let

ζij(G, l) =
h̃ij(G, l)

g̃ij(G, l)
.

In order to evaluate the asymptotic risk of an estimator, we need to know the limit of ζij as G → Γ

and r → 0 for 1 ≤ j < i ≤ p. Let ζij,Γ, h̃ij,Γ and g̃ij,Γ denote the local expressions around Γ of ζij,

h̃ij and g̃ij, respectively. Then

ζij,Γ(f , q,λ) =
h̃ij,Γ(f , q,λ)

uij(f , q, λ)
=

h̃ij,Γ(f , q,λ)

qijf
− 1

2
j λ

− 1
2

j λ
1
2
i

.

We now assume the existence of a limit of ζij,Γ.

Assumption 4 There exist ζ̄ij,Γ(f , q), 1 ≤ j < i ≤ p, such that

ζij,Γ(f , q,λ) → ζ̄ij,Γ(f , q) a.e. in (f , q) as ρ(Λ) → 0.

Note that this assumption implies h̃ij,Γ → 0 as ρ → 0 for 1 ≤ ∀j < ∀i ≤ p.

The following lemma gives the asymptotic lower bounds of the risks, Ri(Σ̂,Σ) = E[Li(Σ̂,Σ)], i =
1, 2.

Lemma 4 Under Assumptions 1 and 4

lim
ρ→0

R1(Σ̂,ΓΛΓ0) ≥
p∑

i=1

p∑

j=1

c̄j(Γ)E[ξ2
ij]−

p∑

i=1

log c̄i(Γ)−
p∑

i=1

E[log χ2
n−i+1]− p, (18)

lim
ρ→0

R2(Σ̂,ΓΛΓ0) ≥
p∑

i=1

p∑

j=1

p∑

k=1

p∑

l=1

c̄i(Γ)c̄j(Γ)E[ξkiξkjξliξlj]− 2
p∑

i=1

p∑

j=1

c̄j(Γ)E[ξ2
ij] + p, (19)

where

ξij(f , q) =





ζ̄ij,Γ qij, if i > j,

f
1
2
i , if i = j,
0, if i < j,
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and the expectation on the right hand side is taken with respect to the asymptotic distribution of
(f , q) given in Theorem 2.

If in addition

∃a <
1

8
, ∃b > 0, 1 ≤ ∀i,∀j ≤ p, ζij(ΓG, l) ≤ b etr(aGLG0Λ−1) a.e. in (G, l), (20)

and
0 < ∃cl < ∃cu < ∞, 1 ≤ ∀i ≤ p, cl < ci(W ) < cu, (21)

then limρ→0 Ri(Σ̂,ΓΛΓ0) (i = 1, 2) exist and equal the right hand side of (18) (i = 1) or (19)
(i = 2).

Note that if we have the following inequality in the sense of non-negative definiteness

clW ≤ Σ̂(W ) ≤ cuW , (22)

then cl < ci(W ) < cu, i = 1 ≤ ∀i ≤ p, by the minimax characterization of the eigenvalues (see for
example Marshal and Olkin (1979) Ch.20 A.1.b). In particular (22) holds for triangularly equiv-
ariant estimators Σ̂ = T diag(δ1, . . . , δp)T

′ with cl = min(δ1, . . . , δp) and cu = max(δ1, . . . , δp).
Lemma 4 shows that the values of ζ̄ij,Γ, 1 ≤ j < i ≤ p, determine the risk or its lower bound.

We now make the final assumption.

Assumption 5 In Assumption 4

ζ̄ij,Γ = 1, 1 ≤ ∀j < ∀i ≤ p. (23)

Note that any orthogonally equivariant estimator satisfies this condition, since h̃ij = g̃ij and

ζij,Γ(f , q,λ) ≡ 1, 1 ≤ ∀j < ∀i ≤ p.

Therefore Assumption 5 seems to imply that we are restricted to estimators which are nearly
orthogonally equivariant. However as we argue below, Assumption 5 should hold for a broad class
of estimators. As a particular case, in Appendix A we confirm that 2× 2 triangularly equivariant
estimators satisfy Assumption 5 except for the following particular Γ

Γ =

(
0 ±1
±1 0

)
.

Except for this Γ, a 2 × 2 triangularly equivariant estimator behaves like an orthogonally equiv-
ariant estimator as r → 0. The singularity at this particular Γ seems to be an interesting fact and
also suggests the difficulty of relaxing our regularity conditions. We conjecture that triangularly
equivariant estimators for general dimension p satisfies Assumption 5 for almost all Γ, although
at present we do not have a proof.

We now argue why ζ̄ij,Γ = 1 should hold for many estimators. Consider H̃(u, l) = (h̃ij(u, l)) =

H̃(ΓG(u), l), the function of (u, l). If Assumptions 1–3 hold for the neighborhood ΓG(U) of Γ,
then by Theorem 3 H̃(u, l) → G(u) on U as r → 0; i.e., h̃ij(u, l) → uij on U for 1 ≤ j < i ≤ p.

12



For sufficiently smooth estimators, the derivatives (up to a certain order) of h̃ij(u, l) with respect
to u at u = 0 converge to the corresponding derivatives of uij; i.e., for 1 ≤ jl < il ≤ p, l = 1, . . . , k,

lim
r→0

∂kh̃ij

∂ui1j1 · · · ∂uikjk

(0, l) =
∂kuij

∂ui1j1 · · · ∂uikjk

(0) =

{
1, if k = 1, ui1j1 = uij,
0, otherwise.

(24)

In the case of Stein’s loss it can be shown that slow convergence in (24) incurs risk penalty. This
implies that for nice estimators, among the terms of Taylor expansion of h̃ij with respect to u

around 0, those with the order of λ
1
2
i /λ

1
2
j after the substitution of u = (qklf

− 1
2

l λ
− 1

2
l λ

1
2
k )1≤l<k≤p

determine ζ̄ij,Γ. Although many terms might have this order (e.g. uisusj, j < ∃s < i), by (24) the
only term of which coefficient does not vanish as r → 0 is uij. Since its coefficient converges to 1,
ζij,Γ → 1.

Now we state a theorem on necessary conditions for Σ̂ to be minimax.

Theorem 4 Suppose that Σ̂ satisfies Assumptions 1 and 5. If it is minimax with respect to
Stein’s loss, then

c∗i (Γ) = δJS
i , i = 1, . . . , p,

where δJS
i is given in (10). If it is minimax with respect to the quadratic loss, then

c∗i (Γ) = δOS
i , i = 1, . . . , p,

where δOS
i is given in (14).

Roughly speaking, Theorem 3 and 4 indicate that when r is very small, any minimax estimator

satisfying Assumptions 1–5 must be approximately same as Σ̂
SDS

in the case of Stein’s loss and

Σ̂
KG

in the case of the quadratic loss respectively; i.e.,

Σ̂(G, l) = H(G, l) diag(l1c1(G, l), . . . , lpcp(G, l))H 0(G, l)

≈ G diag(l1δ
JS(OS)
1 , . . . , lpδ

JS(OS)
p )G0

= Σ̂
SDS(KG)

.

We state one simple application of Theorem 4. The orthogonally equivariant estimators given
by (16) contain the subclass (say Co) of estimators which is defined by

ci(l) = ci (constant), 1 ≤ i ≤ p.

This class contains the M.L.E., W /n, and Σ̂
SDS

. We have conjectured that Σ̂
SDS

and Σ̂
OS

are
the only minimax estimators in this class with respect to Stein’s loss and the quadratic loss. This
conjecture was proved in Sheena (2001) for the case p = 2. It is obvious that every estimator in
Co satisfies Assumptions 1 and 5. Then from Theorem 4, it is necessary that

ci = δ
JS(OS)
i , 1 ≤ i ≤ p,

which shows that the above conjecture holds true for general dimension.

13



4 Proofs

In this section we present proofs of the results of the previous sections.

Proof of Lemma 1
Since L(Γ0WΓ) = L(W ) and Γ0WΓ ∼ W p(n,Λ), it suffices to show

P

(
C1 <

li
λi

< C2, 1 ≤ ∀i ≤ p

)
> 1− ε, ∀Λ.

Let
W̃ = (w̃ij) = Λ− 1

2 WΛ− 1
2 ∼ W p(n, Ip).

First we consider l1. Since

l1 ≤ tr W = w11 + · · ·+ wpp = λ1w̃11 + · · ·+ λpw̃pp,

we have
l1
λ1

≤ w̃11 +
λ2

λ1

w̃22 + · · ·+ λp

λ1

w̃pp ≤ w̃11 + w̃22 + · · ·+ w̃pp
d
= χ2

np.

Hence

P

(
l1
λ1

≥ C2

)
≤ P

(
χ2

np ≥ C2

)
, ∀C2 > 0. (25)

This means

P

(
l1
λ1

≥ C2

)
→ 0 as C2 →∞

uniformly in Λ.
Next we consider l2. Let W 22 be the (p− 1)× (p− 1) matrix that is made by deleting the first

column and the first row of W . Then W 22 ∼ W p−1(n,Λ22) with Λ22 = diag(λ2, . . . , λp). Let l̃2
be the largest eigenvalue of W 22. Then by the minimax characterization of eigenvalues (see for
example Marshal and Olkin (1979) Ch.20 A.1.c)

l2 ≤ l̃2.

If we use the result (25) for l̃2/λ2, we have

P

(
l2
λ2

≥ C2

)
≤ P

(
l̃2
λ2

≥ C2

)
≤ P

(
χ2

n(p−1) ≥ C2

)
, ∀C2 > 0.

Therefore

P

(
l2
λ2

≥ C2

)
→ 0 as C2 →∞,

uniformly in Λ. Completely similarly we can prove

P

(
li
λi

≥ C2

)
→ 0 as C2 →∞, 1 ≤ ∀i ≤ p, (26)
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uniformly in Λ.
Now we consider the reverse inequality. We use the inverse Wishart distribution. Let

W̃ = Λ− 1
2 WΛ− 1

2 , W̃
−1

= (w̃ij) = Λ
1
2 W−1Λ

1
2 .

Then W̃
−1 ∼ W−1

p (n, Ip) and its distribution is independent of Λ. First we consider l−1
p , the

largest eigenvalue of W−1. Since

1

lp
≤ tr W−1 =

w̃11

λ1

+ · · ·+ w̃pp

λp

≤ 1

λp

(w̃11 + · · ·+ w̃pp),

we have

P

(
λp

lp
≥ 1

C1

)
≤ P

(
w̃11 + · · ·+ w̃pp ≥ 1

C1

)
, ∀C1 > 0.

The right side is independent of Λ. Hence

P

(
lp
λp

≤ C1

)
→ 0 as C1 → 0,

uniformly in Λ.
Next we consider l−1

p−1. Let W−1
(2) be the (p − 1) × (p − 1) matrix made by deleting the last

column and the last row of W−1. Since W−1 ∼ W−1
p (n,Λ−1), we have

W−1
(2) ∼ W−1

p−1(n− 1,Λ11), Λ11 = diag(λ−1
1 , . . . , λ−1

p−1).

Let l∗2 denote the largest eigenvalue of W−1
(2). Then

1

lp−1

≤ l∗2.

We also have

l∗2 ≤ tr W−1
(2) =

w̃11

λ1

+ · · ·+ w̃p−1,p−1

λp−1

≤ 1

λp−1

(w̃11 + · · ·+ w̃p−1,p−1).

Therefore

P

(
λp−1

lp−1

≥ 1

C1

)
≤ P

(
λp−1l

∗
2 ≥

1

C1

)
≤ P

(
w̃11 + · · ·+ w̃p−1,p−1 ≥ 1

C1

)
, ∀C1 > 0,

and

P

(
lp−1

λp−1

≤ C1

)
→ 0 as C1 → 0,

uniformly in Λ. Completely similarly we can prove

P

(
li
λi

≤ C1

)
→ 0 as C1 → 0, 1 ≤ ∀i ≤ p, (27)

15



uniformly in Λ.
From (26),(27) and Bonferroni inequality, we can choose C1 and C2 for any given ε > 0 so that

P

(
C1 <

li
λi

< C2, 1 ≤ ∀i ≤ p

)
> 1− ε, ∀Λ.

Proof of Theorem 1
Let

W̃ = Λ− 1
2Γ0WΓΛ− 1

2 = Λ− 1
2 G̃LG̃0Λ− 1

2 ∼ W p(n, Ip),

where G̃ = (g̃ij) = Γ0G. By (5) it suffices to show that g̃2
ij

p→ 0, 1 ≤ ∀j < ∀i ≤ p. Suppose j < i.
Note that

w̃ii = (g̃2
i1l1 + · · ·+ g̃2

iplp)λ
−1
i .

Therefore

g̃2
ij ≤ w̃ii

λi

lj
= w̃ii

λj

lj

λi

λj

≤ w̃ii
λj

lj
ρ. (28)

Since w̃ii is independent of Σ, for any ε > 0, there exists M such that

P (w̃ii < M) > 1− ε, ∀Σ. (29)

Besides from the result of Lemma 1, for any ε > 0, there exists C such that

P

(∣∣∣∣∣
λj

lj

∣∣∣∣∣ < C

)
> 1− ε, ∀Σ. (30)

From (29) and (30), we can easily prove

w̃ii
λj

lj
ρ

p→ 0 as ρ → 0.

From this fact and (28) we have

g̃2
ij

p→ 0 as ρ → 0, 1 ≤ ∀j < ∀i ≤ p.

Proof of Lemma 2
The random variables l = (l1, . . . , lp) and G̃ = Γ0G has the following joint density function

with respect to Lebesgue measure on Rp and the invariant probability µ on O(p)+ = {G̃ ∈ O(p) |
g̃ii ≥ 0, 1 ≤ ∀i ≤ p}.

c1

p∏

i=1

λ
−n

2
i

p∏

i=1

l
n−p−1

2
i

∏

j<i

(lj − li) etr
(
−1

2
G̃LG̃0Λ−1

)
,
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where etrX = exp(tr X). For the present proof we do not need an explicit form of the normalizing
constant c1. Therefore

E[x(G, l,λ)]

= E[x(ΓG̃, l,λ)]

= c1

p∏

i=1

λ
−n

2
i

∫

L

∫

O(p)+
x(ΓG, l,λ)

p∏

i=1

l
n−p−1

2
i

∏

j<i

(lj − li)etr
(
−1

2
GLG0Λ−1

)
dµ(G)dl, (31)

where
L = {l | l1 > l2 > . . . > lp > 0}.

For the integration with respect to G on O(p)+, we consider the integration in a neighborhood of
Ip and outside the neighborhood separately. We define a neighborhood of Ip using the expression
G(u). Since gii(0) = 1, 1 ≤ ∀i ≤ p, there exists an open set U∗ that satisfies

0 ⊂ U∗ ⊂ Ū∗ ⊂ U (Ū∗ is the closure of U∗)

and

gii(u) ≥
√

1

2
, 1 ≤ ∀i ≤ p, ∀u ∈ Ū∗. (32)

Let
N (Ip) = L ×G(Ū∗) = L × {G(u) | u ∈ Ū∗}.

The integral (31) is divided into two parts, say I1 over N (Ip) and I2 over N (Ip)
C . Then from (8)

I2 ≤ c1

p∏

i=1

λ
−n

2
i

∫

N (Ip)C
|x(ΓG, l, λ)|

p∏

i=1

l
n−p−1

2
i

∏

j<i

(lj − li)etr
(
−1

2
GLG0Λ−1

)
dµ(G)dl

≤ c1 b
p∏

i=1

λ
−n

2
i

∫

N (Ip)C

p∏

i=1

l
n−p−1

2
i

∏

j<i

(lj − li) etr
(
−1

2
GLG0Λ̃−1

)
dµ(G)dl

= c′1 P
(
Γ0G /∈ N (Ip) |Σ = ΓΛ̃Γ0

)
, (33)

where Λ̃ = (1 − 2a)Λ. Since P
(
Γ0G /∈ N (Ip) |Σ = ΓΛ̃Γ0

)
→ 0 as ρ → 0 by Theorem 1, I2

vanishes.
Now we focus ourselves on I1.

I1 = c1

p∏

i=1

λ
−n

2
i

∫

N (Ip)
x(ΓG, l,λ)

p∏

i=1

l
n−p−1

2
i

∏

j<i

(lj − li) etr
(
−1

2
GLG0Λ−1

)
dµ(G)dl.

We want to express the integral with respect to dµ(G) in terms of the local coordinates u. It is
well known that the invariant measure dµ(G) has the exterior differential form expression

c2

∧

i>j

g′jdgi, (34)
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where gi is the ith column of G. Substituting the differential

dgij = duij, i > j,

dgij =
∑

k>l

∂gij

∂ukl

dukl, i ≤ j,

into (34) and taking the wedge product of the terms, we see that

∧

i>j

g′jdgi = ±J∗(u)
∧

i>j

duij,

where J∗(u) is the Jacobian expressing the Radon-Nikodym derivative of the measure on Ū∗

induced from the invariant measure on O(p) with respect to the Lebesgue measure on R
p(p−1)

2 .
An explicit form of J∗(u) for small dimension p is discussed in Appendix B. Since J∗(u) is a C∞

function on Ū∗, it is bounded and has a finite limit as u → 0. By the above change of variables,
I1 is written as

I1 = c3

p∏

i=1

λ
−n

2
i

∫

L

∫

Ū∗
x(ΓG(u), l,λ)

×
p∏

i=1

l
n−p−1

2
i

∏

j<i

(lj − li) etr
(
−1

2
G(u)LG0(u)Λ−1

)
J∗(u) dudl.

Now we consider the further coordinate transformation (l, u) → (f , q), where

f = (fi)1≤i≤p, fi =
li
λi

,

q = (qij)1≤j<i≤p, qij = uijl
1
2
j λ

− 1
2

i .

The Jacobian of this transformation is
∣∣∣∣∣det

(
∂(l, u)

∂(f , q)

) ∣∣∣∣∣ =

∣∣∣∣∣det

(
∂l

∂f

)∣∣∣∣∣

∣∣∣∣∣det

(
∂u

∂q

)∣∣∣∣∣

=
p∏

i=1

λi

∏

i>j

f
− 1

2
j λ

− 1
2

j λ
1
2
i

=
p∏

i=1

λ
−p+2i+1

2
i

p∏

i=1

f
− p−i

2
i .

Furthermore

p∏

i=1

l
n−p−1

2
i =

p∏

i=1

f
n−p−1

2
i

p∏

i=1

λ
n−p−1

2
i ,

∏

j<i

(lj − li) =
∏

j<i

(fjλj − fiλi) =
∏

j<i

fjλj

(
1− fiλi

fjλj

)
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=
p∏

i=1

f p−i
i

p∏

i=1

λp−i
i

∏

j<i

(
1− fiλi

fjλj

)
,

tr G(u)LG0(u)Λ−1 =
p∑

i=1

p∑

j=1

g2
ij(u)ljλ

−1
i

=
∑

i>j

q2
ij +

p∑

i=1

g2
ii(u)fi +

∑

i<j

g2
ij(u)fjλjλ

−1
i ,

where
u = u(f , q,λ) = (uij)i>j, uij = qijf

−1/2
j λ

−1/2
j λ

1/2
i ,

is now a function of f , q as well as of λ. We also have l = l(f ,λ) = (f1λ1, . . . , fpλp).
Combining the above calculations, we have

I1 =
∫

Rp(p−1)/2

∫

Rp
+

xΓ(f , q,λ)h(f , q, λ) dfdq, (35)

where

h(f , q,λ) = c3 I (f1λ1 > . . . > fpλp) I
(
u ∈ Ū∗)

p∏

i=1

f
n−i−1

2
i

∏

j<i

(
1− fiλi

fjλj

)
exp


−1

2

∑

i>j

q2
ij




exp



−

1

2




p∑

i=1

g2
ii(u)fi +

∑

i<j

g2
ij(u)fjλjλ

−1
i






 J∗(u).

We will show that xΓ(f , q,λ)h(f , q,λ) is bounded in λ. First J∗(u) I(u) ≤ K for some K > 0,
because J∗(u) is bounded on a compact set Ū∗ as remarked above. Clearly

0 <
∏

j<i

(
1− fiλi

fjλj

)
I (f1λ1 > . . . > fpλp) < 1.

From (8) we have

|xΓ(f , q,λ)| = |x(ΓG(u), l(f , λ),λ)|

≤ b exp



a


∑

i>j

q2
ij +

p∑

i=1

g2
ii(u)fi +

∑

i<j

g2
ij(u)fjλjλ

−1
i






 .

Therefore, using (32), we have

|xΓ(f , q,λ)| exp



−

1

2


∑

i>j

q2
ij +

p∑

i=1

g2
ii(u)fi +

∑

i<j

g2
ij(u)fjλjλ

−1
i






 I

(
u ∈ Ū∗)

≤ b exp



−

1− 2a

2


∑

i>j

q2
ij +

p∑

i=1

g2
ii(u)fi +

∑

i<j

g2
ij(u)fjλjλ

−1
i






 I

(
u ∈ Ū∗)
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≤ b exp



−

1− 2a

2


∑

i>j

q2
ij +

p∑

i=1

g2
ii(u)fi






 I

(
u ∈ Ū∗)

≤ b exp


−1− 2a

2

∑

i>j

q2
ij


 exp

(
−1− 2a

4

p∑

i=1

fi

)
.

Consequently

|xΓ(f , q, λ)|h(f , q,λ) ≤ c4

p∏

j=1

f
n−j−1

2
j exp


−1− 2a

2

∑

i>j

q2
ij


 exp

(
−1− 2a

4

p∑

i=1

fi

)
.

Denote the right hand side by h(f , q). Obviously
∫

Rp
+

∫

R
p(p−1)

2

h(f , q)dqdf < ∞.

This guarantees the exchange between limρ→0 and the integral in (35); i.e.,

lim
ρ→0

I1 =
∫

Rp
+

∫

R
p(p−1)

2

lim
ρ→0

{xΓ(f , q,λ) h(f , q,λ)}dqdf .

Notice that

lim
ρ→0

I (f1λ1 > . . . > fpλp) = 1, lim
ρ→0

∏

j<i

(
1− fiλi

fjλj

)
= 1.

Since
lim
ρ→0

u(λ,f , q) = 0, gii(0) = 1, 1 ≤ ∀i ≤ p, gij(0) = 0, 1 ≤ ∀i < ∀j ≤ p,

we have
lim
ρ→0

I
(
u(λ,f , q) ∈ Ū∗) = 1, lim

ρ→0
J∗(u(λ,f , q)) = J∗(0),

and

lim
ρ→0

exp



−

1

2




p∑

i=1

g2
ii(u)fi +

∑

i<j

g2
ij(u)fjλjλ

−1
i






 = exp

(
−1

2

p∑

i=1

fi

)
.

Consequently

lim
ρ→0

E[x(G, l,λ) |Σ = ΓΛΓ0]
= lim

ρ→0
I1

= c3 J∗(0)
∫

Rp
+

∫

R
p(p−1)

2

x̄Γ(f , q)
p∏

i=1

f
n−i−1

2
i exp


−1

2

∑

i>j

q2
ij


 exp

(
−1

2

p∑

i=1

fi

)
dqdf . (36)

Considering the special case x(G, l,λ) ≡ 1, we notice that c3 J∗(0) is the normalizing constant
for the joint distribution of f and q, whose elements are all mutually independently distributed
as qij ∼ N(0, 1), 1 ≤ j < i ≤ p, fi ∼ χ2

n−i+1, 1 ≤ i ≤ p. Therefore the right side of (36) is equal
to E[x̄Γ(f , q)].
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Proof of Theorem 2
Let A denote the event

A : li/λi ≤ βii, 1 ≤ ∀i ≤ p, g̃ijl
1
2
j λ

− 1
2

i ≤ βij, 1 ≤ ∀j < ∀i ≤ p

with arbitrary real numbers βij, 1 ≤ j ≤ i ≤ p. Define x(G, l,λ) = I(A), where I(·) is the
indicator function. Then from the definition of xΓ in (7)

xΓ(f , q,λ) = I(fi ≤ βii, 1 ≤ ∀i ≤ p, qij ≤ βij, 1 ≤ ∀j < ∀i ≤ p)

= x̄Γ(f , q).

Note that x(G, l,λ) = I(A) satisfies the inequality (8) with a = 0, b = 1. Therefore by the
Lemma 2, we have the result for any Γ.

Proof of Lemma 3
We write

tr Σ̂(W )Σ�1 =
∑

i,j

h̃2
ijdj/λi,

where h̃ij’s are the elements of H̃(W ) = Γ0H(W ). Since each term is non-negative,

∃M, ∀λ, E(h̃2
ijdj/λi) < M.

By Markov inequality

∀c > 0, ∀λ, P (h̃2
ijdj/λi ≥ c) ≤ M

c
.

Therefore
h̃2

ijdj/λi = h̃2
ijcj(lj/λj)(λj/λi) = Op(1). (37)

By Corollary 1 and Theorem 1, r
p→ 0 and d(G,Γ)

p→ 0. From these convergence and Assumption
1,

1

cj(G, l)

p→ 1

c̄j(Γ)
,

which means
1

cj

= Op(1). (38)

From (37), (38) and λj/lj = Op(1) (Lemma 1),

h̃2
ij

p→ 0, 1 ≤ ∀j < ∀i ≤ p,

i.e. d(Γ0H(W ), Ip)
p→ 0. By the left orthogonal invariance of d(·, ·) in (4),

d(H(W ),Γ)
p→ 0.
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Proof of Theorem 3
Consider the triangular inequality

d(Γ, H̄(Γ)) ≤ d(Γ, H(G, l)) + d(H(G, l), H̄(Γ)). (39)

By Lemma 3, d(Γ,H(G, l))
p→ 0 as ρ → 0. By Corollary 1 and Theorem 1, r

p→ 0 and d(G,Γ)
p→ 0

as ρ → 0. Therefore by Assumption 3, d(H(G, l), H̄(Γ))
p→ 0. It follows that the right hand

side of (39) converges to 0 in probability as ρ → 0. However the left hand side is a constant and
therefore d(Γ, H̄(Γ)) = 0.

Proof of Lemma 4
Here for notational simplicity we prove the lemma for the case of Γ = Ip. This can be done

without loss of generality, because given an estimator Σ̂ = Σ̂(W ) and Γ, we can consider an
estimator Σ̂Γ = Γ′Σ̂(ΓWΓ′)Γ instead of Σ̂ = Σ̂(W ). Therefore in this proof we simply write G
instead of G̃. Similarly we simply denote the local expression of a function x(G,λ) around Ip by
x(f , q,λ).

Using the notation αij = αij(G, l,λ) = hij(G, l)c
1
2
j l

1
2
j λ

− 1
2

i , 1 ≤ i, j ≤ p, we can write the loss
functions as

L1(Σ̂Γ,Λ) = tr(Λ−1HDH ′)−
p∑

i=1

log ci − log |Λ−1W | − p

=
p∑

i=1

p∑

j=1

α2
ij −

p∑

i=1

log ci − log |Λ−1W | − p.

L2(Σ̂Γ,Λ) = tr(Λ−1HDH ′ − Ip)
2

= tr(Λ−1HDH ′)2 − 2 tr(Λ−1HDH ′) + p

=
p∑

i=1

p∑

j=1

p∑

k=1

p∑

l=1

αkiαkjαliαlj − 2
p∑

i=1

p∑

j=1

α2
ij + p.

The proof proceeds similarly as the one in Lemma 2. For i = 1, 2, we have

Ri(Σ̂Γ,Λ) = E[I((l,G) ∈ N (Ip))Li(Σ̂Γ,Λ)] + E[I((l,G) ∈ N (Ip)
C)Li(Σ̂Γ,Λ)]

≥ E[I((l,G) ∈ N (Ip))Li(Σ̂Γ,Λ)]

=
∫

Rp
+

∫

R
p(p−1)

2

Li(f , q, λ)h(f , q,λ)dqdf ,

By Fatou’s lemma, we have

lim
ρ→0

Ri(Σ̂Γ,Λ) ≥
∫

Rp
+

∫

R
p(p−1)

2

lim
ρ→0

Li(f , q,λ)h(f , q, λ)dqdf

=
∫

Rp
+

∫

R
p(p−1)

2

lim
ρ→0

Li(f , q,λ)h(f , q, λ)dqdf .
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Using the fact E[log |Λ−1W |] =
∑p

i=1 E[log χ2
n−i+1], we have

L1(f , q,λ) =
p∑

i=1

p∑

j=1

α2
ij −

p∑

j=1

log cj −
p∑

i=1

E[log χ2
n−i+1]− p

around Ip. Note that αij(f , q,λ) = hij(f , q,λ)c
1
2
j (f , q, λ)f

1
2
j λ

1
2
j λ

− 1
2

i around Ip. By Assumption 1
we have

lim
ρ→0

cj(f , q, λ) = lim
ρ→0

cj(G(u), l(f ,λ)) = lim
G→Ip,r→0

cj(G, l) = c̄j(Ip).

Using this convergence, Assumption 4 and the fact hii → 1, 1 ≤ ∀i ≤ p, hij → 0, 1 ≤ ∀i < ∀j ≤ p,
we have

lim
ρ→0

αij =





lim
ρ→0

ζijc
1
2
j qij = ζ̄ij c̄j(Ip)

1
2 qij, if i > j,

lim
ρ→0

hiic
1
2
i f

1
2
i = c̄i(Ip)

1
2 f

1
2
i , if i = j,

0, if i < j.

This can be written uniformly as limρ→0 αij = c̄j(Ip)
1
2 ξij. Therefore

lim
ρ→0

log cj = log c̄j(Ip),

lim
ρ→0

p∑

i=1

p∑

j=1

α2
ij =

p∑

i=1

p∑

j=1

c̄j(Ip)ξ
2
ij,

lim
ρ→0

p∑

i=1

p∑

j=1

p∑

k=1

p∑

l=1

αkiαkjαliαlj =
p∑

i=1

p∑

j=1

p∑

k=1

p∑

l=1

c̄i(Ip)c̄j(Ip)ξkiξkjξliξlj.

Since h(f , q,λ) converges to the density of the asymptotic distributions given in Theorem 2, the
inequalities in the lemma are proved.

Now we assume (20) and (21). Since |αij(G, l,λ)| ≤ c
1
2
u |ζij(G, l)||gij|l

1
2
j λ

− 1
2

i ,

∃a′ < 1/8− a, ∃b′ > 0, 1 ≤ ∀i, ∀j ≤ p, |αij(G, l,λ)| ≤ |ζij(G, l)| b′etr(a′GLG0Λ−1).

Therefore for 1 ≤ ∀i, ∀j, ∀k, ∀l ≤ p,

α2
ij(G, l,λ) ≤ (bb′)2etr{2(a + a′)GLG0Λ−1} a.e.,

|αki(G, l, λ)αkj(G, l,λ)αli(G, l, λ)αlj(G, l,λ)| ≤ (bb′)4etr{4(a + a′)GLG0Λ−1} a.e.,

| log ci(G, l)| ≤ max (| log cl|, | log cu|).
By Lemma 2, for i = 1, 2,

lim
ρ→0

R(Σ̂Γ,Λ) = E[lim
ρ→0

Li(f , q,λ)].

Proof of Theorem 4 for Stein’s loss
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Substitute

ξij(f , q) =





qij, if i > j,

f
1
2
i , if i = j,
0, if i < j,

into (18). Then we have

lim
ρ→0

R1(Σ̂,Σ)

≥ ∑

i>j

c̄j(Γ)E[χ2
1] +

p∑

i=1

c̄i(Γ)E[χ2
n−i+1]−

p∑

i=1

log c̄i(Γ)−
p∑

i=1

E
[
log χ2

n−i+1

]
− p

=
∑

i>j

c̄j(Γ) +
p∑

i=1

c̄i(Γ)(n− i + 1)−
p∑

i=1

log c̄i(Γ)−
p∑

i=1

E
[
log χ2

n−i+1

]
− p

=
p∑

i=1

{
c̄j(Γ)/δJS

i − log c̄j(Γ)
}
−

p∑

i=1

E
[
log χ2

n−i+1

]
− p

with δJS
i given in (10). The right side is uniquely minimized when c̄i(Γ) = δJS

i . Therefore

lim
ρ→0

R1(Σ̂,Σ) ≥
p∑

i=1

log(n + p + 1− 2i)−
p∑

i=1

E
[
log χ2

n−i+1

]
,

where the right side is equal to the minimax risk R̄1 in (11). If c̄i(Γ) 6= δi, 1 ≤ ∃i ≤ p, then there
exists some Σ such that

R1(Σ̂,Σ) > R̄1.

But this contradicts the fact that Σ̂ is a minimax estimator. Consequently it is necessary that

c∗i (Γ) = δJS
i , 1 ≤ ∀i ≤ p.

Proof of Theorem 4 for the quadratic loss
The proof is straightforward but long. We briefly sketch the outline. We decompose the

four-folded summation in (19) as

p∑

i=1

p∑

j=1

p∑

k=1

p∑

l=1

c̄i(Γ)c̄j(Γ)E[ξkiξkjξliξlj]

=
p∑

i=1

p∑

j=1

p∑

k=1

c̄i(Γ)c̄j(Γ)E[ξ2
kiξ

2
kj] + 2

p∑

i=1

p∑

j=1

∑

k<l

c̄i(Γ)c̄j(Γ)E[ξkiξkjξliξlj].
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Furthermore

p∑

i=1

p∑

j=1

p∑

k=1

c̄i(Γ)c̄j(Γ)E[ξ2
kiξ

2
kj]

=
∑

k<i or k<j

+
∑

k=i=j

+
∑

k=i,k>j

+
∑

k=j,k>i

+
∑

k>i,k>j,i=j

+
∑

k>i,k>j,i6=j

=
p∑

i=1

{(n− i + 1)(n− i + 3) + 3(p− i)}c̄i(Γ)2 +
∑

i<j

(n + p− 2j + 1)c̄i(Γ)c̄j(Γ)

+
∑

j<i

(n + p− 2i + 1)c̄i(Γ)c̄j(Γ).

We also have

2
p∑

i=1

p∑

j=1

∑

k<l

c̄i(Γ)c̄j(Γ)E[ξkiξkjξliξlj]

= 2
p∑

i=1

∑

k<l

c̄2
i (Γ)E[ξ2

kiξ
2
li] + 4

∑

i<j

∑

k<l

c̄i(Γ)c̄j(Γ)E[ξkiξkjξliξlj]

=
p∑

i=1

c̄2
i (Γ){2(p− i)(n− i + 1) + (p− i)(p− i− 1)}.

Combining these results and the result on R1(Σ̂, Σ),

2
p∑

i=1

p∑

j=1

c̄j(Γ)E[ξ2
ij] = 2

p∑

i=1

(n + p + 1− 2i)c̄i(Γ),

we obtain
lim
ρ→0

R2(Σ̂,ΓΛΓ0) ≥ c′Ac− 2b′c + p, (40)

where c = (c̄1(Γ), . . . , c̄p(Γ))′ and the elements A and b are given in (12) and (13). The minimum
of the quadratic function (40) is uniquely attained when c satisfies the linear equation Ac = b,
namely

c̄i(Γ) = δOS
i , 1 ≤ ∀i ≤ p,

where δOS
i is defined in (14) and the minimum value of the quadratic function is the minimax risk

R̄2 in (15). This proves the theorem for the case of the quadratic loss.

A The case of 2× 2 triangularly equivariant estimator

Here we confirm that 2× 2 triangularly equivariant estimators satisfy our regularity conditions of
Section 3, except for the case that the (1,1)-element of Γ is 0.

Let
W Γ = ΓG(u)LG0(u)Γ0,
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where

G(u) =

( √
1− u2 −u

u
√

1− u2

)
, u = q21f

− 1
2

1 λ
1
2
2 λ

− 1
2

1 .

Write y = (λ2/λ1)
1
2 . If the triangularly equivariant estimator based on W Γ and its spectral

decomposition is given by

Σ̂(W Γ) = T diag(δ1, δ2)T
′ = HDH 0

with
W Γ = TT ′,

then
Σ̂(l−1

1 W Γ) = T diag(l−1
1 δ1, l

−1
1 δ2)T

′ = HD̃H 0,
where

D̃ = diag(d̃1, d̃2) = diag(l−1
1 d1, l

−1
1 d2).

Let w̃ij = (l−1
1 W Γ)ij. Note that h̃21, d̃1 are C∞ functions of w̃11, w̃12, w̃22 except the point

w̃11 = 0. Let γ11 denote the (1, 1)-element of Γ. We have to consider the cases γ11 6= 0 and γ11 = 0
separately.

First consider the case γ11 6= 0. We would like to show as y → 0

h̃21/u → 1, d̃1 → δ1. (41)

If γ11 6= 0, we can eliminate the singularity at w̃11 = 0 for sufficiently small y. In this case h̃21, d̃1

are C∞ functions of w̃11, w̃12, w̃22. Since u = O(y), for the calculation of (41) we can substitute
l−1
1 W Γ with any C∞ matrix-valued function of y, W ∗

Γ such that W ∗
Γ = W Γ + o(y). Since

G(u)l−1
1 LG0(u) =

( √
1− u2 −u

u
√

1− u2

) (
1 0
0 f2f

−1
1 y2

) ( √
1− u2 u

−u
√

1− u2

)

=

(
1− u2 + f2f

−1
1 y2u2 u

√
1− u2(1− f2f

−1
1 y2)

u
√

1− u2(1− f2f
−1
1 y2) u2 + (1− u2)f2f

−1
1 y2

)

=

(
1 u
u u2

)
+ o(y),

we can substitute l−1
1 W Γ with

W ∗
Γ = Γ

(
1 u
u u2

)
Γ0.

Then

W ∗
Γ = TT ′, T = Γ

(
1 0
u 0

)

is the lower-triangular decomposition of W ∗
Γ and

Σ̂(W ∗
Γ) = Γ

(
1 0
u 0

) (
δ1 0
0 δ2

) (
1 u
0 0

)
Γ0

= ΓO(u)

(
(1 + u2)δ1 0

0 0

)
O′(u)Γ0, (42)
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where O(u) is the orthogonal matrix given by

O(u) =




1√
1 + u2

−u√
1 + u2

u√
1 + u2

1√
1 + u2


 .

The right side of (42) is the spectral decomposition of Σ̂(W ∗
Γ). Therefore

H = ΓO(u), D̃ = diag(
√

1 + u2δ1, 0)

Hence
H̃ = Γ0H = O(u).

Since
h̃21

u
=

1√
1 + u2

→ 1

and
d̃1 =

√
1 + u2δ1 → δ1,

(41) is proved.
Now we will prove c2 → δ2. Note that

d1d2 = |Σ̂(W Γ)| = δ1δ2|TT ′| = δ1δ2l1l2,

c1c2 =
d1d2

l1l2
= δ1δ2.

Since c1 → δ1,
c2 → δ2.

Next, we consider the case γ11 = 0, i.e.

Γ =

(
0 ε1

ε2 0

)
εi = ±1.

In this case the eigenvectors and eigenvalues exhibit certain singularity. In fact we show that the
relevant limits depend on how G converges to Γ. Since

l−1
1 W Γ =

(
u2 + (1− u2)f2f

−1
1 y2 ε1ε2u

√
1− u2(1− f2f

−1
1 y2)

ε1ε2u
√

1− u2(1− f2f
−1
1 y2) 1− u2 + f2f

−1
1 y2u2

)
,

Σ̂(l−1
1 W Γ) = (σ̂ij) is given by

σ̂11 = δ1{u2 + (1− u2)f2f
−1
1 y2},

σ̂12 = δ1ε1ε2u
√

1− u2(1− f2f
−1
1 y2), (43)

σ̂22 = (δ1 − δ2)
u2(1− u2)(1− f2f

−1
1 y2)2

u2 + (1− u2)f2f
−1
1 y2

+ δ2{(1− u2) + f2f
−1
1 y2u2}.
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Note that
σ̂11 → 0,

σ̂12 → 0,

σ̂22 → δ1
q2
21

f2 + q2
21

+ δ2
f2

f2 + q2
21

.

Therefore

d̃1 + d̃2 = σ̂11 + σ̂22 → δ1
q2
21

f2 + q2
21

+ δ2
f2

f2 + q2
21

, (44)

d̃1d̃2 = σ̂11σ̂22 − σ̂2
12 → 0. (45)

From (44) and (45),

c1 = d̃1 → δ1
q2
21

f2 + q2
21

+ δ2
f2

f2 + q2
21

.

Since c1c2 = δ1δ2,

c2 → δ1δ2(f2 + q2
21)

δ1q2
21 + δ2f2

.

Now we consider the convergence of h̃21. From (Γ0H)ii ≥ 0, H is of the form

H =

(
ε1τ ε1

√
1− τ 2

ε2

√
1− τ 2 −ε2τ

)
.

Notice h̃21 = τ and
(

σ̂11 σ̂21

σ̂12 σ̂22

)
=

(
ε1τ ε1

√
1− τ 2

ε2

√
1− τ 2 −ε2τ

) (
d̃1 0

0 d̃2

) (
ε1τ ε2

√
1− τ 2

ε1

√
1− τ 2 −ε2τ

)

=

(
τ 2(d̃1 − d̃2) + d̃2 ε1ε2τ

√
1− τ 2(d̃1 − d̃2)

ε1ε2τ
√

1− τ 2(d̃1 − d̃2) τ 2(d̃2 − d̃1) + d̃1

)
. (46)

From (43) and (46),

ε1ε2τ
√

1− τ 2(d̃1 − d̃2) = δ1ε1ε2u
√

1− u2(1− f2f
−1
1 y2).

From this equation, it is obvious that τ > 0 for sufficiently small y. Therefore h̃21/u →
√

α is
equivalent to h̃2

21/u
2 = τ 2/u2 → α. From the diagonal elements of (46),

τ 2 =
1

2

(
1 +

σ̂11 − σ̂22

d̃1 − d̃2

)
=

1

2


1 +

σ̂11 − σ̂22√
(σ̂11 + σ̂22)2 − 4σ̂11σ̂22 + 4σ̂2

12


 .

If we consider sufficiently small z = y2, σ̂11, σ̂22, σ̂
2
12 are C∞ functions of z, and τ 2 is a C∞ function

of σ̂11, σ̂22, σ̂
2
12. Hence τ 2 is a C∞ function of z in a neighborhood of z = 0. Put g(z) = τ 2(z).

Then

lim
y→0

τ 2

y2
= lim

z→0

g(z)

z
= g′(0).
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The calculation of g′(z) is very long. With assistance of a computer software, we have

g′(0) =
(f2 + q2

21)
2δ2

1q
2
21

f1(δ1q2
21 + δ2f2)2

.

Therefore

h̃21/u → δ1(q
2
21 + f2)

δ1q2
21 + δ2f2

.

B Local coordinates of orthogonal group around the iden-

tity matrix

Here we discuss some details of local coordinates of O(p) around Ip. We verify how the actual
computation of our local coordinates can be carried out in principle, but general explicit formulas
seem to be complicated.

First we verify the condition of implicit function theorem to show that u in (6) can be used
as a local coordinate system around Ip. Write

ψii(G) =
p∑

t=1

g2
ti − 1, 1 ≤ i ≤ p,

ψij(G) =
p∑

t=1

gtigtj, 1 ≤ i < j ≤ p

ψ(G) = (ψij)1≤i≤j≤p.

Then O(p) is defined by ψ = 0. Differentiate ψ with respect to g11, . . . , gpp and g12, . . . , gp−1,p and
evaluate at G = Ip. Then we easily obtain

∂ψ(G)

∂(g11, . . . , gpp, g12, . . . , gp−1,p)

∣∣∣∣∣
G=Ip

=


 2Ip 0

0 I p(p−1)
2


 .

The right hand side is non-singular. The implicit function theorem tells us that there are two
open sets U, V and p(p+1)

2
C∞ functions φij on U (1 ≤ i ≤ j ≤ p) such that

0 ⊂ U ⊂ R
p(p−1)

2 , Ip ∈ V ⊂ O(p),

and the function G(u) = (gij(u)) defined by

gij(u) = φij(u), 1 ≤ i ≤ j ≤ p, gij(u) = uij, 1 ≤ j < i ≤ p,

is a one-to-one function from U onto V .
Next we consider Taylor expansion of gij = φij(u), i ≤ j, around the origin. It seems to be

convenient to use the matrix exponential function. Let Z = (zij) denote a skew symmetric matrix
and let

exp(Z) = Ip + Z +
1

2!
Z2 + · · · (47)
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be the matrix exponential function. Then Z 7→ exp(Z) defines a C∞ diffeomorphism between
a neighborhood of the origin in Rp(p−1)/2 and a neighborhood of Ip of O(p) (see Section 9.5 of
Muirhead (1982)). Consider the lower triangular part of

G = Ip + Z +
1

2!
Z2 + · · · .

Then for i > j

uij = zij +
1

2

∑

k

zikzkj +
1

3!

∑

k,l

zikzklzlj + · · ·

For convenience define
uii = 0, 1 ≤ i ≤ p, uij = −uji, i < j.

Solving (47) by back substitution, we obtain

zij = −zji = uij − 1

2

∑

k

uikukj +
1

3

∑

k,l

uikuklulj + · · · , i > j.

From now on we only consider up to the second degree terms, because the third degree terms seem
to be already somewhat cumbersome to handle. Then we have

gii = 1− 1
2

∑
j z2

ij + · · · = 1− 1
2

∑
j u2

ij + · · · ,
gij = zij + 1

2

∑
k zikzkj + · · · = uij +

∑
k uikukj + · · · , i < j.

Note that in Theorem 2, the orders of uij = g̃ij depend on the individual ratios λi+1/λi, 1 ≤ i ≤
p−1. Therefore it is difficult to simply express the asymptotic distribution of the upper triangular
part of G̃.

Finally we discuss the differential form expression of the invariant measure on O(p) in terms
of our local coordinates for small dimensions. For p = 2, write

G =

(
cos θ − sin θ
sin θ cos θ

)
.

Then u = u21 = sin θ and

du = cos θdθ = cos(sin−1(u))dθ = ±
√

1− u2dθ.

Furthermore

g′1dg2 = −(cos2 θ + sin2 θ)dθ = −dθ = ± 1√
1− u2

du.

Therefore J(u) = 1/
√

1− u2. The case of p = 2 is obviously simple.
Now consider p = 3. Differentiating G′G = Ip, we have dG′G + G′dG = 0, namely G′dG is

skew symmetric. Therefore ∧

i>j

g′jdgi = ± ∧

i<j

g′jdgi.
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Now

(dg1, dg2) =




∂g11

∂u21
du21 + ∂g11

∂u31
du31 + ∂g11

∂u32
du32

∂g12

∂u21
du21 + ∂g12

∂u31
du31 + ∂g12

∂u32
du32

du21
∂g22

∂u21
du21 + ∂g22

∂u31
du31 + ∂g22

∂u32
du32

du31 du32




and

g′2dg1 = g12(
∂g11

∂u21

du21 +
∂g11

∂u31

du31 +
∂g11

∂u32

du32) + g22du21 + g32du31

= (g12
∂g11

∂u21

+ g22)du21 + (g12
∂g11

∂u31

+ u32)du31 + g12
∂g11

∂u32

du32

= τ11(u)du21 + τ12(u)du31 + τ13(u)du32 (say),

g′3dg1 = (g13
∂g11

∂u21

+ g23)du21 + (g13
∂g11

∂u31

+ g33)du31 + g13
∂g11

∂u32

du32

= τ21(u)du21 + τ22(u)du31 + τ23(u)du32 (say),

g′3dg2 = (g13
∂g12

∂u21

+ g23
∂g22

∂u21

)du21 + (g13
∂g12

∂u31

+ g23
∂g22

∂u31

)du31

+(g13
∂g12

∂u32

+ g23
∂g22

∂u32

+ g33)du32

= τ31(u)du21 + τ32(u)du31 + τ33(u)du32 (say).

Write τ (u) = (τij(u))1≤i,j≤3. Note that in g′2dg1 ∧ g′3dg1 ∧ g′3dg2 we only need to keep track of
du21 ∧ du31 ∧ du32. Then by the antisymmetry of the wedge product, we obtain the determinant
of the 3× 3 matrix τ (u) as the coefficient of du21 ∧ du31 ∧ du32. Therefore

J(u) = | det τ (u)|.
Explicit expression of the right hand side already seems to be complicated. On the other hand, it
is clear that similar calculation can be carried out for a general dimension.
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