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Abstract. In this paper, we propose a new counting scheme for m × n
contingency tables. Our scheme is a modification of Dyer and Greenhill’s
scheme for two rowed contingency tables [5]. We can estimate not only
the sizes of error, but also the sizes of the bias of the number of tables
obtained by our scheme, on the assumption that we have an approximate
sampler.

1 Introduction

A contingency table is a matrix of nonnegative integers with prescribed positive
row and column sums. Contingency tables are used in statistics to store data
from sample surveys. The problem of exactly counting the number of contingency
tables with fixed row and column sums is known to be #P-complete, even when
there are only two rows [6].

For a #P-complete problem, randomized approximation is often useful. A
fully-polynomial randomized approximation scheme (fpras) is a randomized al-
gorithm, which outputs an approximate solution Z satisfying 0 < ∀ε < 1,
0 < ∀δ < 1,

Pr [(1− ε)A ≤ Z ≤ (1 + ε)A] ≥ 1− δ,

where A is the exact solution, and whose running time is bounded by a poly-
nomial time of the input size of the problem (row and column sums), ε and δ
[7].

Dyer and Greenhill introduced an fpras based on Markov chain Monte Carlo
method to count the number of contingency tables with two rows [5]. In 2002,
Cryan and Dyer proposed another fpras for contingency tables with constant
number of rows [1]. Their scheme is a hybrid algorithm of exact counting and
the calculation of convex body.

In this survey, we propose an approximate counting scheme for m×n tables
based on Monte Carlo method, which is an extension and modification of Dyer
and Greenhill’s algorithm. When we have an approximate uniform sampler for
m×n tables, we can bound the sizes of error in randomized fashion in the same
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way as Dyer and Greenhill’s scheme. If there exists a polynomial time approxi-
mate sampler, then we have an fpras for counting m× n tables. The advantage
of our scheme comparing to Dyer and Greenhill’s is that we can bound the bias
of expectation of estimator. According to our result, the expectation of our ap-
proximate solution depends mainly on the difference between the distribution
functions of approximate sampler and exact uniform one, and little depends on
the Monte Carlo methods.

Fig. 1 shows results of our algorithm and Dyer and Greenhill’s algorithm. Fig.
1 is the histogram of obtained solutions (approximate number of tables) of the
common instance for two thousands executions of each algorithm. Approximate
solutions by Dyer and Greenhill’s (abbreviated by “D-G” in the figure) have
unignorable bias from the exact number (denoted by “exact”), while solutions
obtained by our algorithm (denoted by “K-M”) have little bias. Here we note
that, the instance is 2× 8 table given row sums r = (42, 38), and column sums
s = (10, . . . , 10), and the exact number of tables is 9,162,736.

Our scheme is different from Dyer and Greenhill’s in two points. First, the
reduction process of our scheme is deterministic comparing to the fact that Dyer
and Greenhill’s process is decided probabilistically after sampling. Thus we can
parallelize our algorithm easily. Second, we don’t use U/M but (U +1)/(M +1)
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as estimator, where U is the number of samples and M is the sampling times.
This is an ordinary method in statistics for gaining unbiased estimator.

In Section 2, we propose our approximate counting scheme. In Section 3, we
prove some theorems related to the number of tables. In Section 4, we estimate
the accuracy of our estimator using the theorem proposed in Section 3. Finally
we sum up our discussions in Section 5.

2 Approximate counting algorithm

We denote the set of integers (non-negative integers, positive integers) by Z

(Z+, Z++), respectively. For integers m,n ≥ 2, let r = (r1, . . . , rm) ∈ Z
m
++

and s = (s1, . . . , sn) ∈ Z
n
++ be two positive integer partitions of a given positive

integer N ∈ Z++. The set Σr,s ofm×n contingency tables with row and column
sums (r, s) is defined by

Σr,s
def.=

{
X ∈ Z

m×n
+

∑n
j=1Xij = ri ( 1 ≤ ∀i ≤ m),∑m
i=1Xij = sj ( 1 ≤ ∀j ≤ n)

}
,

where Xij is the value in the cell indexed by ith row and jth column. We define
the subset Ωi ⊂ Σr,s (i = 1, . . . ,m) such as Ωi = {X ∈ Σr,s |Xin ≥ �sn/m�}.
We define

r̃
def.= (r1, . . . , rk − �sn/m�, . . . , rm) ,

s̃
def.=

{
(s1, . . . , sn−1, 	m−1

m sn
) , if sn > 1 ,
(s1, . . . , sn−1) , if sn = 1 ,

where k ∈ {1, . . . ,m} is an index satisfying rk = max{r1, . . . , rm}. Clearly,
|Σr̃,s̃| = |Ωk|. If we know ρ = |Ωk|/|Σr,s| and |Σr̃,s̃|, we can calculate the
number of tables |Σr,s| by |Σr,s| = |Σr̃,s̃|/ρ. When we have a uniform sampler
on Σr,s, Monte Carlo method is available to estimate the value of ρ. In fact, we
generate M tables by the sampler, and suppose that U samples of M tables are
in Ωk, then we estimate the value of ρ as (U +1)/(M +1). Then, even if each of
M tables is not in Ωk, we have positive estimator 1/(M + 1) of ρ. By applying
above procedure recursively, we can reduce the original problem to the problem
of counting 2 × 2 contingency table, which is solvable in constant time. Let R
be the number of calls of reduction procedure required to reduce the original
problem to 2×2 table. For i = 1, . . . , R, we put Zi = (Ui +1)/(M +1) where Ui

is the number of samples in Ω generated in ith reduction procedure. We denote
the number of obtained 2× 2 tables by σ. Finally we estimate |Σr,s| as

Z = σ

R∏
i=1

(Zi)−1.

The entire algorithm is sketched in Fig. 2.
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Step 1.
while max{m, n} ≥ 3
do →

transpose rows and columns appropriately and assume that m ≤ n
sample M tables according to an almost uniform distibution on Σr,s

set Ui be the number of samples in Ωk where rk = max{r1, . . . , rm}
set Zi = (Ui + 1)/(M + 1)
set r = r̃, s = s̃

return Step 1.
Step 2.

let σ = min{r1, r2, s1, s2}+ 1
and Z = σ

Q
i(Zi)

−1

Fig. 2. approximate counting algorithm for m × n tables

3 Properties of the number of contingency tables

In our scheme, we define the subset Ωk of Σr,s in order to reduce the size of
problem. There are two important points in this definition. One is the choice of
the row index k, and the other is the value �sn/m� reduced from the kth element
rk of row sum.

Now, we have two exclusive purposes. We need polynomial time algorithm,
so we need to reduce row and column sums effectively. On the other hand we
need the ratio ρ to be enough large, since the approximate solution is sensitive
for the error of the estimator of ρ if ρ is too small.

We lead the following theorem for this purpose.

Theorem 1 If an index k satisfies rk = max{r1, . . . , rm}, then |Ωk|/|Σr,s| ≥
1/m.

With this theorem, we can bound the sizes of the error and bias of approximate
solution of our scheme. It is discussed in next section. In the rest of this section,
we show Theorem 1.

First, we show the following lemma.

Lemma 2 Let the vectors r, r′ ∈ Z
2
+ and s ∈ Z

n
+ satisfy that |r1−r2| ≤ |r′1−r′2|,∑m

i=1 ri =
∑m

i=1 r
′
i =

∑n
j=1 sj = N . Then the pair of sets Σr,s and Σr′,s

satisfies |Σr,s| ≥ |Σr′,s|.
Proof: Without loss of generality, we may assume that r′1 > r1 ≥ r2 > r′2. Let
Pn(r2) be the number of tables in Σr,s where r = (r1, r2), and Pn(u) = 0 for
u �∈ {0, . . . , Nn}, i.e.,

Pn(u) =
{ |Σ(Nn−u,u),s| (if u ∈ {0, . . . , Nn}),
0 (otherwise).

Clearly, we only need to prove that

Pn(u1) ≥ Pn(u2), 	Nn/2
 ≥ ∀u1 > ∀u2 > 0, u1, u2 ∈ Z.

We prove the above inequality by induction on n.
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1. Case n = 2. Without loss of generality, we may assume the column sums
s = (s1, s2) satisfies s1 ≥ s2.
(a) If u1 > u2 > s2 then P2(u1) = P2(u2) since P2(u1) = s2 + 1 and

P2(u2) = s2 + 1.
(b) If u1 > s2 ≥ u2 then P2(u1) ≥ P2(u2) since P2(u1) = s2 + 1 and

P2(u2) = u2 + 1.
(c) If s2 ≥ u1 > u2 then P2(u1) > P2(u2) since P2(u1) = u1 + 1 and

P2(u2) = u2 + 1.
2. Now, consider the case that n = k+1. We add sk+1 as k+1st column sum,

so that Nk+1 = Nk + sk + 1
(a) When u1 ≤ 	Nk/2
,

Pk+1(u1) = Pk(u1) + Pk(u1 − 1) + · · ·+ Pk(u1 − sk+1),
Pk+1(u2) = Pk(u2) + Pk(u2 − 1) + · · ·+ Pk(u2 − sk+1).

From the assumption of induction, we have

Pk(u1 − ξ) ≥ Pk(u2 − ξ), ∀ξ ∈ [0, sk+1] ∩ Z,

and so Pk+1(u1) ≥ PK+1(u2).
(b) When 	Nk/2
 < u1 ≤ 	Nk+1/2
,

Pk+1(u1) = Pk(u1) + Pk(u1 − 1) + · · ·+ Pk(	Nk/2
+ 1)
+Pk(�Nk/2�) + · · ·+ Pk(u1 − sk+1).

Since Nk + sK+1 = Nk ≥ 2u1, Nk − u1 ≥ u1 − sk+1 holds. From the
definition of Pn(u), Pk(u) = Pk(Nk − u1) and

Pk(u1) = Pk(Nk − u1) ≥ Pk(u1 − sk+1).

The property obtained in Case (a) implies that

∀u ≤ 	Nk/2
, Pk+1(	Nk/2
) ≥ Pk+1(u).

Thus we only need to consider the case that 	Nk/2
 ≤ u2 < u1 ≤
	Nk+1/2
. Then it is easy to see that

Pk+1(u1)− Pk+1(u2) = {Pk(u1) + · · ·+ Pk(u1 − sk+1)}
−{Pk(u2) + · · ·+ Pk(u2 − sk+1)}

≥ (u1 − u2){Pn(k1 − sk+1)− Pk(u1 − sk+1 − 1)}
≥ 0,

and we obtained the desired result for the case that n = k + 1.

We extend Lemma 2 to m× n tables.

Lemma 3 Let r, r′ ∈ Z
m
+ and s ∈ Z

n
+ satisfy that |r1 − r2| ≤ |r′1 − r′2|, ri = r′i

(3 ≤ i ≤ m), and
∑m

i=1 ri =
∑m

i=1 r
′
i =

∑n
j=1 sj = N . Then the pair of sets

Σr,s and Σr′,s satisfies |Σr,s| ≥ |Σr′,s|.
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Proof: For an m × n table X ∈ Σr,s, we define the 2 × n table X and the
(m− 2)× n table X by

Xij
def.= Xij (i = 1, 2, j = 1, . . . n),

Xij
def.= Xi+2 j (i = 1, . . . ,m− 2, j = 1, . . . n).

We call each as upper separated table, lower separated table. Let r be

r = (r1, . . . , rm−2) = (r3, . . . , rn).

We define the set

Γ
def.=


s ∈ Z

n
+

∣∣∣∣∣∣0 ≤ sj ≤ sj ,

n∑
j=1

sj =
m−2∑
i=1

ri


 ,

and the set Λ which is the union of the set of (m− 2)× n tables Σr,s as

Λ
def.=

⋃
s∈Γ

Σr,s.

Now, given (m−2)×n table Y ∈ Λ, let ΞY be the set of tables X ∈ Σr,s which
has Y as lower separated table, i.e., ΞY = {X ∈ Σr,s|X = Y ∈ Λ}. Clearly,

|Σr,s| =
∑
Y ∈Λ

|ΞY |. (1)

From now on, we discuss the size |ΞY |. For arbitrary table Y ∈ Λ, let r, s
be the vectors satisfying Y ∈ Σr,s. Then (1) implies that

|Σr,s| =
∑
Y ∈Λ

|ΞY | =
∑
Y ∈Λ

|Σr,s|. (2)

Now, we consider Σr,s and Σr′,s′ again. Since two vectors r and r′ satisfy
ri = r′i (i = 3, . . . ,m), for any Y ∈ Λ, we can define Ξ ′

Y = {X ∈ Σr′,s|X ′ =
Y ∈ Λ}. Equations (2) imply that |ΞY | = |Σr,s| and |Ξ ′

Y | = |Σr,s|, where
r′ def.= (r′1, r

′
2). From the assumption |r′1 − r′2| ≥ |r1 − r2| and Lemma 1,

|ΞY | = |Σr,s| ≥ |Σr′,s| = |Ξ ′
Y |.

Thus

|Σr,s| =
∑
Y ∈Λ

|ΞY | ≥
∑
Y ∈Λ

|Ξ ′
Y ||Σr′,s|. �

Now, consider the point y = (y1, . . . , ym) in R
m. Put N− def.=

∑n−1
j=1 sj , and

we define the hyperplane

S
def.=

{
y ∈ R

m

∣∣∣∣∣
m∑

i=1

yi = N−
}
.
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And for r = (r1, . . . , rm), we define

S+ def.= {y ∈ S|yi ≥ 0, i = 1, . . . ,m}, (3)

S0
def.= {y ∈ S|ri − sn ≤ yi ≤ ri, i = 1, . . . ,m}. (4)

Now let x ∈ R
m be x

def.= r−y. For any x, a table X ∈ Σr,s satisfying xi = Xin

(i = 1, . . . ,m) exists if and only if

0 ≤ xi ≤ min{ri, sn} (i = 1, . . . ,m),
m∑

i=1

xi = sn, x ∈ Z
m.

(5)

We can rewrite these conditions as

max{0, r1 − sn} ≤ yi ≤ ri (i = 1, . . . ,m),
m∑

i=1

yi = N−, y ∈ Z
m.

(6)

These conditions are equivalent to y ∈ S+ ∩ S0 ∩ Z
m.

For any k, l ∈ {1, . . . ,m} such that k �= l, we define the hyperplane Hij by

Hij
def.= {y ∈ R

m| − yi + yj = −ri + rj}.
We define Si by

Si
def.= {y ∈ S0|ri − yi = max{rj − yj |l = 1, . . . ,m}}.

For any y ∈ S we define the symmetric point with Hkl by

hkl(y)
def.= (y∗1 , . . . , y

∗
m), y∗i

def.=
{
ri − rj + yj (i, j = k, l, i �= j),
yi (otherwise).

Clearly, there exists a bijection between the point sets Si and Sj .
For a given point y = (y1, . . . , ym) ∈ Z

m
+ , we define the function

q(y) def.=
{ |Σy,s− | (y ∈ Z

m
+ ∩ S0 ∩ S+),

0 (otherwise), (7)

where s− def.= (s1, . . . , sn−1).

Lemma 4 Let the index k ∈ {1, . . . ,m} satisfy rk = max{r1, . . . , rm}. Suppose
that l ∈ {1, . . . ,m}, l �= k and y∗ = hkl(y) is the symmetrical point of y ∈ Sk

associated with Hkl, then q(y) ≥ q(y∗).

Proof: From the definition of q(y), q(y) = |Σy,s− | and q(y∗) = |Σy∗
,s− |.

Now, y and y∗ is different at kth and lth elements, and so

|y∗k − y∗l | = |(rk − rl + yl)− (rl − rk + yk)| = |(rk − yk)− (rl − yl) + (rk − rl)|
= |(rk − yk)− (rl − yl)|+ (rk − rl) = |(rk − rl) + (yk − yl)|+ (rk − rl)
≥ |yk − yl| − (rk − rl) + (rk − rl) = |yk − yl|.
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From Lemma 3, we have

|Σy,s− | ≥ |Σy∗,s− |
and from the definition of the function q

q(y) ≥ q(y∗). �

We define the function Qk
def.=

∑
x∈Sk

q(x) for k = 1, . . . ,m.

Lemma 5 If an index k satisfies rk = max{r1, . . . , rm}, then for any index i,
Qk ≥ Qi.

Proof: From Lemma 4, q(y) ≥ q(y∗) for any y ∈ Sk. There exists a bijection
between the point sets Sk and Sl, and so |Sk ∩ Z

m| = |Sl ∩ Z
m|. Thus

Qk =
∑

y∈Zm∩Sk

q(y) ≥
∑

y∈Zm∩Sl

q(y∗) = Qi. �

With these Lemmas, we can show Theorem 1.
Proof: We define the set of contingency tables Υx by

Υx
def.= {X ∈ Σr,s|x = (x1, . . . , xm), Xin = xi (i = 1, . . . ,m)}.

Let y = r −x, s− = (s1, . . . , sm−1). It means that for X ∈ Υx,
∑n−1

j=1 Xij = yj ,∑m
i=1Xij = sj for i = 1, . . . ,m and j = 1, . . . , n− 1. Therefore |Υx| = |Σy,s− |.

The condition that |Υx| �= ∅ is described as (5) and equivalent to (6). Also, using
S+, S0 defined as (3) and (4), we can rewrite the condition as

y ∈ Z
m ∩ S0 ∩ S+.

Now we have,

|Σr,s| =
∑
x

|Υx| =
∑

y∈Zm∩S0∩S+

|Σy,s− | =
∑
y∈S0

q(y),

where the function q(y) is defined by (7). When y ∈ Sk, x = r − y satisfies the
condition xk = max{x1, . . . , xm}. Then xk ≥ �sn/m�. Hence it is clear that

|Ωk| ≥
∑
y∈Sk

q(y) = Qk.

With Lemma 5,

|Σr,s| ≤
m∑

i=1

∑
y∈Si

q(y) =
m∑

i=1

Qi ≤ mQk,

therefore

|ΩK | ≥ Qk ≥ 1
m
|Σr,s|. �

So, if we choose an index k such as rk = max{r1, . . . , rm}, then we obtain an
algorithm such that the ratio ρ in each step attains ρ ≥ 1/m.
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4 Bound the error and bias

In this section, we discuss the sizes of error and bias of the estimator obtained by
our scheme. For any pair of distributions ν and ν′ defined on the finite discrete
state space Ω, we define the total variation distance dTV(ν, ν′) by

dTV(ν, ν′)
def.=

1
2

∑
X∈Ω

|ν(X)− ν′(X)|.

Let π be the uniform distribution on Σr,s. Now, supposing that we have an
approximate sampler on Σr,s, whose probability distribution function ν sat-
isfies that for arbitrary nonnegative ε < 1, dTV(π, ν) ≤ ε/6mR, where we
can gain an estimator Z for Σr,s after R times reduction. If we set M =
108mR2ε−2 ln(2R/δ), then we obtain next two theorems about the sizes of error
and bias.

Theorem 6 The estimator Z satisfies

Pr [(1− ε)|Σr,s| ≤ Z ≤ (1 + ε)|Σr,s|] ≥ 1− δ .
This theorem is proved in a similar way with [6, 5] as follows;

1. for 1 ≤ i ≤ R, ρ̂i
def.= E [Ui/M ] ≥ 1/m− ε/6mR,

2. |ρi − ρ̂i| ≤ ε

6R− ε ρ̂i,

3. Pr
[
|Zi − ρ̂i| > ε

6R − ε ρ̂i

]
≤ δ

R
,

4. with the probability higher than 1 − δ, |(Z1 · · ·ZR)−1 − (ρ1 · · · ρR)−1| ≤
ε(ρ1 · · · ρR)−1.

Thus, our scheme is an fpras if we have a polynomial time approximate uniform
sampler. What is more, we can bound the sizes of the bias of E [Z].

Theorem 7 The estimator Z satisfies

|E [Z]−Σr,s|
|Σr,s| ≤ ε

4
+ e−90R3ε−2 ln(2R/δ) ≤

(
1
4
+

1
1027

)
ε .

Proof: Since Z1, . . . , ZR are independent,

E [Z] = σE

[
R∏

i=1

1
Zi

]
= σ

R∏
i=1

E
[
1
Zi

]
.

Now, we have

E
[
1
Zi

]
=

M∑
Ui=0

M + 1
Ui + 1

(
M

Ui

)
ρ̂i

Ui(1− ρ̂i)M−Ui

=
1
ρ̂i

M∑
Ui=0

(
M + 1
Ui + 1

)
ρ̂i

Ui+1(1− ρ̂i)M−Ui

=
1
ρ̂i

{
1− (1− ρ̂i)M+1

}
.
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Then the equality

E [Z] = σ
∏

i

1
ρ̂i

{
1− (1− ρ̂i)M+1

}
(8)

holds. From (8), ||Σr,s| − E [Z] | satisfies

||Σr,s| − E [Z] | =
∣∣∣∣∣σ

∏
i

1
ρi

− σ
∏

i

1
ρ̂i

{
1− (1− ρ̂i)M+1

}∣∣∣∣∣
≤

∣∣∣∣∣σ
∏

i

1
ρi

− σ
∏

i

1
ρ̂i

∣∣∣∣∣ ∣∣{1− (1− ρ̂i)M+1
}∣∣ +

∣∣∣∣∣σ
∏

i

1
ρi
(1− ρ̂i)M+1

∣∣∣∣∣ ,
and∣∣∣∣∣σ

∏
i

1
ρi

− σ
∏

i

1
ρ̂i

∣∣∣∣∣ = σ
∏

i

1
ρi

∣∣∣∣∣1−
∏

i

ρi

ρ̂i

∣∣∣∣∣ ≤ |Σr,s|
{(

1 +
ε

6R − ε
)R

− 1

}

≤ |Σr,s|
{
exp

(
εR

6R − ε
)
− 1

}
≤ |Σr,s| εR

6R− ε− εR ≤ ε

4
|Σr,s|,

and so

||Σr,s| − E [Z] | ≤ ε

4
|Σr,s|+ |Σr,s|

∏
i

(1− ρ̂i)M+1.

Lastly, we estimate the magnitude of
∏

i(1− ρ̂i)M+1 by

∏
i

(1− ρ̂i)M+1 ≤
{
1−

(
1
m

− ε

6mR

)}RM

=
{
1−

(
1− ε

6R

m

)}RM

≤
(
1− 5

6m

)RM

≤
(
1− 5

6m

)R 108mR2ε−2 ln(2R/δ)

≤ (
e−1

) 5
6m 108mR3ε−2 ln(2R/δ)

= e−90R3ε−2 ln(2R/δ).

Thus the bias becomes as follows

||Σr,s| − E [Z] | ≤ ε

4
|Σr,s|+ e−90R3ε−2 ln(2R/δ)|Σr,s|

≤ |Σr,s|
(ε
4
+ e−90R3ε−2 ln(2R/δ)

)
. �

Then, we can see that the bias mainly depends on the difference between the
distribution function of approximate sampler and exact uniform one, and little
depends on the Monte Carlo method.
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5 Conclusion and future work

We proposed a new approximate counting scheme for m×n contingency tables.
We consider the properties of the number of contingency tables, and bound the
bias of our estimator. We show a computational result of our algorithm and Dyer
and Greenhill’s, for two rowed contingency tables.

When we have a polynomial time approximate samples sampler, our scheme
becomes an fpras. In 2002, Cryan et al. showed that heat bath Markov chain for
contingency tables with constant number of rows is rapidly mixing [2]. Of course,
employing their results, our scheme becomes an fpras for contingency tables with
constant number of rows. The existence of polynomial time approximate uniform
sampler for m× n contingency tables is still an open problem.
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