
Capacity Scaling Algorithm

for Scalable M-convex Submodular Flow Problems

Satoko MORIGUCHI ∗ Kazuo MUROTA †

December 18, 2002

Abstract. An M-convex function is a nonlinear discrete function defined on

integer points introduced by Murota in 1996, and the M-convex submodular flow

problem is one of the most general frameworks of efficiently solvable combinatorial

optimization problems. It includes the minimum cost flow and the submodular flow

problems as its special cases. In this paper, we first devise a successive shortest

path algorithm for the M-convex submodular flow problem. We then propose an

efficient algorithm based on a capacity scaling framework for the scalable M-convex

submodular flow problem. Here an M-convex function f(x) is said to be scalable if

fα(x) := f(αx) is also M-convex for any positive integer α.

Key words. discrete optimization; discrete convex function; submodular flow;

algorithm

∗Graduate School of Information Sciences and Engineering, Tokyo Institute of Technology,

Tokyo 152-8552, Japan. E-mail: Satoko.Moriguchi@is.titech.ac.jp
†Graduate School of Information Science and Technology, University of Tokyo, Tokyo 113-8656,

Japan. E-mail: murota@mist.i.u-tokyo.ac.jp

1

1 Introduction

The M-convex submodular flow problem, introduced by Murota [16], is one of the

most general frameworks of efficiently solvable combinatorial optimization problems.

It includes the minimum cost flow and the submodular flow problems [3, 7] as

its special cases, and has an application to mathematical economics [19]. The

submodular flow problem with an M-convex function admits nice optimality criteria

in terms of potentials and negative cycles like the minimum cost flow problem.

The concept of M-convex functions was proposed by Murota [14, 15] as a natural

extension of the concept of valuated matroids [2] and plays a central role in the

theory of discrete convex analysis [17, 18].

A number of combinatorial algorithms to solve the submodular flow problem

have been proposed as extensions of minimum cost flow algorithms. The first such

polynomial-time algorithm is due to Cunningham and Frank [1]. It generalizes a

cost-scaling primal-dual method.

It is quite natural to adopt a capacity scaling approach, i.e., to scale capacities

as well as demands, which are given by a submodular function. A straightforward

attempt to scale a submodular function, however, destroys the submodularity. Ex-

tending the Edmonds–Karp [4] algorithm for minimum-cost flow problem, Iwata

[9] devised the first capacity scaling algorithm for the submodular flow problem.

Introducing a variant of the Dijkstra shortest path algorithm modified to deal with

exchange capacity arcs, Fleischer, Iwata and McCormick [5] have improved this

algorithm.

In designing combinatorial algorithms for the M-convex submodular flow prob-

lem, it is quite natural to attempt extensions of the existing methods for the sub-

modular flow problem. In fact, submodular flow algorithms such as the cycle-

canceling and primal-dual methods are successfully extended to solve the M-convex

submodular flow problem. Feasibility of the M-convex submodular flow problem

2

can also be checked by the algorithm of Frank [6] for the submodular flow problem.

In spite of the fact that an M-convex function is not closed under the scaling oper-

ation, Iwata and Shigeno [10] have devised a polynomial-time algorithm based on

a new scaling framework, i.e., the conjugate scaling algorithm.

The objective of this paper is to propose an efficient algorithm based on a

capacity scaling framework. Our capacity scaling algorithm uses the proximity

theorem for M-convex functions. This is compared to that the conjugate scaling

algorithm of Iwata–Shigeno [10] is based on the proximity theorem for L-convex

functions.

In this paper, we first devise a successive shortest path algorithm for the M-

convex submodular flow problem. This is closely related to the primal-dual al-

gorithm of Murota [13] for the valuated matroid intersection problem. We then

propose an efficient algorithm based on a capacity scaling framework for the scal-

able M-convex submodular flow problem. Here an M-convex function f(x) is said

to be scalable if fα(x) := f(αx) is also M-convex for any positive integer α. It is

worth mentioning that a number of fundamental M-convex functions are scalable,

including linear, separable, quadratic, and laminar M-convex functions [11, 17, 18].

We embed the successive shortest path algorithm in a scaling framework to propose

capacity scaling algorithm.

2 M-convex Submodular Flow

2.1 M-convex Function

Let V be a finite set. A function f : ZV → R ∪ {+∞} is said to be M-convex if it

satisfies

3

(M-EXC) ∀x, y ∈ dom f , ∀u ∈ supp+(x − y), ∃v ∈ supp−(x − y) such

that

f(x) + f(y) ≥ f(x − χu + χv) + f(y + χu − χv),

where χw ∈ {0, 1}V is the characteristic vector of w ∈ V and

dom f = {x ∈ ZV | f(x) < +∞},
supp+(x − y) = {w ∈ V | x(w) > y(w)}, supp−(x − y) = {w ∈ V | x(w) < y(w)}.

It is easy to see that B = dom f satisfies the following property:

(B-EXC) ∀x, y ∈ B, ∀u ∈ supp+(x − y), ∃v ∈ supp−(x − y) such that

x − χu + χv ∈ B, y + χu − χv ∈ B.

Note that (B-EXC) implies
∑

v∈V x(v) =
∑

v∈V y(v) for any x, y ∈ B. A nonempty

set B ⊆ ZV with (B-EXC) is called an M-convex set.

Modification of a function by a linear function is a fundamental operation. For

an M-convex function f and a vector p, we denote by f [−p] the function defined by

f [−p](x) = f(x) − 〈p, x〉 (x ∈ ZV).

This is M-convex for M-convex f .

For f : ZV → R ∪ {+∞} and a positive integer α, define a function fα : ZV →
R ∪ {+∞} by

fα(x) = f(αx) (x ∈ ZV).

This operation is called scaling by a factor of α. Even if f is an M-convex function,

fα is not necessarily M-convex in general. An M-convex function f is called scalable

if fα is also M-convex for any positive integer α. We can identify a number of

subclasses of scalable M-convex functions such as linear functions, separable convex

functions, quadratic M-convex functions and laminar convex functions [11, 17, 18].

4

Let α be a positive integer, and xα ∈ dom f . We call xα an α-local minimum of

f if it satisfies

f(xα) ≤ f(xα − α(χu − χv)) (∀u, v ∈ V).

The following is a “proximity theorem,” showing that a global minimizer of an

M-convex function exists in the neighborhood of an α-local minimum.

Theorem 2.1 ([11]). Let f : ZV → R∪ {+∞} be an M-convex function and α be

any positive integer. Suppose that xα ∈ dom f satisfies f(xα) ≤ f(xα −α(χu −χv))

for all u, v ∈ V . Then, there exists some x∗ ∈ arg min f such that

|xα(v) − x∗(v)| ≤ (n − 1)(α − 1) (v ∈ V).

A special case of Theorem 2.1 with α = 1 yields the following local characteri-

zation of global minimality.

Theorem 2.2 ([14]). Let f : ZV → R ∪ {+∞} be an M-convex function and

x∗ ∈ dom f . Then x∗ ∈ arg min f if and only if f(x∗) ≤ f(x∗ − χu + χv) for all

u, v ∈ V .

2.2 Base Polyhedra and Exchange Capacity

Associated with a submodular function ρ : 2V → Z the base polyhedron B(ρ) is

defined as follows:

B(ρ) = {x | x ∈ RV , x(V) = ρ(V), ∀X ⊆ V : x(X) ≤ ρ(X)}.

An M-convex set is the same as the set of integer points of the base polyhedron.

Namely, a bounded set B ⊆ ZV is M-convex if and only if B = B(ρ)∩ZV for some

ρ : 2V → Z.

For any base x ∈ B and u, v ∈ V with u �= v, put

c̃(x, v, u) = max{α | α ∈ Z, x − α(χu − χv) ∈ B},

5

which is called the exchange capacity.

The exchangeability graph is a directed graph with the vertex set V and the arc

set Cx = {(u, v) | c̃(x, v, u) > 0}. The exchangeability graph is transitive. Namely,

(u, v) ∈ Cx and (v, w) ∈ Cx imply (u, w) ∈ Cx.

Lemma 2.3 ([8], No-short cut lemma). Suppose that B is an M-convex set,

x ∈ B and that u1, v1, u2, v2, . . . , ur, vr are distinct. If x + χvi
− χui

∈ B for

i = 1, . . . , r and x+χvj
−χui

/∈ B for any i < j, then y = x+
∑r

i=1(χvi
−χui

) ∈ B.

Lemma 2.4. Suppose that x ∈ arg min f [−p] and that u1, v1, u2, v2, . . . , ur, vr are

distinct. If x + χvi
− χui

∈ arg min f [−p] for i = 1, . . . , r and x + χvj
− χui

/∈
arg min f [−p] for any i < j, then y = x +

∑r
i=1(χvi

− χui
) ∈ arg min f [−p].

Proof. Since arg min f [−p] is an M-convex set, the assertion follows from the no-

short cut lemma 2.3 applied to arg min f [−p].

2.3 M-convex Submodular Flow Problem

Let G = (V, A) be a directed graph with upper and lower capacity bounds c, c ∈ ZA

and the cost function γ ∈ RA. For each vertex v ∈ V , let δ+v (resp., δ−v) denote

the set of arcs leaving (resp., entering) v. For each arc a ∈ A, ∂+a designates the

initial vertex of a, and ∂−a the terminal vertex of a. The boundary of flow ξ is

defined to be

∂ξ(v) =
∑

{ξ(a) | a ∈ δ+v} −
∑

{ξ(a) | a ∈ δ−v} (v ∈ V),

which represents the net flow leaving vertex v. Suppose that B ⊆ ZV is a bounded

M-convex set. Then the integer-flow version of the submodular flow problem is

formulated as follows [3].

6

Submodular flow problem MSFP1 (linear arc cost, integer-flow)

minimize Γ1(ξ) =
∑
a∈A

γ(a)ξ(a) (2.1)

subject to c(a) ≤ ξ(a) ≤ c(a) (a ∈ A), (2.2)

∂ξ ∈ B, (2.3)

ξ(a) ∈ Z (a ∈ A). (2.4)

The submodular flow problem is a well-behaved combinatorial problem that has

nice properties such as optimality criterion in terms of potentials (dual variables),

optimality criterion in terms of negative cycles, integrality of optimal solutions, and

efficient algorithms.

A generalization of the submodular flow problem is obtained by introducing a

cost function for the flow boundary ∂ξ rather than merely imposing the feasibility

constraint ∂ξ ∈ B. Namely, with a function f : ZV → R ∪ {+∞} we add a

new term f(∂ξ) to the objective function, thereby imposing feasibility constraint

∂ξ ∈ B = dom f implicitly. The aforementioned nice properties are maintained if

f is an M-convex function. Such problem described by an M-convex function f is

called the M-convex submodular flow problem [16].

M-convex submodular flow problem MSFP2 (linear arc cost, integer-flow)

minimize Γ2(ξ) =
∑
a∈A

γ(a)ξ(a) + f(∂ξ) (2.5)

subject to c(a) ≤ ξ(a) ≤ c(a) (a ∈ A), (2.6)

∂ξ ∈ dom f, (2.7)

ξ(a) ∈ Z (a ∈ A). (2.8)

Note that the M-convex submodular flow problem with a {0, +∞}-valued f reduces

to the submodular flow problem MSFP1.

7

Throughout this paper we assume that dom f is bounded and

dom f ⊆ {x ∈ ZV | x(V) = 0}

since ∂ξ(V) = 0 for any flow ξ and ∂ξ ∈ dom f is imposed.

The following optimality condition is known for the M-convex submodular flow

problem MSFP2. By a potential we mean a function p : V → R (or a vector

p ∈ RV) on the vertex set.

Theorem 2.5 ([16, 17, 18], Optimality condition by the potential). A flow

ξ : A → Z satisfying (2.6) and (2.7) is optimal if and only if there exists a potential

p : V → R such that

(i)

γp(a) > 0 =⇒ ξ(a) = c(a), (2.9)

γp(a) < 0 =⇒ ξ(a) = c(a) (2.10)

in terms of the reduced cost γp : A → R defined by γp(a) = γ(a) +

p(∂+a) − p(∂−a) (a ∈ A), and

(ii) ∂ξ ∈ arg min f [−p].

3 A Successive Shortest Path Algorithm

This section describes a successive shortest path (SSP) algorithm for the M-convex

submodular flow problem, which is the basis for our algorithm. As with the succes-

sive shortest path algorithm for minimum cost flows, this algorithm is not poly-

nomial, but only pseudo-polynomial since the number of iterations is linear in

C = max(C1, C2), where

C1 = max{max
a∈A

|c(a)|, max
a∈A

|c(a)|},
C2 = max

x,y∈dom f
‖x − y‖∞.

8

We construct an auxiliary network Gξ,x with respect to flow ξ and base x ∈
dom f . Let Gξ,x = (V, Aξ,x) be a graph with vertex set V and arc set Aξ,x =

Aξ ∪ Bξ ∪ Cx consisting of three disjoint parts:

Aξ = {a | a ∈ A, ξ(a) < c(a)},
Bξ = {a | a ∈ A, c(a) < ξ(a)} (a: reorientation of a),

Cx = {(u, v) | u, v ∈ V, u �= v, ∃α > 0 : x − α(χu − χv) ∈ dom f}.
We define a function c : Aξ,x → Z, representing arc capacities, by

c(a) =




c(a) − ξ(a) (a ∈ Aξ)

ξ(a) − c(a) (a ∈ Bξ, a ∈ A)

c̃(x, v, u) (a = (u, v) ∈ Cx).

We also define a function l : Aξ,x → R, representing arc length, by

l(a) =




γ(a) (a ∈ Aξ)

−γ(a) (a ∈ Bξ, a ∈ A)

∆f(x; v, u) (a = (u, v) ∈ Cx),

where

∆f(x; v, u) = f(x − χu + χv) − f(x).

Given a potential (or price function) p ∈ RV , we define the reduced length w.r.t.

p as

lp(a) = l(a) + p(∂+a) − p(∂−a)

for each a ∈ Aξ,x. In terms of the reduced length, Theorem 2.5 can be put in a more

convenient and tractable form, which is used in designing efficient algorithms for the

M-convex submodular flow problem MSFP2. By (2.9), (2.10) and the definition of

lp(a) for a ∈ Aξ ∪Bξ, the condition (i) in Theorem 2.5 is equivalent to the condition

lp(a) ≥ 0 (a ∈ Aξ ∪ Bξ). Theorem 2.2 shows

∂ξ ∈ arg min f [−p] ⇐⇒ ∆f(∂ξ; v, u) + p(u) − p(v) ≥ 0 (u, v ∈ V).

This expression leads to the condition that lp(a) ≥ 0 for all a ∈ Cx with x = ∂ξ.

9

Theorem 3.1 ([16, 17, 18], Optimality condition by the reduced length).

A flow ξ : A → Z satisfying (2.6) and (2.7) is optimal if and only if there exists

p : V → R such that

lp(a) ≥ 0 (3.1)

for all a ∈ Aξ,x with x = ∂ξ.

This theorem suggests the algorithm SSP. The algorithm keeps flow ξ, base x

and potential p, and computes augmentation of ξ and x with reference to lp on Aξ,x.

This ensures that ξ remains a flow. The algorithm iteratively modifies ξ, x, and p

so that (3.1) is preserved for all a ∈ Aξ,x, and so that ∂ξ and x eventually coincide.

At the end of the algorithm, we have ∂ξ = x as well as the optimality condition

(3.1). This means we have an optimal solution of MSFP2.

We regard the reduced length lp(a) = l(a) + p(∂+a) − p(∂−a) as the length of

a ∈ Aξ,x. Define

S+ = {v | x(v) > ∂ξ(v)}, S− = {v | x(v) < ∂ξ(v)}

as the sets of vertices where ∂ξ differs from x. In the auxiliary network Gξ,x with

nonnegative reduced length, let d : V → R represent the shortest path distances

from S+ to each v ∈ V computed by using Dijkstra’s algorithm and P be a shortest

path from S+ to S− with a minimum number of arcs. It follows from the inequality

d(∂−a) ≤ d(∂+a) + lp(a) that

l(a) + p(∂+a) − p(∂−a) + d(∂+a) − d(∂−a) ≥ 0

holds for every arc a ∈ Aξ,x. Hence updating p(v) to p(v) + min{d(v),
∑

a∈P lp(a)}
retains the nonnegativity of the reduced length. In particular, the reduced length

becomes zero for each arc in the shortest path P . In order to reduce
∑

v∈S+{x(v)−
∂ξ(v)}, the algorithm augments along a shortest path (with respect to lp) from S+

to S− with a minimum number of arcs and updates the base x. It is clear that

10

augmenting ξ along P by a unit flow does not violate the capacity constraints. The

base x is also updated along P so that x(v) = ∂ξ(v) holds for every inner vertex v

of P . For the starting point s ∈ S+ of the shortest path P , either ∂ξ(s) increases

or x(s) decreases by one. Hence
∑

v∈S+{x(v)− ∂ξ(v)} reduces exactly by one. The

nonnegativity of the reduced length is preserved by Lemma 3.3 below. Repeat this

process until the source S+ and consequently the sink S− become empty. When ∂ξ

coincides with x, the flow ξ is an optimal solution.

The details of this algorithm SSP are the following.

Algorithm : SSP

S0: Find ξ ∈ ZA satisfying (2.6) and x ∈ arg min f . Set p := 0.

S1: Repeat the following Steps (1-1)–(1-3), until S+ = ∅．

1-1: Compute the shortest distance d(v) from S+ to each v ∈ V \S+ in

Gξ,x with respect to the arc length lp. Among the shortest paths from

S+ to S−, let P be one with a minimum number of arcs. (If there is no

path from S+ to S−, then the problem is infeasible.)

1-2: For each v ∈ V , put p(v) := p(v) + min{d(v),
∑

a∈P lp(a)}.
1-3: For each arc a ∈ P ,

a ∈ Aξ ⇒ ξ(a) := ξ(a) + 1,

a ∈ Bξ ⇒ ξ(a) := ξ(a) − 1,

a ∈ Cx ⇒ x(∂+a) := x(∂+a) − 1, x(∂−a) := x(∂−a) + 1.

In the algorithm SSP, we do not need to evaluate the value of c(a). We have

only to know whether c(a) is positive or zero.

To complete the proof of correctness, we show that the algorithm maintains the

reduced length optimality (3.1). The following lemma is a more convenient and

tractable form of lemma 2.4 for the proof.

11

Lemma 3.2. Suppose that x ∈ arg min f [−p] and that (u1, v1), (u2, v2), . . ., (ur, vr) ∈
Cx have distinct end-vertices. If (ui, vi) ∈ Cx ∩ {a | lp(a) = 0} for i = 1, . . . , r and

(ui, vj) /∈ Cx ∩ {a | lp(a) = 0} for any i < j, then y = x +
∑r

i=1(χvi
− χui

) ∈
arg min f [−p].

Lemma 3.3. After Step 1-3, the condition of the reduced length optimality (3.1) is

maintained.

Proof. If there is a new arc after Step 1-3, it is either the reverse arc of an arc a on

P or the new exchange arc.

First we consider the case that there exists a new reverse arc of an arc a on

P . Since P is a shortest path, the reduced length of any arc on P is zero, and

hence the reduced length of the reverse arc is zero. For any arc in Aξ ∪Bξ that also

exists before the update in Step 1-3, the reduced length optimality condition (3.1)

is obviously maintained.

Let x′ denote the base after Step 1-3. If there are k exchange arcs (ui, vi) for

i = 1, . . . , k in P , then

x′ = x +

k∑
i=1

(χvi
− χui

).

We must check (3.1) for each exchange arc with respect to the updated base x′ =

x +
∑k

i=1(χvi
− χui

), which is

f(x′ − χs + χt) − f(x′) + p(s) − p(t) ≥ 0 (∀s, t ∈ V). (3.2)

Since P has a minimum number of arcs among the shortest paths, the numbering

(u1, v1), (u2, v2), . . ., (ur, vr) of the arcs in P ∩Cx along the path P has the property

that (ui, vi) ∈ Cx ∩{a | lp(a) = 0} for i = 1, . . . , r and (ui, vj) /∈ Cx ∩{a | lp(a) = 0}
for any i < j. It follows from lemma 3.2 that x′ ∈ arg min f [−p], and hence (3.2).

An alternative proof is given in Appendix.

To talk about running time we use n for the number of vertices, m for the number

of arcs, and F for the upper bound on the time to evaluate f . Since |ξ(a)| ≤ C

12

for all a ∈ A, |∂ξ(v)| ≤ (n − 1)C for all v ∈ V . Also, we have |x(v)| ≤ C for

all v ∈ V . Thus the initial discrepancy ‖ x − ∂ξ ‖1 between x and ∂ξ is at most

n2C. Since x(S+)−∂ξ(S+) is always a nonnegative integer and decreases with each

augmentation, the algorithm terminates in O(n2C) iterations. Since the number of

arcs in Gξ,x is |Aξ ∪ Bξ| + |Cx| = O(m) + O(n2) = O(n2), the bottleneck Dijkstra

computation takes O(F · n2) time, so that each augmentation requires O(F · n2)

time. Thus the total time complexity of algorithm SSP is O(F · n4C).

4 A Capacity Scaling Algorithm

4.1 Algorithm Description

We present a capacity scaling algorithm for the scalable M-convex submodular flow

problem, which performs a number of scaling phases for different values of a scaling

parameter α. Each scaling phase is a successive shortest path algorithm, where

the amount of augmentation at once is exactly α. When there is no possibility of

augmentation, the algorithm reduces the value of α by a factor of two.

A scaling phase with a specific value of α is referred to as the α-scaling phase.

An auxiliary graph in an α-scaling phase is referred to as the α-auxiliary graph

Gα
ξ,x = (V, Aα

ξ,x) = (V, Aα
ξ ∪ Bα

ξ ∪ Cα
x), where

Aα
ξ := {a | a ∈ Aξ, c(a) ≥ α},

Bα
ξ := {a | a ∈ Bξ, c(a) ≥ α},

Cα
x := {a | a ∈ Cx, c(a) ≥ α}.

We define a function lα : Aα
ξ,x → R, representing arc length, by

lα(a) =




αγ(a) (a ∈ Aα
ξ)

−αγ(a) (a ∈ Bα
ξ , a ∈ A)

f(x + α(χv − χu)) − f(x) (a = (u, v) ∈ Cα
x).

13

Given a potential p ∈ RV , we define

lαp (a) = lα(a) + p(∂+a) − p(∂−a)

for each a ∈ Aα
ξ,x.

Initially, the value of α is set to be 2�log C�. The flow ξ and the potential p

are initialized by ξ(a) = 0 for each arc a ∈ A and p(v) = 0 for each vertex v ∈
V , respectively. We assume that this ξ satisfies (2.6) and (2.7) without loss of

generality.

In the α-scaling phase, the algorithm keeps a flow ξ, a potential p, and a base

x such that ξ(a) is a multiple of α for every arc a ∈ A, x(v) is a multiple of α for

every vertex v ∈ V and that lαp (a) ≥ 0 holds for every arc a ∈ Aα
ξ,x. In particular

the condition that lαp (a) ≥ 0 for a ∈ Cα
x means that x is α-local minimum of

f [−p]. Moreover, by the scalability of f , when x is α-local minimum of f [−p], we

have x/α ∈ arg min(f [−p])α. Here x/α ∈ arg min(f [−p])α means that x/α is a

minimizer of f(αx)−〈p, αx〉. In order to reduce the discrepancy between x and ∂ξ,

measured by ‖ x − ∂ξ ‖1=
∑

v |x(v) − ∂ξ(v)|, it repeats augmentations of the flow

ξ by α along a shortest path from S+(α) to S−(α) with respect to lαp , where

S+(α) := {v | x(v) − ∂ξ(v) ≥ α}, S−(α) := {v | ∂ξ(v) − x(v) ≥ α}.

It also updates the potential p and base x in order to reduce the discrepancy ‖
x − ∂ξ ‖1 and retain the nonnegativity of the reduced length. Repeat this process

until the source S+(α) and consequently the sink S−(α) become empty. At the end

of a phase we set α := α/2 and continue until α = 1, at which point we can finish

using SSP.

An algorithmic description of the capacity scaling algorithm is now given as

follows. In this algorithm, we assume that c ≤ 0, c ≥ 0 and 0 ∈ dom f ; if not, this

assumption is satisfied by translations.

Algorithm : capacity scaling

S0: Set α := 2�log C�, ξ := 0 and p := 0.

14

S1: Find x with x/α ∈ arg min(f [−p])α and ‖ x − ∂ξ ‖∞≤ (n − 1)α. For each

a ∈ Aα
ξ do if lαp (a) < 0 then ξ(a) := ξ(a) + α. For each a ∈ Bα

ξ do if lαp (a) < 0 then

ξ(a) := ξ(a) − α.

S2: Repeat the following Steps (2-1)–(2-3), until S+(α) = ∅.

2-1: Compute the shortest distance d(v) from S+(α) to each v ∈ V \
S+(α) in Gα

ξ,x with respect to the arc length lαp . Among the shortest

paths from S+(α) to S−(α), let P be one with a minimum number of

arcs.

2-2: For each v ∈ V , put p(v) := p(v) + min{d(v),
∑

a∈P lαp (a)}.
2-3: For each arc a ∈ P ,

a ∈ Aα
ξ ⇒ ξ(a) := ξ(a) + α,

a ∈ Bα
ξ ⇒ ξ(a) := ξ(a) − α,

a ∈ Cα
x ⇒ x(∂+a) := x(∂+a) − α, x(∂−a) := x(∂−a) + α.

S3: If α > 1, then α := α/2 and go to S1. Else, stop.

In the capacity scaling algorithm, we do not need to evaluate the value of c(a)

to determine the arc set Cα
x . We have only to check whether c(a) ≥ α or not.

At the start of a new α-scaling phase, i.e., Step 1, we find an α-local minimum

x of f [−p] that lies close to ∂ξ, and modify ξ to remove the arcs with negative

reduced length from the auxiliary graph Gα
ξ,x. Note that the algorithm also updates

the α-auxiliary graph Gα
ξ,x after this adjustment.

4.2 Correctness and Time Complexity

The key to the correctness of the algorithm is to maintain the condition lαp (a) ≥ 0

for all arcs with residual capacity at least α.

Lemma 4.1. After each augmentation, the condition lαp (a) ≥ 0 holds for all arcs

with residual capacity at least α.

15

Proof. Let ξ and x be values before Step 2-3, and ξ′ and x′ values after Step

2-3. We must show that each a ∈ Aα
ξ′,x′ has nonnegative reduced length af-

ter the augmentation and update of p using the distance labels d(v). Let p be

the old potential, and q the new potential. For any previously existing arc a

with nonnegative reduced length, we have lαq (a) = lαp (a) + min{d(∂+a), lαp (P)} −
min{d(∂−a), lαp (P)} where lαp (P) :=

∑
a∈P lαp (a). Since the distance labels sat-

isfy lαp (a) + d(∂+a) ≥ d(∂−a), we have lαp (a) + min{d(∂+a), lαp (P)} ≥ min{lαp (a) +

d(∂+a), lαp (P)} ≥ min{d(∂−a), lαp (P)}, which implies lαq (a) ≥ 0. If there is an arc

with residual capacity newly at least α, it is the reverse arc of an arc a on P . Since

P is a shortest path, we have lαq (a) = 0, and hence lαq (a) = 0.

Lemma 4.2. The condition lαp (a) ≥ 0 (a ∈ Aα
ξ,x) is maintained at the start of each

α-scaling phase.

Proof. At the start of each α-scaling phase, i.e., Step 1, we modify ξ. The modifi-

cation of ξ removes the arcs with negative reduced length from the auxiliary graph

Gα
ξ,x, and creates the reverse arcs with nonnegative reduced length, so the condition

lαp (a) ≥ 0 (a ∈ Aα
ξ,x) is maintained.

We conclude our paper by analyzing the time complexity of the capacity scal-

ing algorithm. Proximity theorem 2.1 guarantees the existence1 of x with x/α ∈
arg min(f [−p])α and ‖ x − ∂ξ ‖∞≤ (n − 1)α. Hence the base x in Step 1 can be

found as a minimizer of f̃ : ZV → R ∪ {+∞} defined by

f̃(y) =




f [−p](∂ξ + αy) (y ∈ Bα)

+∞ (y /∈ Bα)

where

Bα = {y ∈ ZV | ‖ y ‖∞≤ n − 1}.
1An optimal solution to the original problem f [−p] may not exist in the neighborhood {x |

‖ x − ∂ξ ‖∞≤ (n − 1)α} of ∂ξ, but surely in a larger one {x |‖ x − ∂ξ ‖∞≤ (n − 1)(2α − 1)}.

16

This implies that we can find x/α ∈ arg min(f [−p])α in O(F ·n3) time by a descent

algorithm proposed in [11]; note that f̃ is an M-convex function as a consequence

of the assumed scalability of f .

In an α-scaling phase, the discrepancy between x and ∂ξ decreases by α after

Step 2-3. After finding x with x/α ∈ arg min(f [−p])α and ‖ x − ∂ξ ‖∞≤ (n − 1)α

at Step 1 of a new α-scaling phase, we have

‖ x − ∂ξ ‖1≤ n(n − 1)α < αn2.

Then we modify ξ to satisfy the condition lαp (a) ≥ 0 (a ∈ Aα
ξ,x) for arcs a with

residual capacity α ≤ c(a) < 2α. After this modification of ξ, we have

‖ x − ∂ξ ‖1< αn2 + 2m · α.

Thus each scaling phase performs the shortest path augmentation at most n2 + 2m

times. Each construction of the auxiliary graph can be done by O(n2) evaluations of

exchange capacity and f . Since we set α = 2�log C� initially, after O(log C) scaling

phases, we have α = 1. Thus the total time complexity of the capacity scaling

algorithm is O(F · (n3 + n4) log C) = O(F · n4 log C).

Appendix

An alternative proof of nonnegativity (3.2) for each exchange arc in lemma 3.3

is given here. This proof makes explicit use of the exchange axiom (M-EXC) of

M-convex functions.

Put y = x′ − χs + χt. By (M-EXC) there exist a1 ∈ supp+(x − y) and b1 ∈
supp−(x − y) such that

f(y) ≥ [f(x − χa1 + χb1) − f(x)] + f(y2),

17

where y2 = y+χa1−χb1 . By (M-EXC) applied to (x, y2), there exist a2 ∈ supp+(x−
y2) and b2 ∈ supp−(x − y2) such that

f(y2) ≥ [f(x − χa2 + χb2) − f(x)] + f(y3),

where y3 = y2+χa2 −χb2 = y+χa1 +χa2 −χb1 −χb2 . Repeating this l =‖ x−y ‖1 /2

times, we obtain (ai, bi) (i = 1, . . . , l) such that y = x+
∑l

i=1(χbi
−χai

) = x′−χs+χt

and

f(x′ − χs + χt) ≥ f(x) +
l∑

i=1

[f(x − χai
+ χbi

) − f(x)]

≥ f(x) +
l∑

i=1

[p(bi) − p(ai)]

= f(x) +
k∑

i=1

(p(vi) − p(ui)) − p(s) + p(t), (A.1)

where the second inequality is due to (3.1). See also Proposition 4.17 in [17, 18].

To evaluate f(x′), the second term in (3.2), we consider a bipartite graph

G(x, x′) = (V +, V −; Â) with vertex sets V + = {u1, . . . , uk} and V − = {v1, . . . , vk}
and arc set

Â = {(u, v) | u ∈ V +, v ∈ V −, x − χu + χv ∈ dom f},

and associate c(u, v) = ∆f(x; v, u) with arc (u, v) ∈ Â as its weight. We say that

(x, x′) satisfies unique-min condition if there exists in G(x, x′) exactly one minimum-

weight perfect matching with respect to c.

The following lemma gives a necessary and sufficient condition for a bipartite

graph to have a unique minimum-weight perfect matching. It also shows that the

unique-min condition for a pair of integer vectors can be checked by an efficient

algorithm.

Lemma A.1 ([12, 17, 18]). Let G = (V +, V −; Â) be a bipartite graph with |V +| =

|V −|(= k), and c : V +×V − → R∪{+∞} be a weight function such that: c(u, v) <

18

+∞ ⇐⇒ (u, v) ∈ Â. There exists a unique minimum-weight perfect matching

if and only if there exists a potential p : V + ∪ V − → R and orderings of vertices

V + = {u1, . . . , uk} and V − = {v1, . . . , vk} such that

c(ui, vj) + p(ui) − p(vj)




= 0 (1 ≤ i = j ≤ k)

≥ 0 (1 ≤ j < i ≤ k)

> 0 (1 ≤ i < j ≤ k).

(A.2)

Since P in Step 1-1 of SSP has a minimum number of arcs among the shortest

paths, the condition (A.2) holds, and it then follows from lemma A.1 that (x, x′)

satisfies the unique-min condition.

Denote by f̌(x, x′) the minimum weight of a perfect matching in G(x, x′), where

f̌(x, x′) = +∞ if no perfect matching exists. The following lemma is a quantitative

extension of no-shortcut lemma 2.3.

Lemma A.2 ([12, 17, 18]). Let f be an M-convex function, and assume x ∈
dom f , x′ ∈ ZV and ‖ x − x′ ‖∞= 1. If (x, x′) satisfies the unique-min condition,

then x′ ∈ dom f and

f(x′) − f(x) = f̌(x, x′).

Note that ‖ x − x′ ‖∞= 1. Lemma A.2 shows

f(x′) = f(x) +
k∑

i=1

∆f(x; vi, ui) = f(x) +
k∑

i=1

(p(vi) − p(ui)). (A.3)

The inequality (3.2) follows from (A.1) and (A.3).

Acknowledgement

The authors thank Akihisa Tamura for a critical comment. This work is supported

by the Superrobust Computation Project in the 21st Century COE Program and a

Grant-in-Aid of the Ministry of Education, Culture, Sports, Science and Technology

of Japan.

19

References

[1] W.H. Cunningham and A. Frank (1985). A Primal-dual Algorithm for Submod-

ular Flows, Math. Oper. Res., 10, 251–262.

[2] A.W.M. Dress and W. Wenzel (1992). Valuated Matroids, Adv. Math., 93, 214–

250.

[3] J. Edmonds and R. Giles (1977). A Min-max Relation for Submodular Functions

on Graphs, Ann. Discrete Math., 1, 185–204.

[4] J. Edmonds and R.M. Karp (1972). Theoretical Improvements in Algorithmic

Efficiency for Network Flow Problems, Journal of the ACM, 19, 248–264.

[5] L. Fleischer, S. Iwata and S. T. McCormick (2002). A Faster Capacity Scaling

Algorithm for Minimum Cost Submodular Flow, Math. Program., Ser. A 92,

119–139.

[6] A. Frank (1984). Finding Feasible Vectors of Edmonds-Giles Polyhedra, Journal

of Combinatorial Theory, Ser. B 36, 221–239.

[7] A. Frank and É. Tardos (1988). Generalized Polymatroids and Submodular

Flows, Math. Program., 42, 489–563.

[8] S. Fujishige (1991). Submodular Functions and Optimization. North-Holland,

Amsterdam.

[9] S. Iwata (1997). A Capacity Scaling Algorithm for Convex Cost Submodular

Flows, Math. Program., 76, 299–308.

[10] S. Iwata and M. Shigeno (2002). Conjugate Scaling Algorithm for Fenchel-type

Duality in Discrete Convex Optimization, SIAM J. Optimization, 13, 204–211.

20

[11] S. Moriguchi, K. Murota and A. Shioura (2002). Scaling Algorithms for M-

convex Function Minimization, IEICE Transactions on Fundamentals, E85-A,

922–929.

[12] K. Murota (1996). Valuated Matroid Intersection, I: optimality criteria, SIAM

J. Discrete Math., 9, 545–561.

[13] K. Murota (1996). Valuated Matroid Intersection, II: Algorithms, SIAM J.

Discrete Math., 9, 562–576.

[14] K. Murota (1996). Convexity and Steinitz’s Exchange Property, Adv. Math.,

124, 272–311.

[15] K. Murota (1998). Discrete Convex Analysis, Math. Program., 83, 313–371.

[16] K. Murota (1999). Submodular Flow Problem with a Nonseparable Cost Func-

tion, Combinatorica, 19, 87–109.

[17] K. Murota (2001). Discrete Convex Analysis–An Introduction. Kyoritsu Pub-

lishing Co., Tokyo (In Japanese).

[18] K. Murota (2003). Discrete Convex Analysis. Society for Industrial and Applied

Mathematics, Philadelphia.

[19] K. Murota and A. Tamura (2001). Application of M-convex Submodular Flow

Problem to Mathematical Economics. In: P. Eades and T. Takaoka (Eds.),

Proceedings of 12th International Symposium on Algorithms and Computation,

Lecture Notes in Computer Science, 2223, pp. 14–25. Springer-Verlag, Berlin

Heidelberg New York.

21

