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Abstract. In sports timetabling, finding feasible pattern sets for a round
robin tournament is a significant problem. Although this problem has
been tackled in several ways, good characterization of feasible pattern
sets is not known yet. In this paper, we consider the feasibility of a pat-
tern set, and propose a necessary condition for feasible pattern sets. In
the case of a pattern set with a minimum number of breaks, we prove
a theorem leading a polynomial-time algorithm to check whether the
given pattern set satisfies the necessary condition or not. Computational
experiments show that the proposed condition characterizes feasible pat-
tern sets with a minimum number of breaks when the number of teams
is less than or equal to 26.

1 Introduction

Constructing a timetable for a sports competition is an important task for the
organizers of the competition because the timetable affects not only the results
of games but also the revenue of the competition. Since creating an appropri-
ate timetable by hand is difficult, demand for automated timetabling has been
increasing.

Sports timetabling is the research region that concerns creating an optimal
timetable of a sports competition, constructing timetabling algorithms, and in-
vestigating mathematical structure of the problem. Recently, a number of papers
on sports timetabling have been reported [1–8, 10–20]. Most of them considered
timetabling of a round robin tournament.

In this paper, we consider a round robin tournament with home and away
assignment. There are mainly two approaches to construct timetables for such
tournaments. One approach is to fix an opponent of each game first and then set
the place of each game [14]. The other is to decide the place of each game first,
i.e., fix a pattern set, then assign opponents to the pattern set [8, 13, 17]. Each
approach has its advantage and disadvantage compared to the other approach.
When the place of games have a great influence on a competition, the latter
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approach is preferred. Constructing a timetable with this approach, we often
encounter the problem to determine whether it is possible to make a timetable
from a fixed pattern set. We call this problem “pattern set feasibility problem.”
Although some enumerative methods, such as integer programming, are fairly
effective for solving this problem, few theoretical results of research on this prob-
lem are known. In this paper, we investigate pattern set feasibility problem, and
propose a highly efficient algorithm to solve this problem in a practical case.

This paper consists of five sections, including this introductory one. Section 2
defines pattern set feasibility problem formally. Section 3 proposes a necessary
condition for feasible pattern sets. Section 4 contains three subsections, which
concern a special class of pattern sets and its feasibility. Section 5 describes
future work and conclusions.

2 Pattern Set Feasibility Problem

In this paper, we consider a single round robin tournament of 2n teams with
2n−1 slots. Figure 1 is an example of a timetable of six teams. In a single round
robin tournament, each team plays one game in each slot, and plays against
every other team once through the tournament. Each team has its home, and
each game is held at the home of one of the teams playing. In a timetable, each
game with ‘@’ means that the game is held at the home of the opponent, while
each game without ‘@’ means that the game is held at the home of the team
corresponding to the row. For example, in Fig. 1, team 4 plays against team 3
at the home of team 3 in slot 5.

1 2 3 4 5 (slot)
1 : 3 @4 5 @6 2
2 : @5 6 4 3 @1
3 : @1 5 @6 @2 4
4 : @6 1 @2 5 @3
5 : 2 @3 @1 @4 6
6 : 4 @2 3 1 @5

(team)

Fig. 1. Timetable of six teams.

Pattern set is a table showing only the places of the games. Figure 2 is the
pattern set corresponding to the timetable of Fig. 1. In a pattern set, each ‘A’
means a game at away, and each ‘H’ means a game at home for the team corre-
sponding to the row.

Assume that we need to construct a timetable from a given pattern set. From
the pattern set of Fig. 3, we can construct two corresponding timetables (Fig. 4).
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1 2 3 4 5

1 : H A H A H
2 : A H H H A
3 : A H A A H
4 : A H A H A
5 : H A A A H
6 : H A H H A

Fig. 2. Pattern set corresponding to Fig. 1.

If a pattern set has at least one corresponding timetable, we say that the pat-
tern set is feasible. Usually, one feasible pattern set produces numerous different
timetables [13].

1 2 3

1 : A A H
2 : A H H
3 : H H A
4 : H A A

Fig. 3. Pattern set of four teams.

1 2 3

1 : @4 @2 3
2 : @3 1 4
3 : 2 4 @1
4 : 1 @3 @2

1 2 3

1 : @3 @2 4
2 : @4 1 3
3 : 1 4 @2
4 : 2 @3 @1

Fig. 4. Timetables corresponding to Fig. 3.

Unfortunately, not all pattern sets can generate a timetable. Figure 5 is an
example of an infeasible pattern set. In pattern set of Fig. 5, teams 4, 5 and 6
cannot play the games among them in slots 3, 4 and 5, because in each of those
slots these teams have the same characters (‘A’s or ‘H’s). Thus, they have to
play the three games in slots 1 and 2, which situation is obviously impossible.

Pattern set feasibility problem is to determine the feasibility of a given pat-
tern set. For this problem, polynomial-size characterization of feasible pattern
sets has not been found yet, and whether this problem is NP-complete or not is
still open. Although a polynomial-time algorithm to solve this problem has not
known yet, we can solve this problem with integer programming [13], and con-
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1 2 3 4 5

1 : H A H A H
2 : A A H A H
3 : A H H A H
4 : A H A H A
5 : H H A H A
6 : H A A H A

Fig. 5. Infeasible pattern set of six teams.

straint programming [8]. Theoretical results from graph theory were described
in [3–6, 17, 18].

In the rest of this paper, we consider pattern set feasibility problem. Before
going to the next section, we give three trivial remarks.

Remark 1. Permutation of the rows (teams) of a pattern set does not change
the feasibility.

Remark 2. Permutation of the columns (slots) of a pattern set does not change
the feasibility.

Remark 3. Replacing the characters ‘A’ with ‘H’ and ‘H’ with ‘A’ of a pattern
set does not change the feasibility.

3 Necessary Condition for Feasible Pattern Sets

In this section, we propose a necessary condition for feasible pattern sets.
It is easy to see that every feasible pattern set must satisfy the following two

conditions:

(i) in each slot, the number of ‘A’s and that of ‘H’s are equivalent,
(ii) each team has a different row from that of the other teams.

If a given pattern set does not satisfy the above conditions, the pattern set is
infeasible.

Assumption: In the rest of this paper, all pattern sets satisfy the conditions
(i) and (ii).

Of course, there are infeasible pattern sets that meet the conditions (i)
and (ii). Figure 5 is an example of such pattern sets. From observation of
teams 4, 5 and 6, we find that the pattern set is infeasible. In the following,
we show another infeasible pattern set and introduce a new necessary condition
for feasible pattern sets.

Figure 6 is a pattern set of ten teams, showing only teams 1–5. We can judge
that this pattern set is infeasible without seeing teams 6–10. In each of slots 1, 8
and 9, teams 1, 2, 3, 4 and 5 cannot play against each other, because these teams
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1 2 3 4 5 6 7 8 9

1 : A A H A H A H A H
2 : A H H A H A H A H
3 : A H A H H A H A H
4 : A H A H A A H A H
5 : A H A H A H A A H
6 : · · ·
...

...
10 : · · ·
#A : 5 1 3 2 2 4 1 5 0
#H : 0 4 2 3 3 1 4 0 5
min : 0 1 2 2 2 1 1 0 0

Fig. 6. Infeasible pattern set of ten teams, showing only teams 1–5.

have the same characters (‘A’s or ‘H’s). In slot 2, we can hold at most one game
among these five teams, at most two games in slot 3, and so on. In total, we can
assign at most nine games among the five teams, however, we have to hold ten
games (=

(
5
2

)
). Hence, this pattern set is infeasible.

We describe the above procedure in a general setting. Let T be an arbitrary
subset of teams of a given pattern set. In each slot, count the number of ‘A’s
and that of ‘H’s in T , then take the minimum of them. If the sum total of the
minimums is strictly less than

(|T |
2

)
, the given pattern set is infeasible.

In the remainder of this paper, we denote the set of all teams by U =
{1, 2, . . . , 2n} and the set of all slots by S = {1, 2, . . . , 2n − 1}. For any sub-
set of teams T ⊆ U and slot s ∈ S, let functions A(T, s) and H(T, s) return the
number of ‘A’s and that of ‘H’s in s among T , respectively. We define function α

by α(T ) def.=
∑

s∈S min{A(T, s), H(T, s)}− |T |(|T |− 1)/2. Using this function α,
we propose a necessary condition for feasible pattern sets; ∀T ⊆ U, α(T ) ≥ 0.

Example 1. For the pattern set of Fig. 6,
α({1, 2, 3, 4, 5}) = (0 + 1 + 2 + 2 + 2 + 1 + 1 + 0 + 0) − 5(5 − 1)/2 = −1.
Since there exists T ⊆ U satisfying α(T ) < 0, the pattern set is infeasible.

Remark 4. We already assumed that all pattern sets satisfy the following con-
ditions:

(i) in each slot, the number of ‘A’s and that of ‘H’s are equivalent,
(ii) each team has a different row from that of the other teams.

It is clear that these conditions are described as follows:

(i) α(U) = 0,
(ii) ∀T ⊆ U, |T | = 2 =⇒ α(T ) ≥ 0.

We denote the complement of T by T̄ ; T̄ = U \ T . The following theorem
shows relationship between α(T ) and α(T̄ ).
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Theorem 1. For any pattern set, α(T ) = α(T̄ ).

Proof. For arbitrary s ∈ S, min{A(T, s), H(T, s)} + max{A(T̄ , s), H(T̄ , s)} = n
because A(T, s) + A(T̄ , s) = H(T, s) + H(T̄ , s) = n.
Thus, min{A(T̄ , s), H(T̄ , s)} = |T̄ | − max{A(T̄ , s), H(T̄ , s)}
= (2n − |T |) −

(
n − min{A(T, s), H(T, s)}

)
= n − |T |+ min{A(T, s), H(T, s)}.

Hence, α(T̄ ) =
∑

s∈S min{A(T̄ , s), H(T̄ , s)} − |T̄ |(|T̄ | − 1)/2
=

∑
s∈S

(
n − |T |+ min{A(T, s), H(T, s)}

)
− (2n − |T |)(2n − |T | − 1)/2

=
∑

s∈S min{A(T, s), H(T, s)} + (2n − 1)(n − |T |) − (2n − |T |)(2n − |T | − 1)/2
=

∑
s∈S min{A(T, s), H(T, s)} − |T |(|T | − 1)/2 = α(T ).

In the rest of this paper, we may abbreviate
∑

s∈S min{A(T, s), H(T, s)}
to min{A(T ), H(T )}.

4 Pattern Set with a Minimum Number of Breaks and
Characterizing its Feasibility

In practical sports timetabling, the organizers often prefer a pattern set satis-
fying particular properties. In this section, we consider the feasibility of such
pattern sets.

In Subsection 4.1, we introduce a pattern set with a minimum number of
breaks and its well-known properties, represented in [3, 4, 6]. In Subsection 4.2,
we propose a polynomial-time algorithm to check whether a pattern set with a
minimum number of breaks satisfies the necessary condition described in Sect. 3.
In Subsection 4.3, we report results of computational experiments that show the
efficiency of the necessary condition.

4.1 Pattern Sets with a Minimum Number of Breaks

The pattern set shown in Fig. 7 is feasible, however, not desirable for most of the
organizers, because team 1 plays five consecutive away games. In general, a pat-
tern set with many consecutive away games for a team is not preferred. Similarly,
many consecutive home games are not desirable, such as team 6 in Fig. 7.

1 2 3 4 5

1 : A A A A A
2 : A H A H A
3 : H H A A H
4 : H A H A A
5 : A A H H H
6 : H H H H H

1 2 3 4 5

1 : @6 @2 @4 @5 @3
2 : @3 1 @6 4 @5
3 : 2 4 @5 @6 1
4 : 5 @3 1 @2 @6
5 : @4 @6 3 1 2
6 : 1 5 2 3 4

Fig. 7. Undesirable pattern set of six teams and a corresponding schedule.
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If a team has both ‘A’s or both ‘H’s in slots s and s+1, we say that the team
has a break at slot s + 1. In this paper, a break is expressed with an underline
below the latter character. For instance, in the pattern set of Fig. 7, team 4 has
consecutive ‘A’s in slots 4 and 5, and we say that team 4 has a break at slot 5.

The organizers do not prefer the pattern set of Fig. 7 because it has many
breaks. Generally, they are interested in a pattern set with few breaks. The
following theorem shows the minimum number of breaks in a feasible pattern
set of 2n teams.

Theorem 2. For any feasible pattern set, the number of breaks is greater than
or equal to 2n − 2 [3] .

Proof. There are at most two teams without any breaks, “AHAH· · ·AHA” and
“HAHA· · ·HAH.” Hence, the number of breaks is greater than or equal to 2n−2.

If a pattern set of 2n teams has exactly 2n − 2 breaks, we call the pattern
set a pattern set with a minimum number of breaks (PSMB). In a PSMB, two
teams have no break and other 2n − 2 teams have just one break. Fig. 8 is an
example of PSMB of eight teams.

1 2 3 4 5 6 7

1 : A H A H A H A
2 : H A A H A H A
3 : H A H A A H A
4 : H A H A H H A
5 : H A H A H A H
6 : A H H A H A H
7 : A H A H H A H
8 : A H A H A A H

Fig. 8. PSMB of eight teams.

For any PSMB, the following theorem holds.

Theorem 3. At any slot of each PSMB, there are exactly two breaks or no
breaks [3] .

Proof. In a PSMB, each team has at most one break. Thus, there are at most two
teams with a break at slot s, as “AH· · ·AHHA· · ·AH” and “HA· · ·HAAH· · ·HA.”
Assume that only team t has a break at slot s. Then the number of ‘A’s and
that of ‘H’s are different in slot s − 1 because all teams except t have no break
at slot s (Fig. 9). This contradicts the property (i).

In a pattern set, if a team has the row obtained by substituting ‘A’ for ‘H’
and ‘H’ for ‘A’ of the row of team t, we say that the team is the complement
team of t and vice versa. We represent the complement team of t as t̃, and say
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· · · s − 1 s · · ·
t : A A
· · · : H A
· · · : H A
· · · : A H
· · · : A H
· · · : A H

Fig. 9. No slot with just one break in a PSMB.

that {t, t̃} is a complement pair. From Theorem 3, it is easy to see that every
PSMB of 2n teams consists of n complement pairs.

When each team in a pattern set has exactly one break, we call the pattern
set an equitable pattern set [3]. Figure 10 is an example of equitable pattern
sets of eight teams. Although each PSMB is an optimal pattern set in terms
of minimizing the number of breaks, organizers sometimes prefer an equitable
pattern set because each team evenly has one break in an equitable pattern set.

1 2 3 4 5 6 7

1 : A A H A H A H
2 : A H A A H A H
3 : A H A H A A H
4 : A H A H A H H
5 : H H A H A H A
6 : H A H H A H A
7 : H A H A H H A
8 : H A H A H A A

Fig. 10. Equitable pattern set of eight teams.

In fact, PSMB and equitable pattern sets are essentially equivalent, because
every equitable pattern set is obtained by cyclic permutation of the slots of a
PSMB. For example, the equitable pattern set of Fig. 10 can be constructed
from the PSMB of Fig. 8, by letting the slot s of the PSMB be slot s + 1 (s =
1, 2, . . . , 6), and slot 7 be slot 1. Thus, we may consider that the teams with
no breaks have a break at slot 1, as “AHAHAHA.” Since cyclic permutation of
the slots does not affects the feasibility of a pattern set, our results on PSMB,
described in the next subsection, are also applicable to equitable pattern sets.

Considering the feasibility of a pattern set, we can freely permutate its
rows (Remark 1). When we deal with a PSMB, we sort its rows first by the
following procedure.

Taking the team that has no break and ‘H’ in slot 2n − 1, let the team
be team 1. From the remaining teams, choose the team that has a break
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at the earliest slot and ‘H’ in slot 2n − 1, and let this team be the next
team. Repeat this step until no such team remains. After that, let the
complement of team t be team t + n for t = 1, 2, . . . , n (see Fig. 11).

We can sort the rows of a PSMB in O(n2) steps. In the rest of this paper, we
assume that the rows of a given PSMB have already been sorted by the above
procedure, and regard a team with no break as a team having a break at slot 1.

1 2 3 4 5 6 7

1 : H A A H A H A
2 : H A H A H H A
3 : H A H A A H A
4 : A H H A H A H
5 : A H A H A H A
6 : H A H A H A H
7 : A H A H H A H
8 : A H A H A A H

1 2 3 4 5 6 7
(6 →) 1 : H A H A H A H
(4 →) 2 : A H H A H A H
(7 →) 3 : A H A H H A H
(8 →) 4 : A H A H A A H
(5 →) 5 : A H A H A H A
(1 →) 6 : H A A H A H A
(3 →) 7 : H A H A A H A
(2 →) 8 : H A H A H H A

Fig. 11. PSMB before and after sorting of its rows.

4.2 Necessary Condition for Feasible Pattern Sets with a Minimum
Number of Breaks

In Sect. 3, we proposed a necessary condition for feasible pattern sets; ∀T ⊆
U, α(T ) ≥ 0. However, to check the inequality for all T ⊆ U takes exponential
steps. In this subsection, we consider the property of this necessary condition in
the case of PSMB.

The objective of this subsection is to show that the following proposition
holds.

Proposition 1. For any PSMB, whether the PSMB satisfies the necessary con-
dition ∀T ⊆ U, α(T ) ≥ 0 or not can be checked in polynomial steps.

In order to prove Prop. 1, we have to define several terms and show a number
of lemmas.

If we can construct a consecutive sequence of all elements in T ⊆ U , we
say that T is consecutive. If T is consecutive on the assumption that the next
of 2n is 1, we say that T is cyclically consecutive. For example, when 2n = 6,
{2, 3, 4} is both consecutive and cyclically consecutive, {5, 6, 1, 2} is not consecu-
tive but cyclically consecutive, and {1, 3, 4} is neither consecutive nor cyclically
consecutive.

For a subset of teams T , if there exists a subset of teams P such that
T ⊆ P ⊆ U, |P | = n, and P is cyclically consecutive, we say that T is narrow .
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Remark 5. For any PSMB, a subset of teams T is narrow if and only if there
exists a slot at which all teams in T have the same characters (‘A’s or ‘H’s). In
particular, if T contains a complement pair {t, t̃}, T is not narrow.

Now we define a partition {T1, T2, T3, T4} of 2U as below:
T1 = {T ⊆ U : |T | ≤ n and T is cyclically consecutive},
T2 = {T ⊆ U : |T | ≤ n and T is not cyclically consecutive but narrow},
T3 = {T ⊆ U : |T | ≤ n and T is neither cyclically consecutive nor narrow}, and
T4 = {T ⊆ U : |T | > n}.
Obviously, T1 ∪ T2 ∪ T3 ∪ T4 = 2U and Ti ∩ Tj = ∅ for i 
= j. Table 1 illustrates
the partition of 2U .

Table 1. Partition of 2U .

cyclically not cyclically
consecutive consecutive

|T | ≤ n
T1

—

T2

T3

narrow

not narrow

|T | > n T4 not narrow

Here we denote a precise view of the proof of Prop. 1. It consists of the
following proposition.

Proposition 2. For any PSMB, ∀T ∈ T1, α(T ) ≥ 0 ⇐⇒ ∀T ⊆ U, α(T ) ≥ 0.

Clearly, for each subset of teams T of any pattern set, we can check whether T
satisfies the inequality α(T ) ≥ 0 or not in polynomial steps. Since |T1| = O(n2),
Prop. 2 directly implies Prop. 1. In the rest of this subsection, we prove Prop. 2.

Let T̃ be the set of teams that consists of the complement teams of all teams
in T ; T̃

def.= {t̃1, t̃2, . . . , t̃|T |}, where T = {t1, t2, . . . , t|T |}. Then, the following
theorem holds.

Theorem 4. For any PSMB, α(T ) = α(T̃ ).

Proof. Since A(T, s) = H(T̃ , s) and H(T, s) = A(T̃ , s) for an arbitrary slot s,
α(T ) =

∑
s∈S min{A(T, s), H(T, s)} − |T |(|T | − 1)/2

=
∑

s∈S min{H(T̃ , s), A(T̃ , s)} − |T̃ |(|T̃ | − 1)/2 = α(T̃ ).

Lemma 1. For any PSMB, ∀T ∈ T1, α(T ) ≥ 0 =⇒ ∀T ∈ T2, α(T ) ≥ 0.

Proof. We show that ∀T ∈ T2, ∃T ∗ ∈ T1, α(T ∗) ≤ α(T ).
For a subset of teams T ∈ T2 of a given PSMB, find a subset of teams P such

that T ⊆ P ⊆ U, |P | = n, and P is consecutive. If there is no such P , consider
T̃ instead of T in the rest of this proof. Theorem 4 justifies this replacement.
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We represent T as a general form T = {t1, t2, . . . , t|T |} where t1 < t2 < · · · <
t|T |. Let function σ take team t and return the slot at which t has a break. By
cyclically permutating of the slots of the given PSMB, let t1 ∈ T be having a
break at slot 1. Since T is narrow, now σ(t1) < σ(t2) < · · · < σ(t|T |) holds.
Moreover, σ(t1) < σ(t1 + 1) < σ(t1 + 2) < · · · < σ(t|T |). By the following
procedure, we construct a subset of teams T ∗ such that T ∗ ∈ T1, |T ∗| = |T | and
α(T ∗) ≤ α(T ).

Let m ∈ T be the element satisfying m = t
 |T |
2 �. Define T ∗ ⊆ U by

T ∗ = {m−
⌈ |T |

2

⌉
+1, m−

⌈ |T |
2

⌉
+2, . . . , m, . . . , m+

⌊ |T |
2

⌋
}. We also represent T ∗

as T ∗ = {t∗1, t∗2, . . . , t∗
 |T |
2 �, . . . , t

∗
|T |} where t∗1 < t∗2 < · · · < t∗
 |T |

2 � < · · · < t∗|T |.

T ∗ belongs to T1 because T ∗ is consecutive and |T ∗| = |T | ≤ n. Thus, it is suffi-
cient to show that min{A(T ∗), H(T ∗)} ≤ min{A(T ), H(T )} instead of showing
α(T ∗) ≤ α(T ) because |T ∗| = |T |.

In order to make the proof easy, we introduce another expression of a PSMB.
For a given PSMB, replace ‘A’ with ‘0’ and ‘H’ with ‘1’ in each odd slot, and ‘A’
with ‘1’ and ‘H’ with ‘0’ in each even slot, respectively. For example, the PSMB
of Fig. 12 changes to Fig. 13. In this expression, counting the number of ‘A’s
and that of ‘H’s in each slot corresponds to counting the number of ‘0’s and that
of ‘1’s.

This 0-1 expression clarifies that the following equalities hold (see Figs. 14
and 15):

min{A(T ), H(T )} =
∑
 |T |

2 �
i=1

(
σ(m) − σ(ti)

)
+

∑|T |
i=
 |T |

2 �+1

(
σ(ti) − σ(m)

)
, and

min{A(T ∗), H(T ∗)} =
∑
 |T |

2 �
i=1

(
σ(m) − σ(t∗i )

)
+

∑|T |
i=
 |T |

2 �+1

(
σ(t∗i ) − σ(m)

)
.

From the definition of T ∗, if i ≤
⌈ |T |

2

⌉
, then σ(ti) ≤ σ(t∗i ), otherwise σ(ti) ≥

σ(t∗i ). (Note that t
 |T |
2 � = m = t∗
 |T |

2 �.)
Hence, min{A(T ), H(T )} − min{A(T ∗), H(T ∗)}
= +

∑
 |T |
2 �

i=1

(
σ(m) − σ(ti)

)
+

∑|T |
i=
 |T |

2 �+1

(
σ(ti) − σ(m)

)
−

∑
 |T |
2 �

i=1

(
σ(m) − σ(t∗i )

)
−

∑|T |
i=
 |T |

2 �+1

(
σ(t∗i ) − σ(m)

)
=

∑
 |T |
2 �

i=1

(
σ(t∗i ) − σ(ti)

)
+

∑|T |
i=
 |T |

2 �+1

(
σ(ti) − σ(t∗i )

)
≥ 0.

Example 2. For T = {1, 3, 5, 6, 8} ∈ T2 (Fig. 14), T ∗ = {3, 4, 5, 6, 7} ∈ T1 (Fig. 15),
and α(T ) = α({1, 3, 5, 6, 8}) = 9 > 1 = α({3, 4, 5, 6, 7}) = α(T ∗).

Proposition 3. For any PSMB,
∀T ∈ T1 ∪ T2, α(T ) ≥ 0 =⇒ ∀T ∈ T3, α(T ) ≥ 0.

To prove Prop. 3, we divide T3 into two subsets. Let T3nc consist of the subset
of teams which contains no complement pairs, and T3wc = T3 \ T3nc. Note that if
a subset of teams T contains a complement pair and |T | ≤ n, T belongs to T3wc.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 : H A H A H A H A H A H A H A H
2 : A A H A H A H A H A H A H A H
3 : A H A A H A H A H A H A H A H
4 : A H A H A A H A H A H A H A H
5 : A H A H A H A A H A H A H A H
6 : A H A H A H A H A A H A H A H
7 : A H A H A H A H A H H A H A H
8 : A H A H A H A H A H A H A A H
9 : A H A H A H A H A H A H A H A
10 : H H A H A H A H A H A H A H A
11 : H A H H A H A H A H A H A H A
12 : H A H A H H A H A H A H A H A
13 : H A H A H A H H A H A H A H A
14 : H A H A H A H A H H A H A H A
15 : H A H A H A H A H A A H A H A
16 : H A H A H A H A H A H A H H A

Fig. 12. PSMB with A-H expression.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 : 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 : 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 : 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
4 : 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
5 : 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
6 : 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
7 : 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
8 : 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
9 : 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 : 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 : 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
12 : 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
13 : 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
14 : 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
15 : 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
16 : 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

Fig. 13. PSMB with 0-1 expression.



Characterizing Feasible Pattern Sets with a Minimum Number of Breaks 13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 : 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 : 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
5 : 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
6 : 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
8 : 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Fig. 14. T = {1, 3, 5, 6, 8} ∈ T2, α(T ) = 9.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 : 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
4 : 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
5 : 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
6 : 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
7 : 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

Fig. 15. T ∗ = {3, 4, 5, 6, 7} ∈ T1, α(T ∗) = 1.

Lemma 2. For any pattern set, if a subset of teams T contains a complement
pair {t, t̃} and |T | ≤ n, then α(T \ {t, t̃}) < α(T ).

Proof. Since exactly one of t and t̃ contributes to the value of min{A(T, s), H(T, s)}
in each slot s, min

{
A(T \ {t, t̃}), H(T \ {t, t̃})

}
= min{A(T ), H(T )} − (2n− 1).

Thus, we have α(T ) − α(T \ {t, t̃})
= + min{A(T ), H(T )} − |T |(|T | − 1)/2
− min

{
A(T \ {t, t̃}), H(T \ {t, t̃})

}
+ (|T | − 2)(|T | − 3)/2

= −|T |(|T | − 1)/2 + (2n − 1) + (|T | − 2)(|T | − 3)/2
= 2(n − |T |) + 2 > 0.

Lemma 3. For any PSMB, ∀T ∈ T1 ∪T2, α(T ) ≥ 0 =⇒ ∀T ∈ T3nc, α(T ) ≥ 0.

Proof. We show that ∀T ∈ T3nc, ∃T ∗ ∈ T1 ∪ T2, α(T ∗) ≤ α(T ). In this proof,
we have much help from graphical expression of a subset of teams of a PSMB
defined below.

Draw a regular 2(2n−1)-gon, and name the vertices of the 2(2n−1)-gon 1, 2,
. . ., 2n − 1, 1, 2, . . ., 2n − 1 clockwise. For a subset of teams T ∈ T1 ∪ T2 ∪ T3nc

of 0-1 expression, we color some vertices black or gray. Remind that |T | ≤ n and
T includes no complement pairs. If T contains a team that has ‘1’ in slot 2n− 1
and a break at slot s, we color the vertex s black and s gray. If T contains a team
that has ‘0’ in slot 2n− 1 and a break at slot s, we color the vertex s black and
s gray. Then, 2|T | vertices of 2(2n− 1) vertices are colored, while the remaining
vertices are still uncolored. Note that each pair of vertices {v, v} consists of a
pair of black and gray vertices, or two uncolored vertices.

For any subset of teams T ∈ T1 ∪ T2 ∪ T3nc, f(T ) denotes the corresponding
set of all black vertices of the 2(2n−1)-gon. It is easy to show that for any subset
of black vertices V ′ ⊆ f(T ), there exists a subset of teams T ′ ⊆ T satisfying
f(T ′) = V ′.
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Next, we define a black run. A black run is a maximal subset of neighboring
vertices of the 2(2n − 1)-gon satisfying that every vertex is colored black or
uncolored, and both end vertices are colored black. We also define a gray run in
a similar way. Black runs and gray runs are called runs for simplicity. The size
of a run is the number of colored vertices in the run.

In the following, we introduce some functions that take a vertex of the
2(2n − 1)-gon or a subset of the vertices:

shift+(v) def.=
{

1 (if v = 2n − 1),
v + 1 (otherwise), shift+(v) def.=

{
1 (if v = 2n − 1),
v + 1 (otherwise),

shift−(v) def.=
{

2n − 1 (if v = 1),
v − 1 (otherwise), shift−(v) def.=

{
2n − 1 (if v = 1),
v − 1 (otherwise),

vshift+(V ) def.= {shift+(v) | v ∈ V }, vshift−(V ) def.= {shift−(v) | v ∈ V },
opp(v) def.= v, opp(v) def.= v, vopp(V ) def.= {opp(v) | v ∈ V },
del(v) def.= v, del(v) def.= v.

For any subset of vertices V , we construct a 0-1 matrix M = g(V ) whose
rows are indexed by V , columns are indexed by the set of slots S, and each
element mvs is indexed by (v, s) ∈ V × S. Each element of M = (mvs) is
defined by

mvs
def.=




0
(
if v ∈ {1, 2, . . . , 2n− 1} and s < del(v)

)
,

0
(
if v ∈ {1, 2, . . . , 2n− 1} and s ≥ del(v)

)
,

1
(
otherwise

)
.

For any 0-1 matrix M = (mvs) whose rows are indexed by the subset of
vertices V and columns are indexed by the set of slots S, we define function γ by
γ(M) def.=

∑
s∈S min{

∑
v∈V mvs,

∑
v∈V (1 − mvs)} − |V |(|V | − 1)/2. Also, func-

tion β is defined by β(V ) = γ
(
g(V )

)
. The definition of γ directly implies that,

for any subset of teams T ∈ T1 ∪ T2 ∪ T3nc, α(T ) = β(V ) holds when V = f(T ).
In the following, we transform a given subset of teams T ∈ T3nc into T ∗ ∈

T1∪T2 such that α(T ∗) ≤ α(T ). Input the set of black vertices V = f(T ) into the
following procedure. The procedure consists of outermost, middle and innermost
loops.
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begin procedure

V ′ := V
let all the vertices of the 2(2n − 1)-gon uncolored
color all the vertices in V ′ black and all the vertices in vopp(V ′) gray
repeat

choose a minimum size black run R′ from the 2(2n− 1)-gon
put V ′

min be the set of black vertices in R′

repeat
if β

(
(V ′ \ V ′

min) ∪ vshift−(V ′
min)

)
≤ β(V ′) then

repeat
V ′ := (V ′ \ V ′

min) ∪ vshift−(V ′
min)

V ′
min := vshift−(V ′

min)
until vopp(V ′

min) ∩ (V ′ \ V ′
min) 
= ∅

else
repeat

V ′ := (V ′ \ V ′
min) ∪ vshift+(V ′

min)
V ′

min := vshift+(V ′
min)

until vopp(V ′
min) ∩ (V ′ \ V ′

min) 
= ∅
endif
V ′

temp := vopp(V ′
min) ∩ (V ′ \ V ′

min)
V ′ := V ′ \ V ′

temp

V ′
min := V ′

min \ vopp(V ′
temp)

until V ′
min = ∅

let all the vertices of the 2(2n− 1)-gon uncolored
color all the vertices in V ′ black and all the vertices in vopp(V ′) gray

until the number of runs in 2(2n − 1)-gon is less than or equal to 2
V ∗ := V ′

output V ∗

end

It is not difficult to see that the value of β(V ′) does not increase after each
iteration of the middle loop. More precisely, in a similar way with the proof of
Lemma 2, we can prove that removing two elements from V ′ at the end of middle
loop decreases the value of β(V ′). Thus, the value of β(V ′) is non-increasing
throughout this procedure.

We need to show that this procedure outputs V ∗ after a finite number of
steps. The innermost loop and the middle loop obviously terminate finitely. The
number of black and gray runs decreases by four at the end of each iteration of
the outermost loop. Since the number of runs is finite, this procedure terminates
after a finite number of steps.

At the end of each iteration of the middle loop, the current subset of ver-
tices V ′ is contained in V , because V ′

min corresponds to a minimum size black
run throughout this procedure.

From the above observations of the procedure, the obtained vertices V ∗ is a
subset of V . Thus, there exists the subset of teams T ∗ ⊆ T such that f(T ∗) = V ∗.
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Hence, we have α(T ∗) = β(V ∗) ≤ β(V ) = α(T ). Since the number of runs
becomes two (one is black and the other is gray), T ∗ is narrow, i.e., T ∗ ∈ T1∪T2.
This completes the proof.

Example 3. Figures 16–21 show the process of the transformation described
in Lemma 3. In Fig. 16, T = {1, 2, 3, 6, 7, 8, 12, 13} ∈ T3nc, f(T ) = V =
{1, 2, 3, 6, 7, 8, 12, 13} and α(T ) = β(V ) = 20. Via Fig. 17–20, V ∗ = f(T ∗) =
{1, 10, 11, 14}, V ∗ ⊆ V, T ∗ = {1, 6, 7, 8} ∈ T2 and β(V ∗) = α(T ∗) = 8 in Fig. 21.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 : 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 : 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 : 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
6 : 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
7 : 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
8 : 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
12 : 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
13 : 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Fig. 16. T = {1, 2, 3, 6, 7, 8, 12, 13} ∈ T3nc, α(T ) = 20, V = {1, 2, 4, 6, 8, 10, 11, 14}.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 : 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 : 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 : 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
10 : 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
11 : 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
14 : 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
5 : 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
7 : 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

Fig. 17. V ′ = {1, 2, 4, 5, 7, 10, 11, 14}, β(V ′) = 20.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 : 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 : 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 : 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
10 : 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
11 : 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
14 : 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
4 : 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
6 : 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

Fig. 18. V ′ = {1, 2, 4, 4, 6, 10, 11, 14}, β(V ′) = 20.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 : 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 : 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10 : 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
11 : 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
14 : 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
6 : 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

Fig. 19. V ′ = {1, 2, 6, 10, 11, 14}, β(V ′) = 18.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 : 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 : 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10 : 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
11 : 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
14 : 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
2 : 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 20. V ′ = {1, 2, 2, 10, 11, 14}, β(V ′) = 14.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 : 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6 : 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
7 : 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
8 : 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Fig. 21. V ∗ = {1, 10, 11, 14}, T ∗ = {1, 6, 7, 8} ∈ T2, α(T ∗) = 8.



18 Ryuhei Miyashiro et al.

Lemma 4. For any PSMB,
∀T ∈ T1 ∪ T2 ∪ T3nc, α(T ) ≥ 0 =⇒ ∀T ∈ T3wc, α(T ) ≥ 0.

Proof. We prove that ∀T ∈ T3wc, ∃T ∗ ∈ T1 ∪ T2 ∪ T3nc, α(T ∗) ≤ α(T ).
For a given T ∈ T3wc, we update T by removing a complement pair {t, t̃}.

If T \ {t, t̃} still contains another complement pair, repeat this procedure until
there exists no complement pairs. Let T ∗ be the finally obtained set of teams.
By Lemma 2, α(T ) > α(T \ {t, t̃}) > · · · > α(T ∗). Since T ∗ does not include any
complement pairs and |T ∗| < n, T ∗ ∈ T1 ∪ T2 ∪ T3nc.

Lemma 5. For any PSMB, ∀T ∈ T1 ∪ T2, α(T ) ≥ 0 =⇒ ∀T ∈ T3, α(T ) ≥ 0.

Proof. From Lemma 3, ∀T ∈ T1 ∪ T2, α(T ) ≥ 0 =⇒ ∀T ∈ T3nc, α(T ) ≥ 0.
Lemma 4 shows ∀T ∈ T1 ∪ T2 ∪ T3nc, α(T ) ≥ 0 =⇒ ∀T ∈ T3wc, α(T ) ≥ 0.
Since T3 = T3nc ∪ T3wc, ∀T ∈ T1 ∪ T2, α(T ) ≥ 0 =⇒ ∀T ∈ T3, α(T ) ≥ 0.

Lemma 6. For any PSMB,
∀T ∈ T1 ∪ T2 ∪ T3, α(T ) ≥ 0 ⇐⇒ ∀T ∈ T4, α(T ) ≥ 0.

Proof. Theorem 1 gives direct proof of this lemma.

Theorem 5. For any PSMB, ∀T ∈ T1, α(T ) ≥ 0 ⇐⇒ ∀T ⊆ U, α(T ) ≥ 0.

Proof. ∀T ∈ T1, α(T ) ≥ 0 ⇐= ∀T ⊆ U, α(T ) ≥ 0 is obvious.
∀T ∈ T1, α(T ) ≥ 0 =⇒ ∀T ⊆ U, α(T ) ≥ 0 follows from Lemmas 1, 5, and 6.

Theorem 6. For any PSMB, whether the PSMB satisfies ∀T ⊆ U, α(T ) ≥ 0
or not can be tested in O(n4) steps.

Proof. For each T ⊆ U , we can judge whether α(T ) ≥ 0 holds or not in O(n2)
steps. Theorem 5 suggests that we only need to see the subsets of teams belonging
to T1. Since |T1| = O(n2), we obtain the desired result.

Remark 6. In fact, we do not need to observe all the subsets belonging to T1.
Since Theorem 4 shows α(T ) = α(T̃ ), it is sufficient to show either α(T ) ≥ 0 or
α(T̃ ) ≥ 0 for each T ∈ T1.

Remark 7. We can easily check whether each T ⊆ U satisfies α(T ) ≥ 0 or not
in O(n2) steps. Furthermore, we developed a linear time algorithm to check
whether each T ∈ T1 satisfies α(T ) ≥ 0. This algorithm is described in [12].
Thus, whether a given PSMB satisfies the necessary condition ∀T ⊆ U, α(T ) ≥ 0
can be examined in O(n3) steps.

4.3 Computational Experiments

We showed, for an arbitrary PSMB, whether the PSMB satisfies our necessary
condition for feasible pattern sets can be checked in polynomial steps. If we find
a subset of teams T such that α(T ) < 0 for a given PSMB, we can conclude that
the PSMB is infeasible. However, for PSMB satisfying the necessary condition,
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we have no additional information about the feasibility. If there are many PSMB
satisfying the necessary condition but infeasible, the proposed condition is not
strong enough for finding feasible PSMB. In this subsection, we show the strength
of our necessary condition by computational experiments.

First, we enumerate all PSMB, including both feasible and infeasible ones.
The number of PSMB is

(
2n−2
n−1

)
, by choosing the slots with breaks. Next, we ex-

amine whether each PSMB satisfies the necessary condition ∀T ⊆ U, α(T ) ≥ 0,
by checking ∀T ∈ T1, α(T ) ≥ 0. Then, for each PSMB satisfying the condi-
tion, we decide its feasibility by solving an integer programming problem with
ILOG CPLEX 7.0 [9].

Table 2 shows results of the experiments. The column “#cand.” is the number
of PSMB satisfying ∀T ⊆ U, α(T ) ≥ 0, and “#feas.” is the number of feasible
PSMB. Computational experiments showed that, when the number of teams is
less than or equal to 26, the proposed necessary condition ∀T ⊆ U, α(T ) ≥ 0 is
also a sufficient condition for feasible PSMB.

We did not perform computational experiments for more than 26 teams,
because it would take too much time to solve the integer programming problems,
and a round robin tournament with more than 26 teams is rarely held in practice.

Table 2. Results of computational experiments.

#teams #PSMB #cand. #feas.

4 2 2 2
6 6 3 3
8 20 8 8
10 70 10 10
12 252 30 30
14 924 49 49
16 3432 136 136
18 12870 216 216
20 48620 580 580
22 184756 1045 1045
24 705432 2772 2772
26 2704156 5122 5122

5 Future Work & Conclusions

There are many extensions of pattern set feasibility problem.
We conjecture that, for arbitrary number of teams, ∀T ⊆ U, α(T ) ≥ 0 is a

necessary and sufficient condition for feasible PSMB. Although there is a possi-
bility of this conjecture failing, our results are practical enough in terms of the
number of teams for real timetabling problems.
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In this paper, we mainly considered the feasibility of PSMB. We proposed
a necessary condition for feasible pattern sets; ∀T ⊆ U, α(T ) ≥ 0. In the case
of PSMB, we proved that the necessary condition can be checked in polynomial
steps, and showed the strength of the condition by computational experiments.
Then, how about for a general pattern set? For a general pattern set, it is
conjectured that pattern set feasibility problem is NP-complete [13]. To the best
of our knowledge, this conjecture is still open.

Pattern set feasibility problem with partial assignment of games is also a
challenging one. In the pattern set of Fig. 22, some games have already fixed. Is
the pattern set feasible? Furthermore, we can consider the feasibility problem of
an incomplete pattern set with or without fixed games (Fig. 23). Such situations
often appear in the field of real timetabling [13]. It is easy to see that we can
also apply our necessary condition to these problems with small modification.

1 2 3 4 5 6 7

1 : H 2 H A A A H
2 : A @1 H H A @8 H
3 : H A A A H H H
4 : 7 H A H A A H
5 : H A H @6 H H A
6 : H A H 5 H A A
7 : @4 H A A A H A
8 : A H A H H 2 A

Fig. 22. Pattern set with partial assignment of games.

1 2 3 4 5 6 7

1 : A @4 2 H 8
2 : H A @1 7
3 : 8 A H
4 : A 1 A H A
5 : A H A @6 H
6 : @8 H H 5 @1
7 : A @2 H
8 : 6 H @3 H A H

Fig. 23. Incomplete pattern set with partial assignment of games.

In this paper, we considered pattern set feasibility problem. We proposed
a necessary condition for feasible pattern sets. For a pattern set with a mini-
mum number of breaks (PSMB), we proved a theorem leading a polynomial-time
algorithm to check our necessary condition. Computational experiments showed
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that the condition is a necessary and sufficient condition for feasible PSMB of
up to 26 teams. We conjecture that the condition is a necessary and sufficient
condition for feasible PSMB of an arbitrary number of teams. Considering the
feasibility of pattern sets yields various interesting problems, and is still signifi-
cant in sports timetabling.
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