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Abstract. This paper proposes a new framework for program analysis that regards them as
maximum marking problems: mark the codes of a program under a certain condition such
that the number of marked nodes is maximum. We show that if one can develop an efficient
checking program (in terms of a finite catamorphism) whether marked programs are correctly
marked, then an efficient and incremental marking algorithm to analyze control flow of structured
programs (say in C or Java with limited numbers of gotos) is obtained for free. To describe
catamorphisms on control flow graphs, we present an algebraic construction, called SP Term,
for graphs with bounded tree width. The transformation to SP Terms is done efficiently in
linear time. We demonstrate that our framework is powerful to describe various kinds of control
flow analyses. Especially, for analyses in which some optimality is required (or expected), our
approach has a big advantage.
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1 Introduction

While program transformation plays an important role in optimizing compiler and software engi-
neering, implementing program transformation requires various kinds of program analyses to extract
program fragments satisfying a certain property; these fragments will then be replaced by equivalent
but more efficient constructs.

As a simple example, consider the program in Fig. 1 from which we want to eliminate all dead
codes, which assign a value that will be never used. Here, the task of the analysis is to find all possible
dead codes; for this example, the assignments in the marked lines are dead codes which may be
replaced later by the skip statement.

It is not so trivial to develop an efficient and incremental analysis algorithm

marking :: Prog → Prog∗

for transforming the initial program to that with marks on all dead codes. But, it turns out to be
rather easier if we are just to design an efficient algorithm

checking :: Prog∗ → Bool

for checking whether a marked programs have correct marking so that marked assignments are dead
codes.

In this paper, we show the derivation of control flow analyses such that if one can develop an
efficient checking program in terms of finite catamorphisms, then an efficient marking algorithm is
obtained for free.

The first interesting point of our approach is that many program analyses can be considered as
a maximum marking problems; mark the codes of a control flow graph under a certain condition
such that the number of marked nodes is maximum. In fact, our approach is greatly inspired by the
optimization theorem [31, 30, 6] for solving maximum marking problems, which says that marking



read X;

while X > 1 do

Z := X * 3 + 1;

C := X % 2;

if C = 0

then

X := X / 2;

else

X := Z;

fi;

Z := X * 2; * // dead code

od;

write X;

Fig. 1. A simple program piece where all dead codes are marked

as many nodes as possible in a data structure can be implemented efficiently in linear time, if the
condition for such marking is described in terms of an efficient finite catamorphism.

One major difficulty in applying the optimization theorem to control flow analyses, is the discovery
of an algebraic construction of control flow graphs such that properties are described as catamorphisms.
It is well known that general graphs are difficult to define constructively [19], but is less known that

Control flow graphs of programs like C or Pascal are rather well-structured; that is, their tree
widths are at most 6 if the program does not contains goto [37]. The control flow graphs of
Java programs has unbounded tree width in general, but the empirical study shows that most
Java programs has tree width at most 3 [20].

This hints us that we may solve the problem of program analyses as a maximum marking problems,
providing that the tree width of control flow graphs is bounded.

Our Contributions

The purpose of this paper is to give a new framework for program analyses by treating them as
maximum marking problems. Our main contributions are summarized as follows.

– We provide a new abstract way of using functions (instead of logical formulae) to specify con-
trol flow analyses so that one needs only to develop the checking algorithms in terms of finite
catamorphisms. This is much easier than developing the marking algorithms (program analyses).
Our approach guarantees to produce efficient and incremental algorithms for program analyses,
provided that the user’s specifications are efficient.

– We present an algebraic construction, called SP Term, for control flow graphs with bounded tree
width. This enables us to define catamorphisms on control flow graphs. In addition, we show that
the transformation to SP Terms is done efficient in linear time.

– We demonstrate that our framework is powerful to describe various kinds of control flow analyses;
forward and backward analyses or even complicated combination of both. Especially, for analyses
providing optimality like “all dead code detection”, our approach has a big advantage in obtaining
efficient algorithms due to the optimization theorem in [31, 30, 6].

The rest of this paper is organized as follows. We start by explaining our basic idea though an
example of the dead-code analysis on a simple flowchart program in Section 2. Then in Section 3,
we step to generalize our idea to analyze control graphs. The example class is series-parallel graphs,
which represents the simplest nontrivial control structures. We give a formal study of our approach in
Section 4, discuss related work in Section 5, and draw conclusion and highlight future work in Section
6. Throughout the paper, we will use Haskell-like notations.



2 Analyzing Flowchart Programs: A Tour

We briefly explain our idea through an example of the dead code analysis. To simplify the construction
of control flow graphs, we use the following flowchart scheme. At the end of the whole program, the
exit sentence is added.

Prog := x := e assignment
| read x read sentence
| write x write sentence
| Prog; Prog sequence
| if e then Prog else Prog fi conditional sentence
| while e do Prog od while loop

The point of our approach is to regard a control flow analysis as a maximum marking problem. So
dead code analysis requires marking the assignments in a program such that (1) the marked ones are
dead code, and (2) the number of marks is maximum. From the optimization theorem for solving the
maximum marking problem mechanically [31, 30] (see Section A), we can reduce it to a simpler problem
of checking whether a program is correctly marked in the sense that all the marked assignments are
really dead codes.

It should be noted that the condition (2) defines sort of optimality; finding as many dead codes
as possible. Compared to just detecting a dead code, finding optimal solution generally makes anal-
ysis more difficult to implement efficiently. In our context, obtaining such optimality is the direct
consequence of the optimization theorem [31, 30, 6].

2.1 Checking Dead Codes: Specification

The property whether the marked assignments in a program are really dead is recursively defined over
the language constructs. The function checking checks that all the variable that is defined in marked
assignment node are dead codes, i.e., an assignment node is not marked unless it is really a dead code.

checking :: Prog∗ → Bool
checking p = dead p [ ]

dead n@(x := e) vs = if marked n then x /∈ vs else True
dead n@(read x) vs = if marked n then x /∈ vs else True
dead n@(write x) vs = not (marked n)
dead (p1; p2) vs = dead p1 (live p2 vs) ∧ dead p2 vs
dead (if e then p1 else p2 fi) vs = dead p1 vs ∧ dead p2 vs
dead (while e do p od) vs = dead p (live (while e do p od) vs)

The function dead takes a marked program p and a set of variables vs that may be used later,
and returns True if each marked assignment in the marked program p is really a dead code. For the
assignment x := e, it means that it will never be used later. For the sequence p1; p2, it first checks
whether the assignments in p2 may be used in vs, and then checks p1 whether the assignments in p1

may be used in either p2 or vs, which is computed by the function live. We omit explanation for other
cases.

The function live takes a program p and a set of variables vs that may be used after p, and returns
a set of variables that are alive in the start point of p.

live (x := e) vs = (vs \ {x}) ∪ FV (e)
live (read x) vs = vs \ {x}
live (write x) vs = vs ∪ {x}
live (p1; p2) vs = live p1 (live p2 vs)
live (if e then p1 else p2 fi) vs = FV (e) ∪ live p1 vs ∪ live p2 vs
live (while e do p od) vs = FV (e) ∪ vs ∪ live p (FV (e) ∪ vs)



For the case of assignment x := e, it firstly deletes x from vs, because the value of x is changed
here, and secondly adds used variables in the expression e, i.e., free variables FV (e) in e. For the case
of sequential p1; p2, it first adds used variables in p2, and then adds used variables in p1. We omit
explanation for other cases.

Note that our checking is a straightforward recursive definition.

2.2 Marking All Dead Codes: Analysis

From the above definition of checking, we can systematically develop a definition of function marking,
which detects dead codes as many as possible. The key is the optimization theorem for solving the
maximum marking problem [31, 30, 6]. If function checking is a finite mutumorphism (mutually re-
cursive version of catamorphism), it is straightforward to apply the theorem. Otherwise, we need to
decompose checking into a composition f ◦ g such that f is a finite mutumorphism.

Informally, a catamorphism on Prog∗ is a function defined in a bottom-up manner on the structure
of Prog∗. More specifically, a function f is said to be catamorphism if it is defined in the following
form:

f (x := e) = ga x e
f (read x) = gr x
f (write x) = gt x
f (p1; p2) = gp (f p1) (f p2)
f (if e then p1 else p2 fi) = gi e (f p1) (f p2)
f (while e do p od) = gw e (f p)

where ga, gr, gt, gp, gi, gw are any user defined functions that do not call f . If the range of function f is
finite, we say that the catamorphism is finite. Mutumorphism is a natural extension of catamorphism
where a set of functions f1, . . . , fn are mutually defined in a bottom-up manner.

Although checking (in Section 2.1) is not a finite catamorphic form, we can apply the decompo-
sition transformation to decompose it into a composition:

checking = checking′ ◦ pre

such that checking′ is a finite mutumorphism. For our example, pre turns out to be a function to
precompute the values of vs and attaches them to each assignment node in program p as follows:

pre :: Prog∗ → Prog′∗

pre p = addLive p [ ]

where

addLive n@(x := e) vs = (n, vs)
addLive n@(read x) vs = (n, vs)
addLive n@(write x) = (n, vs)
addLive (p1; p2) vs = addLive p1 (live p2 vs) ; addLive p2 vs
addLive (if e then p1 else p2 fi) vs = if e then addLive p1 vs else addLive p2 vs fi
addLive (while e do p od) vs = while e do addLive p (live (while e do p od) vs) od

Two remarks are worth making on efficient computation of pre. First, addLive calls live in the defini-
tion, and both of them traverse the program structure. In fact, we can apply the tupling calculation [21]
to eliminate this multiple traversals by defining a new function tup p vs = (addLive p vs, live p vs).
Second, pre contains many operations on sets, which are efficiently implemented by using bit vectors
as in many compiler textbooks.



Consequently, checking′ is simplified to be the following finite catamorphism.

checking′ n@(x := e, vs) = if marked n then x /∈ vs else True
checking′ n@(read x, vs) = if marked n then x /∈ vs else True
checking′ n@(write x, vs) = not (marked n)
checking′ (p1; p2) = checking′ p1 ∧ checking′ p2

checking′ (if e then p1 else p2 fi) = checking′ p1 ∧ checking′ p2

checking′ (while e do p od) = checking′ p

Applying the optimization theorem [31] (see Section A) immediately gives the following efficient
solution:

marking :: Prog → Prog’∗

marking p = optProg′ accept φa φr φt φs φi φw (pre p)
where

accept = id
φa v@((x, e), vs) = if marked v then x /∈ vs else True
φr v@(x, vs) = if marked v then x /∈ vs else True
φt v@(x, vs) = not (marked v)
φs c1 c2 = c1 ∧ c2
φi e c1 c2 = c1 ∧ c2
φw e c = c

where the function optProg′ is a straightforward modification of the generic function opt in [31].
Note that the above marking function is an executable Haskell program. After the computation

of pre p, which is efficiently implemented by bit vector techniques and a tupling transformation on
addLive and live, marking is a linear time algorithm in the size of the input program.

3 Analyzing Series-Parallel Graphs: Towards a General Study

For flowchart programs, it is quite easy to write down the specification of the checking directly on
program syntax. However, this becomes intricate if we consider more complex programming languages.
To be more general and language-independent, we will show that the catamorphic framework in
Section 2 can be applied on control flow graphs by the use of the algebraic construction, called SP
Term.

Before entering to the general and formal study in Section 4, this section introduces the simple
case study, series-parallel graph [35]. This class of graphs corresponds to the control flow graphs of
structured programs (in strict sense) i.e., programs consist of single-entry and single-exit blocks.

3.1 SP Terms for Representing Structured Control Flow Graphs

Algebraic Construction of Series-Parallel Graphs

A control flow graphs of flowchart scheme are series-parallel graphs [35], which are graphs with tree
width at most 2. We give the transformation from the control flow graph to a SP Term. Note that
this definition is somewhat simplified compared to the definition in Section 4.3 for general cases.

Definition 1. An SP Term is a pair of a ground term t and a tuple (l1, l2) of labels, defined as the
following.1

1 In Section 4.3, e+, e−, S, and P are denoted by e2(1, 2), e2(2, 1), S2, and P2, respectively.
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Fig. 2. Interpretation of e+, e−, 2, S, and P .

SP2 := (e+, (l1, l2))
| (e−, (l1, l2))
| (2, (l1, l2))
| S SP2 SP2

| P SP2 SP2

An SP Term is interpreted as a pair of a 2-terminal series-parallel digraph and a tuple of 2-labels;
a 2-terminal digraph is a digraph with a tuple consists of two vertices. Labels (l1, l2) are interpreted
as the identifiers of vertices. The interpretation of each function symbol and constant is described in
Fig. 2; a terminal is presented as the double circle, and labels are associated to terminals.

Definition 2. Let match(l, l′) be the function that returns true if either l = l′, l = ∗, or l′ = ∗ (i.e.,
accept the special label ∗ as a wild card). The series composition S (t1, (l1, l2)) (t2, (l′1, l

′
2)) fuses the

second terminals in t1 and t2 if match(l2, l′2), and renumber the first terminal in t1 as the first and
the first terminal in t2 as the second. The parallel composition P (t1, (l1, l2)) (t2, (l′1, l′2)) fuses each
first and second terminal in t1 and t2 if match(l1, l′1) and match(l2, l′2).

We prepare the function chT that exchanges the order of the two terminals of a graph.

chT :: SP2 → SP2

chT (e+, (l1, l2)) = (e−, (l2, l1))
chT (e−, (l1, l2)) = (e+, (l2, l1))
chT (2, (l1, l2)) = (2, (l2, l1))
chT (S x y) = S y x
chT (P x y) = P (chT x) (chT y)

Translation

Before defining the translation trans to an SP Term, as a preprocessing, we add return var (where
var presents the output) at the end of a program, and give labels to identify vertices in a control flow
graph (except for then, else, fi, and od). We denote the set of such labeled programs by LProg.



The implementation trans of the transformation is given below.

trans :: LProg → SP2

trans (l : x := e) = (e+, (l, ∗))
trans (l : read x) = (e+, (l, ∗))
trans (l : write x) = (e+, (l, ∗))
trans (p1; p2) = S (trans p1) (chT (trans p2))
trans (l : if e then p1 else p2 fi) = P (S (e+, (l, ∗)) (chT (trans p1)))

(S (e+, (l, ∗)) (chT (trans p2)))
trans (l : while e do p od) = P (e+, (l, ∗))

(S (P (e+, (l, ∗)) (chT (trans p)))
(2, (∗, l+ 1)))

For instance, the translation of while-sentence proceeds as in Fig. 3. Intuition behind the wild
character label “*” is; for each fragment of a program, the first label in the tuple of an SP Term
denotes the entry of the fragment, and the second label, which is always “*” during transformation,
denotes the next control point. Note that each program fragment has the unique node with “*”. At
the end, * is replaced with the label for the exit sentence, i.e., the end of the program.
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Fig. 3. Translation of while sentence to an SP Term.

Fig. 4 describes the control flow graph of the example program (in Section 1) and its transformation
to an SP Term by trans. In Fig. 4, a tuple associated to each subtree is a tuple of terminals at the
interpretation of the subtree. Note that the SP Term is computed in linear time; consequently, its size
is linear to the size of a program.

1 : read X;
2 : while X > 1

do

3 : Z := X ∗ 3 + 1;
4 : C := X%2;
5 : if C = 0

then

6 : X := X/2;
else

7 : X := Z;
fi;

8 : Z := X ∗ 2;
od;

9 : write X;

CFG SP-term1
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Fig. 4. An example of control flow graph and its transformation to SP Term



3.2 Checking on SP Terms

Now we show how the idea in Section 2 can be brought here for analyzing on SP Terms by checking
on marked SP Term (a SP Term with some labels being marked). We use the same example of dead
code detection for comparison.

To extract information from a node labeled l, we define the following functions.

defv l = x if the node is an assignment x := e or a read sentence read x.
= if the node is just an expression.

usev l = FV (e) if the node is either an assignment x := e or an expression e.
= {x} if the node is a write sentence write x.

So the function for checking whether the marked nodes in the marked SP term are dead codes can
be defined by

checking :: SP∗
2 → Bool

checking g = dead g [ ] [ ]
where dead g vs1 vs2 is to check the program with two additional arguments; the first denotes the live
variables outgoing from the terminal 1 of g and the second denotes the live variables outgoing from
the terminal 2.

dead (e+, (l1, l2)) vs1 vs2 = (marked l1 ⇒ defv l1 /∈ vs1 ∪ (usev l2 ∪ (vs2 \ defv l2))) ∧
(marked l2 ⇒ defv l2 /∈ vs2)

dead (e−, (l1, l2)) vs1 vs2 = dead (e+, (l2, l1)) vs2 vs1

dead (2, (l1, l2)) vs1 vs2 = (marked l1 ⇒ defv l1 /∈ vs1) ∧
(marked l2 ⇒ defv l2 /∈ vs2)

dead (S x y) vs1 vs2 = dead x vs1 (live2 y vs2 [ ]) ∧ dead y vs2 (live2 x vs1 [ ])
dead (P x y) vs1 vs2 = dead x (vs1 ∪ live1 y vs1 vs2) (vs2 ∪ live2 y vs1 vs2) ∧

dead y (vs1 ∪ live1 x vs1 vs2) (vs2 ∪ live2 x vs1 vs2)

For the graph of (e+, (l1, l2)), if the node labeled l1 (or l2) is marked, then the variable defined
in the node should be live after the execution of the node, otherwise return True since there is no
marked node in this graph. Similarly for (e−, (l1, l2)), and simpler (2, (l1, l2)) (consisting of 2 isolated
terminals l1 and l2). For the series graph (S x y) which merges the second terminals of graphs x
and y, we update live variables outgoing from the first and the second terminals and check x (and
y) recursively. For instance, the call dead x vs1 (live2 y vs2 [ ]) checks x recursively, where the live
variables outgoing from the terminal 1 of x are the same as those outgoing from the terminal 1 of
S x y, and the live variables from the terminal 2 are the live variables starting from the terminal 2 of
y. For the parallel graph (P x y), the idea is similar except for the possible loop.

The function live1 (live2) takes a graph g and the two sets of variables vs1 and vs2 that may be
used outside g from the terminal 1 and the terminal 2 respectively, and returns a set of variables that
are alive at the terminal 1 (terminal 2). We omit the complementary definition for live2.

live1 (e+, (l1, l2)) vs1 vs2 = vs1 ∪ usev l1 ∪
(usev l2 \ {defv l1}) ∪ (vs2 \ {defv l1, defv l2})

live1 (e−, (l1, l2)) vs1 vs2 = vs1

live1 (2, (l1, l2)) vs1 vs2 = vs1

live1 (S x y) vs1 vs2 = live1 x vs1 (live2 y vs2 [ ])
live1 (P x y) vs1 vs2 = live1 x vs1 vs2 ∪ live1 y vs1 vs2

3.3 Marking on SP Terms

Just like what we did for marking flowchart programs in Section 2.2, we decompose the definition of
checking into a composition:

checking = checking′ ◦ pre



such that checking′ is a finite mutumorphism. We may think of checking function as an attribute
grammar over SP Terms, where we have two inherited attributes, namely vs1 and vs2, and three
synthesized attributes, namely dead, live1 and live2. The basic idea of our decomposition is to put
off the computation of the attribute grammar on the synthesized attribute dead as much as possible,
i.e., we first compute as many attributes not depending on dead as possible (i.e., vs1, vs2, live1, and
live2), and then compute other attributes (i.e., dead).

For our example, pre turns out to be a function to precompute the values of vs1 and vs2, and
attaches them to each edge in SP Term g as follows:

pre :: SP ∗
2 → SP ′∗

2

pre g = addLive g [ ] [ ]

where

addLive g@(e+, (l1, l2)) vs1 vs2 = (g, vs1, vs2)
addLive g@(e−, (l1, l2)) vs1 vs2 = (g, vs1, vs2)
addLive g@(2, (l1, l2)) vs1 vs2 = (g, vs1, vs2)
addLive (S x y) vs1 vs2 = S (addLive x vs1 (live2 y vs2 [ ])) (addLive y vs2 (live2 x vs1 [ ]))
addLive (P x y) vs1 vs2 = P (addLive x (vs1 ∪ live1 y vs1 vs2) (vs2 ∪ live2 y vs1 vs2))

(addLive y (vs1 ∪ live1 x vs1 vs2) (vs2 ∪ live2 x vs1 vs2))

and checking′ is a finite mutumorphism defined by

checking′ ((e+, (l1, l2)), vs1, vs2) = ch1 l1 l2 vs1 vs2

checking′ ((e−, (l1, l2)), vs1, vs2) = ch1 l2 l1 vs2 vs1

checking′ ((2, (l1, l2)), vs1, vs2) = ch2 l1 l2 vs1 vs2

checking′ (S x y) = checking′ x ∧ checking′ y
checking′ (P x y) vs1 vs2 = checking′ x ∧ checking′ y

where

ch1 l1 l2 vs1 vs2

= (marked l1 ⇒ defv l1 /∈ vs1 ∪ (usev l2 ∪ (vs2 \ defv l2))) ∧ (marked l2 ⇒ defv l2 /∈ vs2)
ch2 l1 2 vs1 vs2

= (marked l1 ⇒ defv l1 /∈ vs1) ∧ (marked l2 ⇒ defv l2 /∈ vs2)

Applying the optimization theorem [31] immediately gives the following efficient solution.

marking :: SP2 → SP’∗2
marking g = optSP ′

2
accept φe+ φe− φ2 φs φp (pre g)

where
accept = id
φe+ ((e+, (l1, l2)), vs1, vs2) = ch1 l1 l2 vs1 vs2

φe− ((e+, (l1, l2)), vs1, vs2) = ch1 l2 l1 vs2 vs1

φ2 ((2, (l1, l2)), vs1, vs2) = ch2 l1 l2 vs1 vs2

φs c1 c2 = c1 ∧ c2

φp c1 c2 = c1 ∧ c2

Note the function optSP ′
2
, like optProg′ as in Fig. 8, is a specialized version (wrt SP Term) of the

generic function opt as defined in [31].

4 Formal Study

4.1 Tree Width of Control Flow Graphs

The concept of a graph with bounded tree width [29] independently appeared from early 80’s; partial
k-tree in terms of cliques, some algebraic construction of k-terminal graphs [4, 12, 3], and in terms of



separators, and they are all equivalent. The class of graphs with bounded tree width is quite restrictive;
but the significant tread-off is: the class of graphs with bounded tree width frequently has a linear
time algorithm for graph problems that are NP-complete for general graphs [12, 9].

For simplicity, we consider digraphs without multiple edges and loops (i.e., no edges from/to the
same vertex). We first give definitions for undirected graphs without labels, but later we will treat
directed graphs (digraphs) with labels on vertices. The set of vertices of G is denoted by V (G) and
the set of edges of G is denoted by E(G).

Definition 3. A tree decomposition {Xt | t ∈ V (T )} of a graph G is a set of subsets of V (G)
indexed by elements in V (T ) for a tree T such that

– ∪t∈V (T )Xt = V (G),
– for each edge of G, its end vertices are contained in some Xt, and
– for each t, t′, t′′ ∈ V (T ), Xt ∩ Xt′′ ⊆ Xt′ . if t′ is in a path of T between t and t′′.

Definition 4. A graph G has tree width at most k if there exists a tree decomposition {Xt | t ∈
V (T )} of G such that |Xt| ≤ k + 1. For a graph G, the least such k is the tree width of G and is
denoted by twd(k).

From the algorithmic aspect, the concept of tree width (or tree decomposition) shows elegant
prospect; frequently NP-complete graph algorithms are reduced to linear-time algorithms for graphs
with bounded tree width [12, 9]. The key is an algebraic construction of graphs with bounded tree
width followed by dynamic programming techniques.

In general, deciding the tree width of a graph is NP-complete [2]; however, for fixed k, whether a
graph has tree width at most k is decided in linear time [27]. Fortunately, we already know the upper
bound of the tree width of control graphs of specific programming languages.

Theorem 1. [37] A control flow graph G satisfies

– goto-free Algol and Pascal programs : twd(G) ≤ 3
– Modula-2 programs: twd(G) ≤ 5
– goto-free C programs: twd(G) ≤ 6

For Java programs, the control flow graphs may have unbounded tree width; however, the recent
empirical test shows that most JAVA programs have control flow graphs with tree width at most
3 [20].

Lemma 1. Let {Xt | t ∈ T } be a tree decomposition of a graph G. Then, for each (u, v) �∈
E(G) with u, v ∈ V (G), {Xt ∪ {v} | t ∈ T } is a tree decomposition of a graph G + (u, v) (i.e.,
(V (G), E(G) ∪ {(u, v)})).

Corollary 1. A control flow graph G of a program with at most n-gotos satisfies

– Algol and Pascal programs : twd(G) ≤ 3 + n
– C programs: twd(G) ≤ 6 + n

This estimation is not optimal; for instance, if each goto sentence is distributed to each block, then
the tree width increases at most 1. Further, if goto is structured, such as break or exit in while-loop,
then sometimes the tree width does not increase; for instance, the flowchart scheme (in Section 2)
with single break or exit in each while-loop has a control flow graph with tree width at most 2.
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Fig. 5. Translation of while sentence with single break to an SP Term.

Transformation to an SP Term is obtained by replacing the definition of trans for while-sentence in
Section 3.1 (see Fig. 5) with

trans (l : while e do p1; (l′ : if e′ then break); p2 od)
= P (e+, (l, ∗))

(S (P (S (e+, (l, l + 1)) (chT (trans p1))) (S (chT (trans p2)) (e+, (l′, l′ + 1))))
(e−, (∗, l′))).

Thus, except for spaghetti goto’s, there is enough possibility to restrict the tree width in the
feasible level.

4.2 Algebraic Construction of Digraphs with Bounded Tree Width

Basically, we obey notations and definitions to [3] except that we concentrate on digraphs, where it
treats only undirected graphs; the extension to digraphs is straightforward. In this section, we treat
only digraphs without labels.

Definition 5. A k-terminal digraph (G, (l(1), · · · , l(k))) is a digraph G with a tuple (l(1), · · · , l(k))
of k vertices, called terminals.

Definition 6. Let Bk be sorts for k ≥ 0. Let lik, pk, rk, ek(i, j),k be signatures with sorts below{
lik: Bk−1 → Bk, pk : Bk × Bk → Bk, rk: Bk → Bk−1

k : Bk, ek(i, j): Bk (for k ≥ 2)

where 1 ≤ i �= j ≤ k.

These function symbols lik, pk, rk,k, ek(i, j) are interpreted as operations on k-terminal graphs.

Definition 7. We define operations among k-terminal graphs as

– lik(s) is a lifting for 1 ≤ i ≤ k, i.e., insert a new isolated terminal at the i-th position in k − 1
terminals.

– pk(s, t) is a parallel composition for k ≥ 0, i.e., fuse each i-th terminal in s and t for 1 ≤ i ≤ k.
– rk(t) removes the last-terminal.
– k consists of k-isolated terminals.
– ek(i, j) consists of k terminals with a diedge from the i-th terminal to the j-th.

Fig. 6 shows examples of the interpretation. A double circle expresses a terminal; each number
associated to a terminal shows the numbering of terminals.

Definition 8. [3] Let k ≥ 2. A series composition sk : Bk × · · · × Bk︸ ︷︷ ︸
k

→ Bk is

sk(t1, · · · , tk) = rk+1(pk+1(l1k+1(t1), pk+1(l2k+1(t2), · · · , lkk+1(tk)))).
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Fig. 7. Examples of the series composition (k = 3)

Intuition of sk is given in Fig. 7. That is, the parallel composition pk constructs any subgraph
in Kk, and the series composition sk combines such components and produces a clique of the size
k + 1 (i.e., an embedding of Kk+1), as emphasized by red lines in Fig. 7. A double circle expresses a
terminal; each number associated to a terminal shows the numbering of terminals.

The next theorem shows that by a suitable choice of k terminals in a digraph with tree width at
most k leads an algebraic construction by pk and sk in linear time (For the proof, see Appendix B).

Theorem 2. Let G be a digraph with twd(G) ≤ k and |V (G)| ≥ k for k ≥ 2. Then, a term t
constructed from pk, sk, ek(i, j),k (1 ≤ i �= j ≤ k) is computed in linear time (wrt |V (G)|) such that
t is evaluated to a k-terminal digraph G̃ with G = r∗k(G̃) where r∗k = r1 · · · · · rk.

Remark that the converse is also true, i.e., for a term constructed from pk, sk, ek(i, j),k, its eval-
uation G has tree width at most k.

Lemma 2. The evaluation G of a term t constructed from pk, sk, ek(i, j),k has tree width at most k.

Proof. Let t̄ be a term obtained from t by replacing sk with its definition (see Definition 8). Let T
be a term t̄ regarded as a tree, and let Xt′ be the set of terminals of the evaluation of t′(⊆ t̄). Then,
{Xt′ | t′ ⊆ t̄} is a tree decomposition of G with |Xt′ | ≤ k + 1.

Example 1. In Fig. 7, the digraph s3(G1, G2, G3) has tree width 3, and G1, G2.G3 have tree width 2.
The SP Terms of G1, G2, G3 are described as

G1 = s3(p3(e3(2, 3), e3(3, 1)), p3(e3(1, 2), e3(1, 3)),3)
G2 = s3(p3(e3(1, 2), e3(1, 3)), e3(3, 1),3)
G3 = s3(3, e3(1, 2), s3(p3(e3(1, 2), e3(1, 3)), p3(e3(1, 2), e3(3, 1)),3))

4.3 SP Terms

In Section 3.1, we show how an SP Term of a control flow graph of a flowchart program (i.e., a series-
parallel graph) is computed in linear time. In this section, we generalize this result for general control
flow graphs.



First, we define SP Terms SPk for digraphs with tree width at most k, and then we state that an
SP Term is computed in linear time. We will also show the implementation of the translation function
for a simple imperative language with the limited number of goto, and show an example.

Definition 9. An SP Term is a pair of a ground term t and a tuple (l(1), · · · , l(k)), defined as the
following.

SPk := (ek(i, j), (l(1), · · · , l(k))) (i �= j)
| (k, (l(1), · · · , l(k)))
| Sk SPk . . . SPk︸ ︷︷ ︸

k

| Pk SPk SPk

Here, l(1), · · · , l(k) are called labels, Pk is the parallel composition, and Sk is the series composition
defined as:

Sk (t1, (l1(1), · · · , l1(k)) · · · (tk, (lk(1), · · · , lk(k))))
= (sk(t1, · · · , tk), (l2(1), l1(1), · · · , l1(k − 1)))

if ∧i match(l1(i − 1), · · · , li−1(i − 1), li+1(i), · · · lk(i))

Pk (t1, (l(1), · · · , l(k)) (t2, (l′(1), · · · , l′(k))))
= (pk(t1, t2), (l(1), · · · , l(k))) if ∧i match(l(i), l′(i))

where match(l(1), · · · , l(k)) is true if l(i) = l(j) for each l(i), l(j) �= ∗. (i.e., accept the special label ∗
as a wild card).

SP Terms (ek(i, j), (l(1), · · · , l(k))) and (k, (l(1), · · · , l(k))) are interpreted as k-terminal digraphs;
they are

({l(1), · · · , l(k)}, {(l(i), l(j)}, (l(1), · · · , l(k)))

i.e., k-vertices l(1), · · · , l(k) with one diedge from l(i) to l(j), and

({l(1), · · · , l(k)}, φ, (l(1), · · · , l(k)))

i.e., k isolated vertices l(1), · · · , l(k), respectively. From Theorem 2, the next corollary is immediate.

Corollary 2. Let G be a control flow graph with twd(G) ≤ k and |V (G)| ≥ k for k ≥ 2. Then,
an SP Term is computed in linear time (wrt |V (G)|) such that its evaluation is a pair of k-terminal
digraph G̃ and a tuple of k-terminals with G = r∗k(G̃).

This shows the general method to compute an SP Term from a control flow graph via tree decom-
position. This is done in linear-time, but not so efficient linear time. There would be possibility of an
efficient direct translation from a program itself (such as trans in Section 3.1). For a simple imperative
language with GOTO, such a translation is shown in Appendix C.

4.4 Analyzing SP Term through Checking

As demonstrated in Section 3, efficient algorithms for analyzing on SP Terms can be derived system-
atically by developing efficient catamorphic algorithms for checking marked SP Terms.

Definition 10 (Catamorphism on SP Terms). A function cata :: SPk → R is called a catamor-
phism on SP terms if it is defined in the following form:

cata (ek(i, j), (l(1), · · · , l(k))) = fij (ek(i, j), (l(1), · · · , l(k))) (i �= j)
cata (k, (l(1), · · · , l(k))) = g (k, (l(1), · · · , l(k)))
cata (Sk x1 x2 . . . xk) = hs (cata x1) (cata x2) . . . (cata xk)
cata (Pk x1 x2) = hp (cata x1) (cata x2)

where fij , g, hs and hp are given functions.



Given a function checking :: SP ∗
k → Bool for check whether the marked labels in a marked SP

Term satisfy a certain property, the following theorem gives a sufficient condition for existence of an
efficient algorithm marking :: SPk → SP ∗

k to mark as many labels as possible of a (non-marked) SP
Term, such that the marked term holds the property.

Theorem 3 (Checking-Marking Connection). If the checking function

checking :: SP ∗
k → Bool

is an efficient algorithm described in the form:

checking = post ◦ checking′ ◦ pre

such that checking′ :: SP ′∗
k → R is a catamorphism on SP term, in which (1) R is a finite domain,

and (2) SP ′∗
k has the same structure as SP ∗

k except that there may be some change on some node,
then an efficient algorithm for marking

marking :: SPk → SP ∗
k

can be automatically generated.

We have seen an example for detecting dead codes in SP2 terms in Section 3, and we omit the
proof of this theorem in this paper. It should be noted that our condition for the function checking is
not restrictive. For instance, even if pre and post are identity function, the finite catamorphism itself
has enough descriptive powerful to describe various kinds of properties. In fact, mutumorphisms [17,
21] (which cover primitive recursive functions) and attribute grammars [18] can be transformed into
our catamorphic form.

5 Related Work

Many researches have been devoted to the so-called declarative approaches to program analyses. Steffen
and Schmidt [34, 33] showed that temporal logic is well suited to describe data dependencies and other
properties exploited in classical compiler optimization. Lacey and de Moor [25] added temporal logic
side conditions to express complex restriction when transforming imperative programs, and it is shown
in [26] that temporal logic plays a crucial role in the proofs of correctness of optimizing transformation.
For practical application, an attempt has been made in [13] to extend an existing declarative language
(Prolog) for code program analysis and program transformation. Our work can be thought of as
an important step towards reasoning and optimizing program analyses, based on the the theory of
program calculation [7]. Our checking-marking connection theorem demonstrates a useful calculation
rule for deriving efficient program analysis algorithms from a naive functional specification.

In fact, our catamorphic approach was greatly motivated by the successful application of program
calculational approach to optimization of functional programs. It was first proposed as the theory of
lists [5], and was then extended to be a general theory of datatypes [7]. It has proved to be very
useful not only in deriving variant efficient programs [23], but also in constructing optimization passes
in compilers [36, 21, 22]. Our formulating program analysis in this framework enables utilization of
existing calculation techniques.

There are several works on catamorphic approach to computation on graphs. For instance, [15]
treats graphs with embedded functions, i.e., graphs are treated as functions that generates all paths in a
graph. [14] introduces the active pattern matching, which is a conditional pattern matching mechanism.
Their approaches are interesting in description, but the existence of strong side conditions limits the
use of program calculation. Instead, we restrict the class of graphs to graphs with bounded tree width,



in which many NP-complete graph algorithms are reduced to linear time by dynamic programming
techniques [12, 9].

The key, which enables us to apply a catamorphic approach, is an algebraic construction of graphs
with bounded tree width. One of the early work for flowchart scheme (i.e., series-parallel graphs, or
in other words, graphs with tree width at most 2) is found in [32]. Bauderon and Courcelle are also
pioneers [4, 12], and our SP Term is greatly in debt to the work by Arnborg, et.al. [3]. However, their
constructions do not fit to our purpose; for instance, the construction in [3] requires the operations
lij, rj , sj , pj with 1 ≤ i ≤ j ≤ k to construct a graph with tree width at most k. Thus, the number of
their operations are more than k(k + 1)(k + 2)/6, and this makes us difficult to describe functional
specification. Here, we propose another construction, SP Term, which has only 2 constructors Sk, Pk

except for constants. The number of constants ek(i, j) has square growth, but they are interpreted as
an edge between i-th and j-th terminals. For these constants, writing functional specification (base
cases) will be easy; even in homogeneous way.

Of course, restricting graphs with bounded tree width will not be meaningful without interesting
applications; we set them on control flow analyses.

The start point is the fact that a structured imperative program have a control flow graph with
relatively small tree width [37]. Thorup, et.al. investigate the applications of this fact, such as the
register allocation (as the coloring problem) and the generalized dominator detection [1]. Their ap-
proach is problem specific, and we intend to derive linear time algorithms from general functional
specifications, such that the generalized dominator detection is one of instances.

Currently, we treat only imperative languages without procedure call. For interprocedural control
flow analyses, we need so called CFG (context-free grammar) reachability [28]. We foresee that the
reduction of CFG reachability to the automata theoretic methods, such as in [11, 10], would extend
to interprocedural analyses.

6 Conclusion and Future Work

We proposed a catamorphic approach to deriving control flow analyses from functional specifications.
The contribution of the paper can be viewed from two aspects:

– From theory: There have been lots of work on automatic generation of linear-time algorithms
based on tree decomposition [12, 9] (or equivalent concepts in relational database theory [38]).
They are elegant in theory, but far from practice; the specification is frequently given by monadic
second order formulae, and each existence of quantifiers causes the exponential explosion of the
constant factor. Our approach applies the functional specification, which drastically reduces the
constant factor with the aid of program calculation. The key is the concept of SP Term; it reduces
the number of function symbols (except for constants) from the square of the upper bound of tree
width to 2, and makes writing functional specification feasible.

– From practice: Recent developments of model checking systems, such as SMV and SPIN, enables
us to efficiently implement control/data flow analyses as model checking. The efficiency of model
checkers are mostly depending on their implementation techniques, such as BDD. Our viewpoint is
that the most instances of applications of model-checkers would be rather well-structured transition
systems, and there may be enough room to improve the efficiency also from theory [16]. For
example, the control flow graph of an imperative program with the limited number of goto can
be regarded as a graph with bounded tree width (see Section 4.1). By this fact, we can reduce an
iterative procedure to an one-path linear time algorithm by dynamic programming techniques.

This research is just at the beginning, and there are lots of subjects to conquer. For instance:

– The set of SP Terms is an initial algebra; however, a k-terminal graph may have multiple repre-
sentations by SP Terms. This means whether the user defined functional specification is consistent



with the interpretation of SP Terms to k-terminal graphs is up to the user’s responsibility. From its
own theoretical interest and possible better support, we hope to give the complete axiomatization
of SP Terms under this interpretation.

– Section 4.3 shows the general method to compute an SP Term from a control flow graph via tree
decomposition. This is done in linear-time, but not so efficient with the large constant factor.
There would be possibility of an efficient direct translation from a program itself (such as trans in
Section 3.1). We hope that such direct translation would be obtained by applying program calcu-
lational techniques to the composition of the translation from a program to a tree decomposition
of a control flow graph, and that from a tree composition to an SP Term.

– Currently, the relation between monadic second order specification and functional specification
are not so clear. In [9], they translate formulae to functions, but very inefficient way. We hope to
find some systematic way to translate formulae to efficient fintie mutumorphisms.
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A Maximum Marking Problem

Maximum marking problem (MMP for short) can be specified as follows: Given a data structure x, the
task is to find a way to mark some elements in x such that the marked data structure of x satisfies a



certain property p and has the maximum value with respect to certain weight function w. This means
that no other marking of x satisfying p can produce a larger value with respect to w.

By MMP, we can express various kinds of problems which include knapsack problems, optimized
range problems in data mining, the maximum segment sum problem, and so on. Though those problems
are from different application area, they can be formulated in the uniform way: Given a data x, find
a feasible selection of elements whose weight is maximum in all the feasible selection. For instance, by
expressing feasibility using a predicate p and giving weight using a weight function w, the specification
of MMP on lists can be described as follows:

mmp p = ↑w / ◦ filter p ◦ gen [True,False]

Here gen is used for generating all the way of selecting elements with marks True and False.
Selection is expressed by marking selected elements and unmarking non-selected elements, where True
corresponds to ”mark” and False corresponds to ”unmark”. The operator ↑f is called the selection
operator [5] and is defined by

a ↑f b = b, if f a ≤ f b
= a, otherwise.

In this definition, the value of a ↑f b is b when f a = f b. The operator / is called the reduce
operator [5], which takes an associative binary operator and a list, defined as follows:

⊕/[a1, a2, . . . , an] = a1 ⊕ a2 ⊕ · · · ⊕ an

From the above specification for MMP, we can derive a linear time algorithm mechanically if prop-
erty p and weight function w satisfy certain conditions. Of course, it is not expected to derive a linear
one for every MMP problem since MMP includes NP-hard problems, such as the knapsack problems.
However, for instance, the knapsack problem restricted to integer weight satisfies our requirements,
and we can derive its linear time algorithm.

Theorem 4 (Optimization Theorem).
MMP specified by

spec : D α → D α∗

spec = mmp p0

can be solved in linear time if the property description p0 : D α∗ → Bool can be defined as mutumor-
phisms with other property descriptions pi : D α∗ → Bool for i = 1, . . . , n.

Definition of the function OptP is shown in Fig. 8. For detail, refer to [31].

B Proof of Theorem 2

Theorem 5. [2] Deciding tree decomposition is NP-complete.

Theorem 6. [27] For a fixed k, deciding whether the tree width of a graph G is less-than-equal
k is linear-time solvable. Furthermore, if twd(G) ≤ k, its tree decomposition is also computed in
linear-time.

Without loss of generality, we can assume Xt �= Xt′ for each t, t with t �= t′ for a tree decomposition
{Xt | t ∈ V (T )}.
Definition 11. A tree decomposition {Xt | t ∈ V (T )} of a graph G is smooth



optP accept phiA phiR phiT phiS phiI phiW p =

let opts = candidates phiA phiR phiT phiS phiW phiI p

in third (getmax [(c,w,t) | (c,w,t) <- opts,

accept c])

candidates phiA phiR phiT phiS phiI phiW (Assign v@((x, e), vs)) =

eachmax [(phiA mv,

if marked mv then 1 else 0,

Assign mv)

| mv <- [mark v, unmark v]]

candidates phiA phiR phiT phiS phiI phiW (Read v@(x, vs)) =

eachmax [(phiR mv,

if marked mv then 1 else 0,

Read mv)

| mv <- [mark v, unmark v]]

candidates phiA phiR phiT phiS phiI phiW (Write v@(x, vs)) =

eachmax [(phiT mv,

if marked mv then 1 else 0,

Write mv)

| mv <- [mark v, unmark v]]

candidates phiA phiR phiT phiS phiI phiW (Seq p1 p2) =

let opts1 = candidates phiA phiR phiT phiS phiW phiI p1

opts2 = candidates phiA phiR phiT phiS phiW phiI p2

in eachmax [(phiS c1 c2, w1+w2, Seq cand1 cand2)

| (c1,w1,cand1) <- opts1, (c2,w2,cand2) <- opts2]

candidates phiA phiR phiT phiS phiI phiW (If e p1 p2) =

let opts1 = candidates phiA phiR phiT phiS phiW phiI p1

opts2 = candidates phiA phiR phiT phiS phiW phiI p2

in eachmax [(phiI e c1 c2, w1+w2, If e cand1 cand2)

| (c1,w1,cand1) <- opts1, (c2,w2,cand2) <- opts2]

candidates phiA phiR phiT phiS phiI phiW (While e p) =

let opts = candidates phiA phiR phiT phiS phiW phiI p

in eachmax [(phiW e c, w, While e cand)

| (c,w,cand) <- opts]

getmax :: (Eq c, Ord w) => [(c,w,a)] -> (c,w,a)

getmax [] = error "No solution."

getmax xs = foldr1 f xs

where f (c1,w1,cand1) (c2,w2,cand2)

= if w1>w2 then (c1,w1,cand1) else (c2,w2,cand2)

eachmax :: (Ord w, Eq c) => [(c,w,a)] -> [(c,w,a)]

eachmax xs = foldl f [] xs

where f [] (c,w,cand) = [(c,w,cand)]

f ((c’,w’,cand’) : opts) (c,w,cand) =

if c==c’ then

if w>=w’ then (c,w,cand) : opts

else (c’,w’,cand’) : opts

else (c’,w’,cand’) : f opts (c,w,cand)

Fig. 8. Optimization function optP



– |Xt| = k + 1 for each t ∈ V (T ), and
– |Xt ∩ Xt′ | = k for each pair of adjacent vertices t, t ∈ V (T ).

If there is a tree decomposition {Xt | t ∈ V (T )} of a graph G, it is transformed to a smooth tree
decomposition of the same tree width in linear time (see details for Section 2 in [8]) as the next lemma
shows.

Lemma 3. (Lemma 2.5 in [8]) If a tree decomposition {Xt | t ∈ V (T )} of a graph G is smooth,
|V (T )| = |V (G)| − k.

Theorem 2 Let G be a digraph with twd(G) ≤ k and |V (G)| ≥ k for k ≥ 2. Then, a term t
constructed from pk, sk, ek(i, j),k (1 ≤ i �= j ≤ k) is computed in linear time (wrt |V (G)|) such that
t is evaluated to a k-terminal digraph G̃ with G = r∗k(G̃) where r∗k = r1 · · · · · rk.

Proof. From Theorem 6, a tree decomposition {Xt | t ∈ V (t)} of G is obtained in linear time.2

Without loss of generality, we can assume that the tree decomposition {Xt | t ∈ V (t)} of G is smooth
and |Xt| = k + 1 for each t ∈ V (T ). Let us fix t ∈ V (T ). We define t′ � t′′ if t′ is in the path between
t and t′′ (i.e., t is regarded as the root of T ).

We define the characteristic vertices {vt | t ∈ V (t)} of the tree decomposition {Xt | t ∈ V (t)} as
follows. For the root t of T , let vt be an arbitrary element in Xt. Let t′ be a child vertex of some
t′′ ∈ V (T ). Then, since |Xt′ ∩Xt′′ | = k and |Xt′ | = k + 1, let vt′ be the (unique) element in Xt′ \Xt′′ .

For t ∈ V (T ), let Y1(t), · · · , Yk+1(t) ⊆ Xt be subsets such that |Yi(t)| = k. Assume vt ∈ Yi(t) for
1 ≤ i ≤ k and Yk+1(t) = Xt \ {vt} (i.e., if the parent vertex t′ of t exists, Yk+1 = Xt ∩ Xt′).

Let a graph decomposition {Gt | t ∈ V (T )} be a family of graphs Gt with V (Gt) = Xt, ∪t∈V (t)E(Gt) =
E(G), and E(Gt) ∩ E(Gt′ ) = φ for each t �= t′.

Let G1(t), · · · , Gk+1(t) be subgraphs of Gt such that V (Gi(t)) = Yi(t) and ∪1≤i≤kE(Gi(t)) =
E(Gt). We further assume that E(Gi(t)) ∩ E(Gj(t)) = φ for i �= j.

We inductively define a term term(t) for t ∈ V (T ) with

– term(t) is constructed from pk, sk, ek(i, j), and k.
– term(t) is evaluated to a k-terminal graph G′ such that V (G′) = ∪t�t′V (G′

t), E(G′) = ∪t�t′E(G′
t),

and the set of terminals of G′ is Xt \ {vt}.
– for the root t of T , r∗k(term(t)) is evaluated to G.

Let t be a leaf in T . Since |V (Gi(t))| = k, we regard Gi(t) as a k-terminal graph with V (Gi(t))
as the set of terminals. If E(Gi(t)) = φ, then k is evaluated to Gi(t). If E(Gi(t)) �= φ, a term
ui = pk(pk(ek(l, m), · · ·) with (l, m), · · · ∈ E(Gi(t)) is evaluated to Gi(t). Then pk(sk(u1, · · · , uk), uk+1)
is evaluated to Gt with Xt \ {vt} as the set of terminals.

Let t be not a leaf in T . Similarly, we define ui. Let Di be the set of child vertices of t with Yi(t) =
Xt ∩Xt′ for t′ ∈ Di. Let u′

i = pk(ui, pk(term(t′), · · ·)) for t′, · · · ∈ Di. Then pk(sk(u′
1, · · · , u′

k), u′
k+1) is

evaluated to Gt with Xt \ {vt} as the set of terminals.
Since each step requires O(|E(Gt)|) + O(k) steps during the transformation, it needs O(E(G)) +

O(k|V (T )|) steps. Since |E(G)| ≤ k|V (G)| − k(k + 1)/2 (Lemma 2.1 in [8]) and |V (T )| = |V (G)| − k
(Lemma 3), the number of total steps of the transformation is O(k|V (G)|). Thus, since the number of
steps for constructing a tree decomposition is O(k2|V (G)|), we obtain a term evaluated to G in linear
time.

2 More precisely O(k2|V (G)|).



C Computing SP Terms of Control Flow Graphs of Imperative Languages

We introduce a simple imperative language, which we use to demonstrate generation of efficient
algorithms for program analysis in the next section. The definition of the language, as in Figure 9,
is almost the same as that in [26], except for the additional “while” construct. To provide a simple
framework for generating efficient program analysis, this language has no exceptions or procedures.

P ::= I ; P Program
I ::= l : C Instruction
C | V := E Assignment

| read V Read sentence
| write V Write sentence
| if E then P else P fi If command
| while E do P od While command
| goto Goto command
| break Break command
| exit Exit command

E ::= V Variable expression
| O E · · · E Application expression

O : operator

V : variable

l : label

Fig. 9. A Simple Imperative Language

Let us consider a program in this language with at most n-goto’s. We give the implementation of
the translation transG to an SP Term below. The basic idea is; construct an SP Term by ignoring goto
and memorize their source vertices as additional terminals. Then, scan an SP Term again, and add an
edge by the parallel composition at some subterm in which the destination vertex eventually becomes
a terminal. (Note that each vertex in a control flow graph becomes a terminal of some subterm of an
SP Term.)

Let prog be a program written in the language in Fig. 9. As in Section 3.1, we first preprocess
prog to lprog by labeling each line of prog. Let ((so1, des1), · · · , (son, desn)) be the tuple of n-pairs of
the source and destination vertices of each goto in lprog (We assume soi �= desi for each i).

Let lprog′ be a program obtained from lprog by replacing goto with a null command skip. Then,
lprog′ is regarded as a flowchart program in Section 3.1, and an SP Term of prog is obtained as

addG (nlift (trans lprog′)).

where functions are defined in Fig. 10.
The function nlift insert labels of goto sentences as new n-terminals between the first and the

second (original) terminal in an SP Term; permT permutes except for the last terminal to adapt to
the series composition. next, addG adds an edge between the source and destination vertices of each
GOTO-sentence. Here, the first and the second terminals of an SP Term x ∈ SP are denoted by x[1]
and x[2], respectively.

Note that if each block has at most m-goto then instead of n (the sum of the numbers of goto)
we can similarly transform a control flow graph to an SP Term in SPm+2.



nlift :: SP → SPn+2

nlift (S x y)
= Sn+2 (permT (nlift x))

(n + 2, (y[1], so2, so3, · · · , son, x[1], x[2]))
(n + 2, (y[1], so1, so3, · · · , son, x[1], x[2]))
· · ·
(n + 2, (y[1], so1, so2, · · · , son−1, x[1], x[2]))
(nlift y)

nlift (P x y) = Pn+2 (nlift x) (nlift y)
nlift (e+, (l1, l2)) = (en+2(1, n + 2) (l1, so1, · · · , son, l2))
nlift (e−, (l1, l2)) = (en+2(n + 2, 1) (l1, so1, · · · , son, l2))
nlift (2, (l1, l2)) = (2, (l1, so1, · · · , son, l2))

permT :: SPn+2 → SPn+2

permT (Sn+2 x1 · · · xn+2)
= Sn+2 (permT xn+1) (permT x1) · · · (permT xn) (permT xn+2)

permT (Pn+2 x y) = Pn+2 (permT x) (permT y)
permT (en+2(i, j), (l1, · · · , ln+2))

= (en+2((perm i), (perm j)), (ln+1, l1, · · · , ln, ln+2))
permT (n + 2, (l1, · · · , ln+2)) = (n + 2, (ln+1, l1, · · · , ln, ln+2))

perm :: Nat → Nat
perm m = if m == (n + 2) then m

else if m == (n + 1) then 1 else m + 1

addG :: SPn+2 → SPn+2

addG (Sn+2 x1 · · · xn+2) = addE (Sn+2 (addG x1) · · · (addG xn+2))
addG (Pn+2 x y) = addE (Pn+2 (addG x) (addG y))
addG (en+2(i, j), (l1, · · · , ln+2)) = addE (en+2(i, j), (l1, · · · , ln+2))
addG (n + 2, (l1, · · · , ln+2)) = addE (n + 2, (l1, · · · , ln+2))

addE :: SPn+2 → SPn+2

addE x@(t, (l, so1, · · · , son, l′)
= if (l == desj)||(l′ == desj)

then Pn+2 x (en+2(soj , desj), (l, so1, · · · , son, l′)) else x

Fig. 10. Transformation of a control flow graph with bounded tree width


