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Abstract

We propose two Markov chains for sampling (m + 1)-dimensional contingency tables indexed

by f1; 2gm � f1; 2; : : : ; ng. Stationary distributions of our chains are the uniform distribution and a

conditional multinomial distribution (which is equivalent to the hypergeometric distribution ifm = 1),

respectively. The mixing times of our chains are bounded by (1=2)n(n � 1) ln(dn=") where d is the

average of the values in cells and " is a given error bound. We use the path coupling method for

estimating the mixing time of our chains and showed that our chains are rapidly mixing.
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1 Introduction

We propose two Markov chains for sampling (m+1)-dimensional contingency tables indexed by f1; 2gm�

f1; 2; : : : ; ng. First chain has the uniform distribution as a unique stationary distribution. The stationary

distributions of second chain is a conditional multinomial distribution, which is the hypergeometric dis-

tribution for 2-dimensional case. The mixing times of our chains are bounded by (1=2)n(n� 1) ln(dn=")

where d is the average of the values in cells and " is a given error bound. We use the path coupling

method [5, 6] for estimating the mixing time of our chains.

Contingency tables are used in statistics to store data from sample surveys. Consider a scenario

where N subjects are categorized into a table according to some attributes. Data is often analyzed under

assumption that the attributes are independent; that is, the joint distribution is uniquely determined by

the marginal probabilities. We often assume that each table was generated from the uniform distribution,

or a conditional multinomial distribution (hypergeometric distribution) over the set of all the contingency

tables (see [1, 2, 8, 15] for example). One of the commonly used measure of independence is the �2

statistics [23]. A typical test of the independence asks what fraction (the sum of probabilities) of tables

have �2 value smaller than a parameter t, as t varies. When the marginal totals are suÆciently large,

we can apply the Pearson chi-square test [23]. In case that marginal totals includes a small number,

we need an exact inference for contingency tables [15]. For the analysis of 2 � 2 contingency tables, an

alternative to maximum likelihood estimation and �2 goodness-of �t tests is the use of Fisher's exact test

for independence [16].

Exact test can be done by systematic enumeration of all the tables. When the number of tables is

huge, exact enumeration is impractical. Mehta and Patel [22] proposed a network algorithm for exact

counting (not for enumeration) of contingency tables. However, the computational e�orts and memory

requirement of their algorithm is bounded by the table sum and so impractical when the table sum is

large. For estimating the moments of �2 statistics eÆciently, a standard technique is the ordinary Monte

Carlo method if we have a method for sampling from the set of contingency tables. By using a rapidly

mixing Markov chain with the desired stationary distribution, we can sample a contingency table after

enough number of transitions of the Markov chain from arbitrary initial state.

It is known that the problem for generating 3-dimensional contingency tables is intractable. More

precisely, when we deal with 3-dimensional tables, the problem for checking the existence of at least

one table satisfying the given marginal totals is NP-complete [18]. Diaconis and Strumfels [11] proposed

an algorithm for �nding a Markov base for higher dimensional contingency tables. Recently, Aoki and

Takemura discussed Markov bases for some classes of 3-dimensional contingency tables [4, 25]. In this

paper, we deal with a special class of (m+1)-dimensional contingency tables such that the cells are indexed

by f1; 2gm � f1; 2; : : : ; ng. For this class, a natural Markov basis exists, which is a direct extension of

2-dimensional case. This class of contingency tables arises in many practical situations [14, 24]. There

also exist some theoretical results on testing the independency of attributes of 2 � 2 � K tables (see

Agresti's survey paper [1] for example).

The problem of almost uniform sampling of contingency tables can be solved by using a Markov

chain that converges to the uniform distribution. Diaconis and Salo�-Coste [10] discussed the rate of

convergence of a natural Markov chain for 2-dimensional contingency tables. They have shown that

the ordinary chain mixes polynomial time in the table sum when the numbers of rows and columns are
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�xed. Dyer, Kannan and Mount [13] proposed a di�erent Markov chain for counting the number of 2-

dimensional contingency tables. In case of suÆciently large marginal totals, their chain mixes polynomial

time in the number of rows and columns. For 2-dimensional contingency tables with two rows, Hernek

[17] showed that the mixing time of the ordinary Markov chain is bounded by a polynomial of table

sum and number of columns. Hernek bounded the mixing time of the chain by using coupling lemma

shown by Aldous [3]. Dyer and Greenhill [12] proposed a rapidly mixing Markov chain for two rowed

contingency tables. Their chain mixes polynomial time in the logarithm of table sum and the number

of columns. They analyzed the mixing rate of their chain by using path coupling technique proposed by

Bubley and Dyer [5, 6]. Kannan, Tetali and Vempala [21] gave a Markov chain with polynomial-time

convergence for the 0-1 case with nearly equal marginal totals. In contrast, Chung, Graham and Yau [7]

proposed a Markov chain for contingency tables with large enough marginal sums and showed that their

chain converges in pseudo polynomial time.

We also consider the problem for generating contingency tables from a conditional multinomial dis-

tribution (hypergeometric distribution) over the set of all the contingency tables. In 2-dimensional case,

there exists a simple O(N) time perfect sampling method, where N is the table sum. However, 3-

dimensional case is computationally intractable in general, as described above. It is easy to see that

the problem for sampling perfect matchings in a given bipartite graph uniformly is a special case of the

problem for generating 2 � I � J contingency tables from a conditional multinomial distribution. The

existence of a polynomial time approximate uniform sampler for perfect matching was a long standing

open problem (see [19] for example). Recently, the problem was solved aÆrmatively [20].

In Section 2, we introduce some notations and summarize the path coupling method. In Section 3, we

describe our �rst chain whose stationary distribution is uniform. Section 4, we discuss our second chain

whose stationary distribution is a conditional multinomial distribution.

2 Notations and De�nitions

We denote the set of integers (non-negative integers, positive integers) by Z (Z+, Z++), respectively.

In this paper, we consider a set of (m + 1)-dimensional contingency tables indexed by Bm � J where

B = f1; 2g and J = f1; 2; : : : ; ng. Any index in J is called a column index. For any vector x 2 ZB
m

�J ,

both x(i; j) and x(i1; i2; : : : ; im; j) denote the element of x indexed by i = (i1; i2; : : : ; im) 2 Bm and

j 2 J . For any column index j 2 J , x(j) 2 ZB
m

denotes the subvector of x 2 ZB
m

�J consists of elements

de�ned by indices in Bm � fjg. Given a vector of indices i 2 Bm and an index l 2 f1; 2; : : : ;mg, i
l

denotes the vector of indices (i1; : : : ; il�1; il+1; : : : ; im) 2 Bm�1 and we also denote the vector i by (i
l
; il)

by changing the order of elements. For any vector x 2 ZB
m

�J and l 2 f1; 2; : : : ;mg, x(i
l
; il; j) denotes

the element x(i; j).

Let (r1; r2; : : : ; rm; c) be a sequence of non-negative integer vectors where r
l 2 ZB

m�1
�J

+ for each

l 2 f1; 2; : : : ;mg and c 2 ZB
m

+ . The element of rl indexed by (i0; j) 2 Bm�1 � J is denoted by rl(i0; j).

The set of contingency tables corresponding to (r1; r2; : : : ; rm; c) is de�ned by

T
def:
=

(
x 2 ZB

m

�J

+

����� x(il; 1; j) + x(i
l
; 2; j) = r

l(i
l
; j) (8l 2 f1; 2; : : : ;mg; 8i

l
2 Bm�1

; 8j 2 J);P
j2J

x(i; j) = c(i) (8i 2 Bm)

)
:

Each element in T is called a table for simplicity. In the following,
P
i2Bm

c(i) is denoted by N . Clearly,
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x(1; 1; 1) x(1; 1; 2) x(1; 1; 3) x(1; 1; 4) x(1; 1; 5) x(1; 1; 6) 2 5 1 4 5 9

x(1; 2; 1) x(1; 2; 2) x(1; 2; 3) x(1; 2; 4) x(1; 2; 5) x(1; 2; 6) 6 3 6 3 2 0

x(2; 1; 1) x(2; 1; 2) x(2; 1; 3) x(2; 1; 4) x(2; 1; 5) x(2; 1; 6) 5 2 7 1 0 3

x(2; 2; 1) x(2; 2; 2) x(2; 2; 3) x(2; 2; 4) x(2; 2; 5) x(2; 2; 6) 6 4 4 3 8 8

c(1; 1) 26

c(1; 2) 20

r
2(1; 1) r

2(1; 2) r
2(1; 3) r

2(1; 4) r
2(1; 5) r

2(1; 6) 8 8 7 7 7 9

c(2; 1) 18

c(2; 2) 33

r
2(2; 1) r

2(2; 2) r
2(2; 3) r

2(2; 4) r
2(2; 5) r

2(2; 6) 11 6 11 4 8 11

r
1(1; 1) r

1(1; 2) r
1(1; 3) r

1(1; 4) r
1(1; 5) r

1(1; 6) 7 7 8 5 5 12

r
1(2; 1) r

1(2; 2) r
1(2; 3) r

1(2; 4) r
1(2; 5) r

1(2; 6) 12 7 10 6 10 8

Figure 1: An example of B� B� J (jJ j = 6) table (denoted by x
�).

for any table x 2 T , the sum total of elements of x is equal to N .

In the rest of this section, we brie
y review the path coupling technique proposed by Bubley and

Dyer [5]. We use the technique in later sections to estimate the mixing time of our Markov chains.

Here we deal with a Markov chain M with state space T . Assume that M has a unique stationary

distribution � : T ! [0; 1]. For any probability distribution function �0 on T , de�ne the total variation

distance between � and �0 to be

DTV(�; �
0)

def:
= max

T 0�T

�����
X
x2T 0

�(x)�
X
x2T 0

�
0(x)

����� = (1=2)
X
x2T

j�(x)� �
0(x)j:

If the initial state of the chainM is x, we denote the distribution of the chain at time t by P t

x : T ! [0; 1],

i.e.,

P
t

x(y)
def:
= Pr[Xt = y j X0 = x] (8y 2 T ):

The rate of convergence to stationary from the initial state x may be measured by

�x(")
def:
= minft j DTV(�; P

t
0

x) � " for all t0 � tg

where the error bound " is a given positive constant. The mixing time �(") of M is de�ned by

�(")
def:
= max

x2T
�x(");

which is independent of the initial state.

Next, we de�ne a special Markov process with respect to M called joint process. A joint process of

M is a Markov chain (Xt; Yt) de�ned on T � T satisfying that each of (Xt); (Yt), considered marginally,

is a faithful copy of the original Markov chain M. More precisely, we require that

Pr[Xt+1 = x
0j(Xt; Yt) = (x;y)] = PM(x;x0);

Pr[Yt+1 = y
0j(Xt; Yt) = (x;y)] = PM(y;y0);
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for all x;y;x0;y0 2 T where PM(x;x0) and PM(y;y0) denotes the transition probability from x to x
0

and from y to y
0 of the original Markov chain M, respectively.

Path coupling lemma [Bubley and Dyer [5]]

Let G be a directed graph with vertex set T and arc set A � T � T . Let ` : A! Z++ be a positive

length de�ned on the arc set. We assume that G is strongly connected. For any ordered pair of vertices

(x;x0) of G, the distance from x to x
0, denoted by `(x;x0), is the length of the shortest path from x to

x
0, where the length of a path is the sum of the lengths of arcs in the path. Suppose that there exists a

joint process (X;Y ) 7! (X 0
; Y

0) with respect to M satisfying that

1 > 9� > 0; 8(X;Y ) 2 A; E[`(X 0
; Y

0)] � �`(X;Y ):

Then the mixing time �(") of the original Markov chain M satis�es �(") � (1 � �)�1 ln(D=") where D

denotes the diameter of G, i.e., the distance of a farthest (ordered) pair of vertices.

3 Markov Chain for Uniform Distribution

First, we show a lemma which implies an irreducible Markov chain de�ned on the set of tables T . We

de�ne the parity function p : Z! f1;�1g by

p(x) =

(
1 (x is an even integer );

�1 (x is an odd integer ):

For any index i 2 Bm, we denote p(i1 + i2 + � � �+ im) by p(i). The vector � 2 f1;�1gB
m

is de�ned by

�(i)
def:
= p(i) for each index i 2 Bm. Given an ordered pair of distinct column indices (j0; j00), we de�ne

the vector �[j0; j00] 2 ZB
m

�J by

�[j0; j00](j)
def:
=

8>><
>>:

0 (j 2 J n fj0; j00g);

� (j = j
0);

�� (j = j
00):

0 �1 0 1 0 0 2 5 1 4 5 9 2 4 1 5 5 9

0 1 0 �1 0 0 6 3 6 3 2 0 6 4 6 2 2 0

0 1 0 �1 0 0 5 2 7 1 0 3 5 3 7 0 0 3

0 �1 0 1 0 0 6 4 4 3 8 8 6 3 4 4 8 8

�[4; 2] x
�

x
� +�[4; 2]

Figure 2: The vector �[4; 2].

For any table x 2 T , we introduce the set of neighboring tables;

N0(x)
def:
= fx0 2 T j 9(j0; j00) 2 J � J; j

0 6= j
00
; x

0 = x+�[j0; j00]g:

It is easy to see that if x0 = x + �[j0; j00], then x = x
0 � �[j0; j00] = x

0 + �[j00; j0], and so x
0 2

N0(x) implies x 2 N0(x0). For any pair of vectors x;x
0 2 ZB

m

�J , jjx � x
0jj1 denotes the distanceX

(i;j)2Bm�J

jx(i; j)� x
0(i; j)j between x and x

0.
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Lemma 1 Let G
0
be an undirected graph with vertex set T and for any pair of vertices fx;x0g, there

exists an edge between x and x
0
if and only if x

0 2 N0(x). Then the graph G
0
is connected, i.e., for any

pair of vertices fx;x0g of G
0
, there exists a path on G

0
between x and x

0
. The diameter (the distance of

farthest pair of vertices) is less than or equal to N=2m+1

Proof. Assume on the contrary that G0 is not connected. Let fx;x0g be a pair of vertices which

minimizes jjx � x
0jj1 subject to the condition that there does not exist any path between x and x

0.

Without loss of generality, we can assume that 9j0 2 J; x(2; j0) < x
0(2; j0), where 2 is the all-two vector

in Bm. It directly implies the followings;

1. x(i; j0) < x
0(i; j0) for any i 2 Bm satisfying p(i) = p(2),

2. x(i; j0) > x
0(i; j0) for any i 2 Bm satisfying p(i) 6= p(2),

3. jx(i; j0)� x
0(i; j0)j = jx(2; j0)� x

0(2; j0)j for any i 2 Bm.

Since
P

j2J
x(2; j) =

P
j2J

x
0(2; j), there exists a column index j00 satisfying x(2; j00) > x

0(2; j00). Then

we have the following properties;

1. x(i; j00) > x
0(i; j00) for any i 2 Bm satisfying p(i) = p(2),

2. x(i; j00) < x
0(i; j00) for any i 2 Bm satisfying p(i) 6= p(2),

3. jx(i; j00)� x
0(i; j00)j = jx(2; j00)� x

0(2; j00)j for any i 2 Bm.

The vector x00 = x + �[j0; j00] is non-negative and so x
00 2 T . Since x

00 2 N0(x), there does not exist

any path between x
00 and x

0. The inequality jjx�x
0jj1 > jjx00 �x

0jj1 contradicts with the minimality of

jjx� x
0jj1. The de�nition of x00 implies that jjx� x

00jj1 = 2m+1.

The above procedure decreases the distance between a distinct pair of vertices and the decrement is

2m+1. If we apply the procedure bjjx�x
0jj1=2

m+1c times, the distance of two vertices is less than 2m+1.

It implies that the obtained pair of vertices are identical. Thus the diameter of G0 is less than or equal

to N=2m+1.

The above lemma indicates the existence of an irreducible Markov chain on T such that the transition

probability of an ordered pair of tables (x;x0) is positive if and only if x and x
0 are adjacent on G

0.

When m = 1, this chain is a special case of the Markov chain proposed by Diaconis and Salo�-Coste [10].

However, as discussed in Dyer and Greenhill [12], the mixing rate of Diaconis and Salo�-Coste's chain is

low. In the following, we describe our chain, which is an extension of the chain discussed by Dyer and

Greenhill [12] for contingency tables with two rows.

For any table x 2 T and any pair of distinct column indices fj0; j00g, we de�ne the following set of

tables;

N (x; fj0; j00g)
def:
=
n
(y(j0);y(j00)) 2 Z

Bm�fj0;j00g
+

��� 9� 2 Z; (y(j0);y(j00)) = (x(j0);x(j00)) + �(�;��) � 0
o
:

Markov Chain M1

We introduce our chainM1 with state space T . For any table x 2 T and any pair of distinct column

indices fj0; j00g, we de�ne the following set of tables;
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1 2 3 4 5 6 1 3 1 3 1 3 1 3

2 5 1 4 5 9 3 0 2 1 1 2 0 3

6 3 6 3 2 0 5 7 6 6 7 5 8 4

5 2 7 1 0 3 4 8 5 7 6 6 7 5

6 4 4 3 8 8 7 3 6 4 5 5 4 6

x
� N (x�; f1; 3g)

Figure 3: Vectors in N (x�; f1; 3g).

N1(x; fj0; j00g)
def:
= fx0 2 T j x0(j) = x(j) (8j 2 J n fj0; j00g); (x0(j0);x0(j00)) 2 N (x; fj0; j00g)g

= fx0 2 T j 9� 2 Z; x0 = x+ ��[j0; j00] � 0g:

The Markov chain M1 with the state space T is de�ned by the following transition procedure. We

denote the state of the chain M1 at time t by Xt and the element of Xt indexed by (i; j) is denoted

by Xt(i; j). Then the state Xt+1 at time t + 1 is determined as follows. First, choose a pair of distinct

column indices fj0; j00g randomly. Next, choose a table Xt+1 from N1(Xt; fj
0
; j
00g) at random.

3 5 0 4 5 9 2 5 1 4 5 9 1 5 2 4 5 9 0 5 3 4 5 9

5 3 7 3 2 0 6 3 6 3 2 0 7 3 5 3 2 0 8 3 4 3 2 0

4 2 8 1 0 3 5 2 7 1 0 3 6 2 6 1 0 3 7 2 5 1 0 3

7 4 3 3 8 8 6 4 4 3 8 8 5 4 5 3 8 8 4 4 6 3 8 8

x
� +�[1; 3] x

�
x
� ��[1; 3] x

� � 2�[1; 3]

Figure 4: The set of neighbors N1(x�; f1; 3g).

We estimate the mixing time of our chain M1. According to the de�nition, it is clear that M1 is

aperiodic and irreducible. The transition probability of M1 from x to y, denoted by PM1(x;y) is

PM1(x;y) =

8>>>>>>><
>>>>>>>:

  
n

2

!
jN (x; fj0; j00g)j

!�1
( if y 2 N1(x; fj0; j00g));

P
j0<j00

  
n

2

!
jN (x; fj0; j00g)j

!�1
(x = y);

0 (otherwise):

Since PM1(x;y) = PM1(y;x), the stationary distribution of the chain is uniform.

First, we introduce a directed graph G1 with the vertex set T and the arc set A = f(x;x0) j x0 2

N0(x)g. We de�ne that the length `(a) of each arc a 2 A is equal to 1. The distance of any ordered pair

of vertices (x;x0) on G1 is denoted by `(x;x0). Next, we de�ne a joint process (X;Y ) 7! (X 0
; Y

0) with

respect toM1. For any pair of tables (X;Y ) 2 A, we de�ne the transition probability of our joint process

from (X;Y ) to (X 0
; Y

0). Without loss of generality, we can assume that X(1) 6= Y (1); X(2) 6= Y (2) and

X(j) = Y (j) for all j 2 J nf1; 2g. In the joint process, we choose a pair of distinct column indices (j0; j00).
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Case 1: When fj0; j00g � f3; : : : ; ng, it is clear that N (X; fj0; j00g) = N (Y; fj0; j00g) and so we choose a

pair (Z(j0); Z(j00)) from N (X; fj0; j00g) at random. We set X 0 and Y 0 to the contingency table obtained

from X and Y by replacing (X(j0); X(j00)) and (Y (j0); Y (j00)) by (Z(j0); Z(j00)), respectively. Then, it is

clear that (X 0
; Y

0) is also in A and so `(X 0
; Y

0) = 1.

Case 2: Next, consider the case that fj0; j00g = f1; 2g. It is clear that N (X; fj0; j00g) = N (Y; fj0; j00g).

We construct X 0 and Y 0 by using the same manner of Case 1. Then, we have X 0 = Y
0 and `(X 0

; Y
0) = 0.

Case 3: Finally, we consider the case that j0 = 1 and j00 = 3. Other cases are treated in the same way

as follows.

Case 3-1: Consider the case that jN (X; fj0; j00g)j = jN (Y; fj0; j00g)j.

We denote N1(X; fj0; j00g) = fX1
; X

2
; : : : ; X

kg and N1(Y; fj0; j00g) = fY 1
; Y

2
; : : : ; Y

kg. By arranging

the order of the elements, we assume thatX1(1; 1) > X
2(1; 1) > � � � > X

k(1; 1) and Y 1(1; 1) > Y
2(1; 1) >

� � � > Y
k(1; 1). Then we choose (X 0

; Y
0) randomly from f(X1

; Y
1); (X2

; Y
2); : : : ; (Xk

; Y
k)g. It is easy to

see that (X 0
; Y

0) 2 A and so `(X 0
; Y

0) = 1.

Case 3-2: We only need to consider the case that jN (X; fj0; j00g)j > jN (Y; fj0; j00g)j without loss of

generality. Since (X;Y ) 2 A, it is easy to show that jN (X; fj0; j00g)j = jN (Y; fj0; j00g)j+1. By arranging

the order of elements in N1(X; fj0; j00g) = fX1
; X

2
; : : : ; X

k+1g and N1(Y; fj0; j00g) = fY 1
; Y

2
; : : : ; Y

kg,

we can assume that X1(1; 1) > X
2(1; 1) > � � � > X

k+1(1; 1) and Y 1(1; 1) > Y
2(1; 1) > � � � > Y

k(1; 1).

Then we choose (X 0
; Y

0) as follows;

(X 0
; Y

0) =

(
(X i

; Y
i) with probability (k � i+ 1)=k(k + 1) for i 2 f1; 2; : : : ; kg;

(X i+1
; Y

i) with probability i=k(k + 1) for i 2 f1; 2; : : : ; kg;

where the sum total of the probabilities is (1+2+ � � �+k)=k(k+1)+(k+ � � �+2+1)=k(k+1) = 1. Figure 5

shows an example. Clearly from the de�nition, (X i
; Y

i); (X i
; Y

i+1) 2 A for each i 2 f1; 2; : : : ; kg and so

`(X 0
; Y

0) = 1.

From the above, we have

E[`(X 0
; Y

0)] =

0
@1�

 
n

2

!�11A :

It implies the following result.

Theorem 1 The Markov chain M1
has the mixing time �1(") satisfying that

�1(") � (1=2)n(n� 1) ln(dn=(2"));

where d is the average of the values in cells, i.e., d = N=(2mn).

Proof. The diameter of the graph G1 is equal to that of G0 and so less than or equal to N=2m+1. Path

coupling lemma induces the desired result.

4 Markov Chain for Conditional Multinomial Distribution

In this section, we consider a conditional multinomial distribution given marginal sum. The distribution

function  : T ! [0; 1] is de�ned by

 (X)
def:
= (1=�(T ))

Y
(i;j)2Bm�J

(X(i; j)!)�1; where �(T )
def:
=
X
y2T

Y
(i;j)2Bm�J

(y(i0; j)!)�1:

8



3 5 0 4 5 9 2 5 1 4 5 9 1 5 2 4 5 9 0 5 3 4 5 9

5 3 7 3 2 0 6 3 6 3 2 0 7 3 5 3 2 0 8 3 4 3 2 0

4 2 8 1 0 3 5 2 7 1 0 3 6 2 6 1 0 3 7 2 5 1 0 3

7 4 3 3 8 8 6 4 4 3 8 8 5 4 5 3 8 8 4 4 6 3 8 8

X
1= X +�[1; 3]

= Y
1 +�[1; 2]

X
2= X

= Y
2 +�[1; 2]

X
3= X ��[1; 3]

= Y
3 +�[1; 2]

X
4 = X � 2�[1; 3]

2 6 0 4 5 9 1 6 1 4 5 9 0 6 2 4 5 9

6 2 7 3 2 0 7 2 6 3 2 0 8 2 5 3 2 0

5 1 8 1 0 3 6 1 7 1 0 3 7 1 6 1 0 3

6 5 3 3 8 8 5 5 4 3 8 8 4 5 5 3 8 8

Y
1= Y +�[1; 3]

= X
2 +�[2; 3]

Y
2= Y = X +�[2; 1]

= X
3 +�[2; 3]

Y
3= Y ��[1; 3]

= X
4 +�[2; 3]

Pr[(X 0
; Y

0) = (X1
; Y

1)j(j0; j00) = (1; 3)] = 3=12; Pr[(X 0
; Y

0) = (X2
; Y

1)j(j0; j00) = (1; 3)] = 1=12;

Pr[(X 0
; Y

0) = (X2
; Y

2)j(j0; j00) = (1; 3)] = 2=12; Pr[(X 0
; Y

0) = (X3
; Y

2)j(j0; j00) = (1; 3)] = 2=12;

Pr[(X 0
; Y

0) = (X3
; Y

3)j(j0; j00) = (1; 3)] = 1=12; Pr[(X 0
; Y

0) = (X4
; Y

3)j(j0; j00) = (1; 3)] = 3=12:

Figure 5: An example of Case 3-2.

Next, we describe a Markov chain which has a conditional multinomial distribution as a stationary

distribution.

Markov Chain M2

First, we introduce a distribution function  (x; fj0; j00g) de�ned on N1(x; fj0; j00g) as follows

 (x; fj0; j00g) : Y 7! (1=�(x; fj0; j00g))
Y

(i;j)2B�fj0;j00g

(Y (i; j)!)�1;

where

�(x; fj0; j00g)
def:
=

X
y2N1(x;fj0;j00g)

Y
(i;j)2B�fj0;j00g

(y(i; j)!)�1:

The Markov chain M2 with the state space T is de�ned by the following transition procedure. We

denote the state of the chain M2 at time t by Xt. Then the state Xt+1 at time t + 1 is determined as

follows. First, choose a pair of distinct column indices fj0; j00g randomly. Next, choose a table Xt+1 from

N1(Xt; fj
0
; j
00g) under the distribution function  (Xt; fj

0
; j
00g).

According to the de�nition, it is clear thatM2 is aperiodic and irreducible. Since the detailed balance

equations hold, the function  is a unique stationary distribution function of M2.

Next, we de�ne a joint process (X;Y ) 7! (X 0
; Y

0) with respect toM2. Recall that A is the arc set of

digraph G1 de�ned in the previous section. For any pair of tables (X;Y ) 2 A, we de�ne the transition

probability of our joint process from (X;Y ) to (X 0
; Y

0). In the following, we consider the case that

(X;Y ) 2 A. Without loss of generality, we can assume that X(1) 6= Y (1); X(2) 6= Y (2) and X(j) = Y (j)

for all j 2 J n f1; 2g. In the joint process, we choose a pair of distinct column indices (j0; j00).

Case 1: When fj0; j00g � f3; : : : ; ng, it is clear that N (X; fj0; j00g) = N (Y; fj0; j00g) and so we choose

a pair (Z(j0); Z(j00)) from N (X; fj0; j00g) under the distribution function  (X; fj0; j00g). We set X 0 and

9



Y
0 to the contingency table obtained from X and Y by replacing (X(j0); X(j00)) and (Y (j0); Y (j00)) by

(Z(j0); Z(j00)), respectively. Then, it is clear that (X 0
; Y

0) is also in A and so `(X 0
; Y

0) = 1.

Case 2: Next, consider the case that fj0; j00g = f1; 2g. It is clear that N (X; fj0; j00g) = N (Y; fj0; j00g).

We construct X 0 and Y 0 by using the same manner of Case 1. Then, we have X 0 = Y
0 and `(X 0

; Y
0) = 0.

Case 3: Finally, we consider the case that j0 = 1 and j00 = 3. Other cases are treated in a similar way.

Case 3-1: Consider the case that jN (X; fj0; j00g)j 6= jN (Y; fj0; j00g)j. We can assume that jN (X; fj0; j00g)j >

jN (Y; fj0; j00g)j without loss of generality. Since (X;Y ) 2 A, it is easy to show that jN (X; fj0; j00g)j =

jN (Y; fj0; j00g)j + 1. By arranging the order of elements in N1(X; fj0; j00g) = fX1
; X

2
; : : : ; X

k+1g and

N1(Y; fj0; j00g) = fY 1
; Y

2
; : : : ; Y

kg, we can assume that X1(1; 1) > X
2(1; 1) > � � � > X

k+1(1; 1) and

Y
1(1; 1) > Y

2(1; 1) > � � � > Y
k(1; 1).

Exactly one of the following two cases holds;

(i) (Y 1(1); Y 2(1); : : : ; Y k(1)) = (X1(1); X2(1); : : : ; Xk(1)) and

(Y 1(3); Y 2(3); : : : ; Y k(3)) = (X2(3); X3(3); : : : ; Xk+1(3));

(ii) (Y 1(3); Y 2(3); : : : ; Y k(3)) = (X1(3); X2(3); : : : ; Xk(3)) and

(Y 1(1); Y 2(1); : : : ; Y k(1)) = (X2(1); X3(1); : : : ; Xk+1(1)):

In the following, we consider Case (i). We can deal with Case (ii) in a similar way.

We choose (X 0
; Y

0) as follows;

(X 0
; Y

0) =

8>>>>>>><
>>>>>>>:

(X1
; Y

1) with probability  (X; fj0; j00g)(X1);

(X i
; Y

i) with probability
P

i

i0=1  (X; fj
0
; j
00g)(X i

0

)�
P

i�1

i0=1  (Y; fj
0
; j
00g)(Y i

0

)

for i 2 f1; 2; : : : ; kg;

(X i+1
; Y

i) with probability
P

i

i0=1  (Y; fj
0
; j
00g)(Y i

0

)�
P

i

i0=1  (X; fj
0
; j
00g)(X i

0

)

for i 2 f1; 2; : : : ; kg:

It is clear that the probabilities described above satisfy the equalities appearing in the de�nition

of joint process. We need to show the non-negativity of the above probabilities. From the de�nition,

(X i
; Y

i); (X i
; Y

i+1) 2 A for each i 2 f1; 2; : : : ; kg and so `(X 0
; Y

0) = 1. To show the non-negativity, we

need the following Lemma.

Lemma 2 Let (�1; �2; : : : ; �k+1) and (�1; : : : ; �k) be a pair of positive vectors satisfying that

�1

�1
�
�2

�2
� � � � �

�k

�k
and

�1

�2
�
�2

�3
� � � � �

�k

�k+1
:

Let F be an index set de�ned by F
def:
= f(1; 1); (2; 2); : : : ; (k; k); (2; 1); (3; 2); : : : ; (k+1; k)g and 
 2 R

F
be

a vector de�ned by;


(1; 1) = �1=A;


(i; i) = (�1 + � � �+ �i)=A� (�1 + � � �+ �i�1)=B (i = 1; 2; : : : ; k);


(i+ 1; i) = (�1 + � � �+ �i)=B � (�1 + � � �+ �i)=A (i = 1; : : : ; k);

where A = �1 + � � �+ �k+1 and B = �1 + � � �+ �k. Then the vector 
 is non-negative.

Proof.

10



�1 �2 � � � �i �i+1

- %- %- %-
(1; 1) (2; 1) (2; 2) � � � (i; i� 1) (i; i) (i+ 1; i) � � �

&. &. &. &.
�1 �2 �i�1 �i � � �

Figure 6: Index set F .

(0) Clearly, 
(1; 1) � 0.

(1) Let i�
def:
= maxfi j �i=�i+1 � B=Ag. In the case that fi j �i=�i+1 � B=Ag = ;, we set i�

def:
= �1.

From the de�nition, if i� 6= �1, then we have

�1

�2
�
�2

�3
� � � � �

�i�

�i�+1
�
B

A
<
�i�+1

�i�+2
� � � � �

�k

�k+1
:

For any index i 2 (�1; i
�] \ f1; 2; : : : ; kg, 
(i; i) satis�es


(i; i) = (�1 + � � �+ �i)=A� (�1 + � � �+ �i�1)=B

= �1=A+ (�2=A� �1=B) + � � �+ (�i=A� �i�1=B)

� (�2=B)(B=A� �1=�2) + � � �+ (�i=B)(B=A� �i�1=�i) � 0:

For any index i 2 [i� + 1;+1) \ f1; 2; : : : ; kg, the following inequality holds;


(i; i) = (�1 + � � �+ �i)=A� (�1 + � � �+ �i�1)=B

= (A� (�i+1 + � � �+ �k+1))=A � (B � (�i + � � �+ �k)=B

= (�i=B � �i+1=A) + � � �+ (�k=B � �k+1=A)

� (�i+1=B)(�i=�i+1 �B=A) + � � �+ (�k+1=B)(�k=�k+1 �B=A) � 0:

(2) Let i� be the index de�ned by i�
def:
= maxfi j �i=�i � A=Bg. If fi j �i=�i � A=Bg = ;, we de�ne

i
� = �1. Thus, in the case that i� 6= �1, following inequalities hold;

�1

�1
�
�2

�2
� � � �

�i�

�i�
�
A

B
<
�i�+1

�i�+1
� � � � �

�k

�k
:

For any index i 2 (�1; i
�] \ f1; 2; : : : ; kg, 
(i+ 1; i) satis�es


(i+ 1; i) = (�1 + � � �+ �i)=B � (�1 + � � �+ �i)=A

= (�1=B � �1=A) + � � �+ (�i=B � �i=A)

= (�1=A)(A=B � �1=�1) + � � �+ (�i=A)(A=B � �i=�i) � 0:

For any index i 2 [i� + 1;+1) \ f1; 2; : : : ; kg, we can show the non-negativity of 
(i+ 1; i) as follows;


(i+ 1; i) = (�1 + � � �+ �i)=B � (�1 + � � �+ �i)=A

= (B � (�i+1 + � � �+ �k))=B � (A� (�i+1 + � � �+ �k+1))=A

= (�i+1=A� �i+1=B) + � � �+ (�k=A� �k=B) + �k+1=A

� (�i+1=A)(�i+1=�i+1 �A=B) + � � �+ (�k=A)(�k=�k �A=B) � 0:
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From the above, we have the desired result.

Let Bm

1
def:
= fi 2 Bm j p(i) = p(1)g. For any index i 2 Bm

1 , (X
1(i; 1); X2(i; 1); : : : ; Xk+1(i; 1)) is an

arithmetic sequence of non-negative integers with the common di�erence �1. For each index i 2 Bm,

we denote the index obtained from i by 
ipping the mth element (i.e., the last element) by î. Then,

for any index i 2 Bm

1 , the sequence (X
1(î; 1); X2(î; 1); : : : ; Xk+1(î; 1)) is an arithmetic sequence of non-

negative integers with the common di�erence 1. It is also easy to show that for any index i 2 Bm

1 ,

the sequences (X1(i; 3); X2(i; 3); : : : ; Xk+1(i; 3)) and (X1(î; 3); X2(î; 3); : : : ; Xk+1(î; 3)) are arithmetic

sequences of non-negative integers with the common di�erences 1 and �1, respectively. The above

properties imply the following lemma.

Lemma 3 Assume that the condition ;

(i) (Y 1(1); Y 2(1); : : : ; Y k(1)) = (X1(1); X2(1); : : : ; Xk(1)) and

(Y 1(3); Y 2(3); : : : ; Y k(3)) = (X2(3); X3(3); : : : ; Xk+1(3))

is satis�ed. Then the following inequalities hold;

 (X; fj0; j00g)(X1)

 (Y; fj0; j00g)(Y 1)
�
 (X; fj0; j00g)(X2)

 (Y; fj0; j00g)(Y 2)
� � � � �

 (X; fj0; j00g)(Xk)

 (Y; fj0; j00g)(Y k)
;

 (Y; fj0; j00g)(Y 1)

 (X; fj0; j00g)(X2)
�

 (Y; fj0; j00g)(Y 2)

 (X; fj0; j00g)(X3)
� � � � �

 (Y; fj0; j00g)(Y k)

 (X; fj0; j00g)(Xk+1)
:

Proof. We introduce some notations for simplicity. For any index i 2 Bm

1 , we de�ne

(�1
i
; �

2

i
; : : : ; �

k+1

i
)

def:
= (X1(i; 1); X2(i; 1); : : : ; Xk+1(i; 1));

(��1
i
; ��2
i
; : : : ; ��k+1

i
)

def:
= (X1(î; 3); X2(î; 3); : : : ; Xk+1(î; 3));

(�1
i
; �

2

i
; : : : ; �

k+1

i
)

def:
= (X1(i; 3); X2(i; 3); : : : ; Xk+1(i; 3));

(��1
i
; ��2
i
; : : : ; ��k+1

i
)

def:
= (X1(î; 1); X2(î; 1); : : : ; Xk+1(î; 1)):

Then, both (�1
i
; �

2

i
; : : : ; �

k+1

i
) and (��1

i
; ��2
i
; : : : ; ��k+1

i
) are arithmetic sequences of non-negative integers

with common di�erence �1. Both of the sequences (�1
i
; �

2

i
; : : : ; �

k+1

i
) and (��1

i
; ��2
i
; : : : ; ��k+1

i
) are arithmetic

sequences of non-negative integers with common di�erence 1.

X
l(1) X

l(2) X
l(3)

�
l

i
; ��l
i

��l
i
; �

l

i

X
l

X
l+1(1) X

l+1(2) X
l+1(3)

�
l+1

i
; ��l+1
i

��l+1
i

; �
l+1

i

X
l+1

X
l+2(1) X

l+2(2) X
l+2(3)

�
l+2

i
; ��l+2
i

��l+2
i

; �
l+2

i

X
l+2

Y
l(1) Y

l(2) Y
l(3)

= X
l(1) = X

l+1(3)

Y
l

Y
l+1(1) Y

l+1(2) Y
l+1(3)

= X
l+1(1) = X

l+2(3)

Y
l+1

Figure 7: Condition (i) of Lemma 3.

From the above, it is easy to see that�
 (X; fj0; j00g)(X l)

 (Y; fj0; j00g)(Y l)

��
 (X; fj0; j00g)(X l+1)

 (Y; fj0; j00g)(Y l+1)

��1
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=

0
B@
0
B@ Y
i2Bm

1

(�l
i
! ��l
i
! �l
i
! ��l
i
!)�1

1
CA
0
B@ Y
i2Bm

1

(�l
i
! ��l+1
i

! �l+1
i

! ��l
i
!)�1

1
CA
�11
CA

0
B@
0
B@ Y
i2Bm

1

(�l+1
i

! ��l+1
i

! �l+1
i

! ��l+1
i

!)�1

1
CA
0
B@ Y
i2Bm

1

(�l+1
i

! ��l+2
i

! �l+2
i

! ��l+1
i

!)�1

1
CA
�11
CA
�1

=

0
B@ Y
i2Bm

1

(��l
i
)�1 �l+1

i

1
CA
0
B@ Y
i2Bm

1

(��l+1
i

)�1 �l+2
i

1
CA
�1 "

since ��l
i
> ��l+1

i
> ��l+2

i

and �l
i
< �

l+1

i
< �

l+2

i

#

=
Y
i2Bm

1

�
l+1

i
��l+1
i

��l
i
�
l+2

i

=
Y
i2Bm

1

��l+1
i

�
l+1

i

(��l+1
i

+ 1)(�l+1
i

+ 1)
� 1:

In a similar way, we can show that

�
 (Y; fj0; j00g)(Y l)

 (X; fj0; j00g)(X l+1)

��
 (Y; fj0; j00g)(Y l+1)

 (X; fj0; j00g)(X l+2)

��1

=

0
B@
0
B@ Y
i2Bm

1

(�l
i
! ��l+1
i

! �l+1
i

! ��l
i
!)�1

1
CA
0
B@ Y
i2Bm

1

(�l+1
i

! ��l+1
i

! �l+1
i

! ��l+1
i

!)�1

1
CA
�11
CA

0
B@
0
B@ Y
i2Bm

1

(�l+1
i

! ��l+2
i

! �l+2
i

! ��l+1
i

!)�1

1
CA
0
B@ Y
i2Bm

1

(�l+2
i

! ��l+2
i

! �l+2
i

! ��l+2
i

!)�1

1
CA
�11
CA
�1

=

0
B@ Y
i2Bm

1

(�l
i
)�1 ��l+1

i

1
CA
0
B@ Y
i2Bm

1

(�l+1
i

)�1 ��l+2
i

1
CA
�1

=
Y
i2Bm

1

��l+1
i

�
l+1

i

�l
i
��l+2
i

=
Y
i2Bm

1

�
l+1

i
��l+1
i

(�l+1
i

+ 1)(��l+1
i

+ 1)
� 1:

If we set  (X; fj0; j00g)(X`) = �` and  (Y; fj0; j00g)(Y `) = �`, above lemmas directly imply the

non-negativity of the transition probabilities of our joint process.

Case 3-2: Consider the case that jN (X; fj0; j00g)j = jN (Y; fj0; j00g)j. We denote N1(X; fj0; j00g) =

fX1
; X

2
; : : : ; X

kg and N1(Y; fj0; j00g) = fY 1
; Y

2
; : : : ; Y

kg. By arranging the order of the elements, we

can assume that X1(1; 1) > X
2(1; 1) > � � � > X

k(1; 1) and Y 1(1; 1) > Y
2(1; 1) > � � � > Y

k(1; 1). Exactly

one of the following four cases holds;

(i) (X1(1); X2(1); : : : ; Xk(1)) = (Y 1(1); Y 2(1); : : : ; Y k(1)) and

(X2(3); X3(3); : : : ; Xk(3)) = (Y 1(3); Y 2(3); : : : ; Y k�1(3));

(ii) (X1(3); X2(3); : : : ; Xk(3)) = (Y 1(3); Y 2(3); : : : ; Y k(3)) and

(X2(1); X3(1); : : : ; Xk(1)) = (Y 1(1); Y 2(1); : : : ; Y k�1(1));

(iii) (X1(1); X2(1); : : : ; Xk(1)) = (Y 1(1); Y 2(1); : : : ; Y k(1)) and

(X1(3); X2(3); : : : ; Xk�1(3)) = (Y 2(3); Y 3(3); : : : ; Y k(3));

(iv) (X1(3); X2(3); : : : ; Xk(3)) = (Y 1(3); Y 2(3); : : : ; Y k(3)) and

(X1(1); X2(1); : : : ; Xk�1(1)) = (Y 2(1); Y 3(1); : : : ; Y k(1)):
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In the following, we consider Case (i). We can deal with Cases (ii),(iii),(iv) in a similar way.

We choose (X 0
; Y

0) as follows;

(X 0
; Y

0) =

8>>>>>>><
>>>>>>>:

(X1
; Y

1) with probability  (X; fj0; j00g)(X1);

(X i
; Y

i) with probability
P

i

i0=1  (X; fj
0
; j
00g)(X i

0

)�
P

i�1
i0=1  (Y; fj

0
; j
00g)(Y i

0

)

for i 2 f2; : : : ; kg;

(X i+1
; Y

i) with probability
P

i

i0=1  (Y; fj
0
; j
00g)(Y i

0

)�
P

i

i0=1  (X; fj
0
; j
00g)(X i

0

)

for i 2 f1; 2; : : : ; k � 1g;

We need to show the non-negativity of the probabilities de�ned above. Clearly from the de�nition,

(X i
; Y

i); (X i+1
; Y

i) 2 A for each i 2 f1; 2; : : : ; kg and so `(X 0
; Y

0) = 1. To show the non-negativity, we

need the following lemma.

Lemma 4 Let (�1; : : : ; �k) and (�1; : : : ; �k) be a pair of positive sequences satisfying that

�1

�1
�
�2

�2
� � � � �

�k

�k
; and

�1

�2
�
�2

�3
� � � � �

�k�1

�k
:

Let F be an index set de�ned by F
def:
= f(1; 1); (2; 2); : : : ; (k; k); (2; 1); (3; 2); : : : ; (k; k � 1)g, and 
 2 Z

F

be a vector de�ned by


(1; 1)= �1=A;


(i; i)= (�1 + � � �+ �i)=A� (�1 + � � �+ �i�1)=B (i = 2; 3; : : : ; k);


(i+ 1; i)= (�1 + � � �+ �i)=B � (�1 + � � �+ �i)=A (i = 1; 2; : : : ; k � 1);

where A = �1 + � � �+ �k and B = �1 + � � �+ �k. Then the vector 
 is non-negative.

Proof.

We can show the lemma in a similar way with the proof of Lemma 2 by removing ak+1.

Lemma 5 Assume that the condition

(i) (X1(1); X2(1); : : : ; Xk(1)) = (Y 1(1); Y 2(1); : : : ; Y k(1)) and

(X2(3); X3(3); : : : ; Xk(3)) = (Y 1(3); Y 2(3); : : : ; Y k�1(3))

is satis�ed. Then the following inequalities hold;

 (X; fj0; j00g)(X1)

 (Y; fj0; j00g)(Y 1)
�
 (X; fj0; j00g)(X2)

 (Y; fj0; j00g)(Y 2)
� � � � �

 (X; fj0; j00g)(Xk)

 (Y; fj0; j00g)(Y k)
;

 (Y; fj0; j00g)(Y 1)

 (X; fj0; j00g)(X2)
�

 (Y; fj0; j00g)(Y 2)

 (X; fj0; j00g)(X3)
� � � � �

 (Y; fj0; j00g)(Y k�1)

 (X; fj0; j00g)(Xk)
:

Proof. We introduce some notations for simplicity. For any index i 2 Bm

1 , we de�ne

(�1
i
; �

2

i
; : : : ; �

k

i
)

def:
= (X1(i; 1); X2(i; 1); : : : ; Xk(i; 1));

(��1
i
; ��2
i
; : : : ; ��k+1

i
)

def:
= (X1(î; 3); X2(î; 3); : : : ; Xk(î; 3); Y k(î; 3))

(�1
i
; �

2

i
; : : : ; �

k+1

i
)

def:
= (X1(i; 3); X2(i; 3); : : : ; Xk(i; 3); Y k(i; 3));

(��1
i
; ��2
i
; : : : ; ��k

i
)

def:
= (X1(î; 1); X2(î; 1); : : : ; Xk(î; 1)):

14



Then, both (�1
i
; �

2

i
; : : : ; �

k

i
) and (��1

i
; ��2
i
; : : : ; ��k+1

i
) are arithmetic sequences of non-negative integers with

common di�erence �1. Both of the sequences (�1
i
; �

2

i
; : : : ; �

k+1

i
) and (��1

i
; ��2
i
; : : : ; ��k

i
) are arithmetic se-

quences of non-negative integers with common di�erence 1.

Then, we can show the required result in a similar way with the proof of Lemma 3.

Above lemmas directly imply the non-negativity of the transition probability of our joint process.

From the above, we have

E[`(X 0
; Y

0)] =

0
@1�

 
n

2

!�11A :

It implies the following result.

Theorem 2 The Markov chain M2
has the mixing time �2(") satisfying that

�2(") � (1=2)n(n� 1) ln(dn=(2"));

where d is the average of the values in cells, i.e., d = N=(2mn).

5 Concluding Remarks

In this paper, we propose two Markov chains for sampling (m+1)-dimensional contingency tables indexed

by f1; 2gm � f1; 2; : : : ; ng. First chain has the uniform distribution as a unique stationary distribution.

The stationary distributions of second chain is a conditional multinomial distribution. The mixing times

of our chains are bounded by (1=2)n(n� 1) ln(dn=") where d is the average of the values in cells and " is

a given error bound. Thus our chains are rapidly mixing. Our result indicates that the mixing times are

independent of the dimension m+ 1 of a contingency table in the case that the size is 2� 2� � � � � J .
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