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Abstract. In this paper, we propose a Markov chain for sampling a ran-
dom vector distributed according to a discretized Dirichlet distribution.
We show that our Markov chain is rapidly mixing, that is, the mixing
time of our chain is bounded by (1=2)n(n � 1) ln((� � n)"�1) where n
is the dimension (the number of parameters), 1=� is the grid size for
discretization, and " is the error bound. Thus the obtained bound does
not depend on the magnitudes of parameters. We estimate the mixing
time by using the path coupling method. When the magnitudes of pa-
rameters are large, the log-concavity of the density function implies the
rapidity straightforwardly. In the case that parameters are less than 1,
the density function is convex and so we need a speci�ed approach to
use the path coupling method. We also show the rate of convergence of
our chain experimentally.

1 Introduction

Statistical methods are widely studied in bioinformatics since they are pow-
erful tools to discover genes causing a (common) disease from a number of ob-
served data. These methods often use EM algorithm, Markov chain Monte Carlo
method, Gibbs sampler, and so on. The Dirichlet distribution is a distribution
over vectors of positive numbers in which the sum total is equal to 1. The dis-
tribution often appears as prior and posterior distribution for the multinomial
distribution in these methods since the Dirichlet distribution is the conjugate
prior of parameters of the multinomial distribution [6].

For example, Niu, Qin, Xu, and Liu proposed a Bayesian haplotype inference
method [4], which decides phased (paternal and maternal) individual genotypes
probabilistically. This method is based on Gibbs sampler. In their method, the



Dirichlet distribution is used to update population haplotype frequencies, i.e.,
parameters of the multinomial distribution, for each iteration. That is to say,
for each iteration starting from the Dirichlet distribution with some appropriate
parameters, parameters of the multinomial distribution is updated from the pos-
terior distribution which is the Dirichlet distribution with updated parameters
conditional on the \imputed" events.

Another example is a population structure inferring algorithm by Pritchard,
Stephens, and Donnely [5]. Their algorithm is based on MCMC method. For each
step of MCMC, the Dirichlet distribution with two distinct sets of parameters are
used to sample allele frequencies in each population and admixture proportions
for each individual. Similar to the �rst example, these two sets of parameters
are updated at each iteration.

In these examples, the Dirichlet distribution appears with various dimen-
sions and various parameters. Thus we need an e�cient algorithm for sampling
from the Dirichlet distribution with arbitrary dimensions and parameters. One
approach of sampling from the Dirichlet distribution is by rejection (see [3] for
example). In this way, the number of required samples from the gamma distri-
bution is equal to the size of the dimension of the Dirichlet distribution. Though
we can sample from the gamma distribution by using rejection sampling, the
ratio of rejection becomes higher as the parameter is smaller. Thus, it does not
seems e�ective way for small parameters.

We employ another approach, the Metropolis algorithm using a Markov
chain. In this paper, we propose a simple Markov chain for sampling a random
vector distributed according to a discretized Dirichlet distribution. We show that
our Markov chain is rapidly mixing. More precisely, the mixing time of our chain
is (1=2)n(n� 1) ln((��n)"�1) where n is the dimension (the number of param-
eters), 1=� is the grid size for discretization, and " is the error bound. We note
that this mixing time does not depend on the magnitudes of parameters. We
also show experimentally that the required number of steps of our Markov chain
is much smaller than our theoretical upper bound of the mixing time.

2 Markov Chain for Approximate Sampler

Dirichlet random vector P = (P1; P2; : : : ; Pn) with non-negative parameters
u1; : : : ; un is a vector of random variables that admits the probability density
function

� (
Pn

i=1 ui)Qn

i=1 � (ui)

nY
i=1

pui�1i

de�ned on the set f(p1; p2; : : : ; pn) 2 Rn j p1 + � � � + pn = 1; p1; p2; : : : ; pn > 0g
where � (u) is the gamma function. Throughout this paper, we assume that
n � 2.

For any integer � � n, we discretize the domain with grid size 1=� and
obtain a discrete set of integer vectors 
 de�ned by



def:
= f(p1; p2; : : : ; pn) 2 Zn j pi > 0 (8i); p1 + � � �+ pn = �g:



A discretized Dirichlet random vector with non-negative parameters u1; : : : ; un
is a random vector X = (X1; : : : ; Xn) 2 
 with the distribution

Pr[X = (x1; : : : ; xn)] = g(x)
def:
= C�

nY
i=1

(xi=�)
ui�1

where C� is the partition function (normarizing constant) de�ned by (C�)
�1 def:

=P
x2


Qn

i=1(xi=�)
ui�1.

For any integer b � 2, we introduce a set of 2-dimensional integer vectors


(b)
def:
= f(Y1; Y2) 2 Z2 j Y1; Y2 > 0; Y1 + Y2 = bg and a distribution function

fb(Y1; Y2 j ui; uj) : 
(b)! [0; 1] with non-negative parameters ui; uj de�ned by

fb(Y1; Y2 j ui; uj)
def:
= C(ui; uj ; b)Y

ui�1
1 Y

uj�1
2

where (C(ui; uj ; b))
�1 def:

=
P

(Y1;Y2)2
(b) Y
ui�1
1 Y

uj�1
2 is the partition function.

We describe our Markov chain M with state space 
. At each time t 2
f0; 1; 2; : : :g, transition Xt 7! Xt+1 takes place as follows.

Step 1: Pick a mutually distinct pair of indices fi; jg � f1; 2; : : : ; ng uniformly
at random.

Step 2: Put b = Xt
i + Xt

j . Pick (Y1; Y2) 2 
(b) according to the distribution
function fb(Y1; Y2 j ui; uj).

Step 3: Put Xt+1
k =

8<
:
Y1 (k = i);
Y2 (k = j);
Xt
k (otherwise):

Clearly, this chain is irreducible and aperiodic. Since the detailed balance equa-
tions hold, the stationary distribution of the above Markov chain M is g(x).

The following theorem is a main result of this paper, which shows an upper
bound of the mixing time of our chain.

Theorem 1 The mixing time �(") of Markov chain M satis�es

�(") � (1=2)n(n� 1) ln((�� n)"�1):

In the rest of this paper, we prove the above theorem.
Before showing the above, we discuss the inuence of discretization. The

stationary distribution of our chain is di�erent from the original Dirichlet distri-
bution because of the discretization. The statistics of the Dirichlet distribution
with parameters (u1; : : : ; un) are given as follows. For each random variable Pi,

E[Pi] = ui=u0 and Var[Pi] =
ui(u0�ui)
u2
0
(u0+1)

where u0 =
P

i ui. For each pair of

random variables Pi and Pj with (i 6= j), Cov[Pi; Pj ] =
�uiuj

u2
0
(u0+1)

. For some dis-

cretized Dirichlet distributions, we calculated the statistics, E�[Pi], Var�[Pi],
and Cov�[Pi; Pj ] by a brute force method. Table 1 shows the results.

In the rest of this section, we briey review the de�nition of the mixing time
and path coupling method. For any probability distribution function �0 on 
,



Table 1. Inuence of discretization.

�
(u1; u2; u3; u4) maximum di�erence of statistic 10 50 100

jE�[Pi]� E[Pi]j 0 0 0
(1; 1; 1; 1) jVar�[Pi]�Var[Pi]j 0:015 0:003 0:0015

jCov�[Pi; Pj ]� Cov[Pi; Pj ]j 0:005 0:001 0:0005

max (jE�[Pi]� E[Pi]j) 0:051 0:0092 0:0046
(4; 3; 2; 1) max (jVar�[Pi]�Var[Pi]j) 0:0036 0:00049 0:00023

max (jCov�[Pi; Pj ]� Cov[Pi; Pj ]j) 0:0080 0:0074 0:0073

jE�[Pi]� E[Pi]j 0 0 0
(0:1; 0:1; 0:1; 0:1) jVar�[Pi]�Var[Pi]j 0:11 0:071 0:061

jCov�[Pi; Pj ]� Cov[Pi; Pj ]j 0:035 0:024 0:020

max (jE�[Pi]� E[Pi]j) 0:13 0:10 0:092
(0:4; 0:3; 0:2; 0:1) max (jVar�[Pi]�Var[Pi]j) 0:090 0:055 0:045

max (jCov�[Pi; Pj ]� Cov[Pi; Pj ]j) 0:051 0:042 0.040

max (jE�[Pi]� E[Pi]j) 0:079 0:029 0:019
(2; 1:5; 1; 0:5) max (jVar�[Pi]�Var[Pi]j) 0:014 0:0032 0:0019

max (jCov�[Pi; Pj ]� Cov[Pi; Pj ]j) 0:015 0:013 0:013

de�ne the total variation distance between �0 and the stationary distribution
function g of M to be

DTV(g; �
0)

def:
= max


0�


�����
X
x2
0

g(x)�
X
x2
0

�0(x)

����� = (1=2)
X
x2


jg(x)� �0(x)j:

If the initial state of the chain M is x 2 
, we denote the distribution of the
states at time t by P t

x : 
 ! [0; 1], i.e.,

P t
x(y)

def:
= Pr[Xt = y j X0 = x] (8y 2 
):

The rate of convergence to stationary from the initial state x may be measured
by

�x(")
def:
= minft j DTV(g; P

t0

x) � " for all t0 � tg

where the error bound " is a given positive constant. The mixing time �(") ofM

is de�ned by �(")
def:
= maxx2
 �x("); which is independent of the initial state.

Next, we de�ne a special Markov process with respect to M called joint
process. A joint process of M is a Markov chain (Xt; Y t) de�ned on 
 � 

satisfying that each of (Xt); (Y t), considered marginally, is a faithful copy of the
original Markov chain M. More precisely, we require that

Pr[Xt+1 = x
0j(Xt; Y t) = (x;y)] = PM(x;x0);

Pr[Y t+1 = y
0j(Xt; Y t) = (x;y)] = PM(y;y0);

for all x;y;x0;y0 2 
 where PM(x;x0) and PM(y;y0) denotes the transition
probability from x to x

0 and from y to y
0 of the original Markov chain M,

respectively.



Path coupling lemma [Bubley and Dyer [1]]
Let G be a directed graph with vertex set 
 and arc set A � 
 � 
. Let

` : A ! Z++ be a positive integer length function de�ned on the arc set. We
assume that G is strongly connected. For any ordered pair of vertices (x;x0) of
G, the distance from x to x0, denoted by d(x;x0), is the length of a shortest
path from x to x0, where the length of a path is the sum of the lengths of arcs
in the path. Suppose that there exists a joint process (X;Y ) 7! (X 0; Y 0) with
respect to M satisfying that

1 > 9� > 0; 8(X;Y ) 2 A; E[d(X 0; Y 0)] � �d(X;Y ):

Then the mixing time �(") of the original Markov chain M satis�es �(") �
(1 � �)�1 ln(D=") where D denotes the diameter of G, i.e., the distance of a
farthest (ordered) pair of vertices.

3 Analysis of Mixing Time

In this section, we de�ne the joint process and analyze the mixing time by using
path coupling method. First, we introduce a directed graph G = (
;A) whose
vertex set is equivalent to the state space 
. There exists a directed arc from a

state (vertex) x to y if and only if jjx�yjj1
def:
= (jx1� y1j+ � � �+ jxn� ynj) = 2:

Thus the set A of arcs of G is de�ned by A
def:
= f(x;y) j x;y 2 
; jjx�yjj1 = 2g:

Clearly, G is strongly connected
Now we de�ne the joint process with state space 
 � 
. For any adjacent

pair of states (x;y) 2 A, the joint process does the following. Without loss of
generality, we can assume that x1 = y1 + 1; x2 = y2 � 1; x3 = y3; : : : ; xn = yn.
The transition of the joint process (x;y) 7! (X 0; Y 0) is de�ned as follows.

Step 1: Pick a pair of mutually distinct indices fi; jg 2 f1; 2; : : : ; ng at random.
Step 2: For any index i0 2 f1; 2; : : : ; ng n fi; jg, set X 0

i0 = xi0 ; Y 0i0 = yi0 . Pick
((X 0

i ; X
0
j); (Y

0
i ; Y

0
j )) from the set 
(xi + xj) � 
(yi + yj) according to the

following transition rule.

(Case 1) The pair of indices fi; jg picked at Step 1 satis�es f1; 2g \ fi; jg = ;.
It is easy to see that the equality xi + xj = yi + yj holds. At Step 2, we pick

(X 0
i ; X

0
j) according to the distribution function f(xi+xj)(X

0
i; X

0
j j ui; uj) and put

(Y 0i ; Y
0
j ) = (X 0

i ; X
0
j). Here we note that the pair of states satis�es (X

0; Y 0) 2 A.
(Case 2) The pair of indices fi; jg picked at Step 1 satis�es f1; 2g = fi; jg.

At Step 2, we pick (X 0; Y 0) in the same way with Case 1. In this case, the
pair of states satis�es X 0 = Y 0.
(Case 3) The pair of indices fi; jg picked at Step 1 satis�es f1; 2g\fi; jg = f2g.

Without loss of generality, we can assume that i = 2. Set b = xi+xj . Clearly,
the equality yi+yj = b+1 holds. We introduce the distribution function de�ned
on the set 
(b) � 
(b + 1) which is used at Step 2 in this case. We de�ne the
set 
0 of states which may have positive probability by


0
def:
=

�
((1; b� 1); (1; b)); ((2; b� 2); (2; b� 1));� � � ;((b� 1; 1); (b� 1; 2));
((1; b� 1); (2; b� 1)); ((2; b� 2); (3; b� 2));� � � ;((b� 1; 1); (b; 1))

�
:



We set Pr[((X 0
i ; X

0
j); (Y

0
i ; Y

0
j )) = ((x0i; x

0
j); (y

0
i; h

0
j))] = 0, 8((x0i; x

0
j); (y

0
i; y

0
j)) 2


(b) � 
(b + 1) n 
0. For each element in 
0, the corresponding probability is
de�ned by

Pr[((X 0
i ; X

0
j); (Y

0
i ; Y

0
j )) = ((k; b� k); (k + 1; b� k))]

= Cb

Pk

l=1 l
ui�1(b� l)uj�1 � Cb+1

Pk

l=1 l
ui�1(b� l + 1)uj�1;

Pr[((X 0
i ; X

0
j); (Y

0
i ; Y

0
j )) = ((k; b� k); (k; b� k + 1))]

= Cb+1

Pk

l=1 l
ui�1(b� l+ 1)uj�1 � Cb

Pk�1
l=1 l

ui�1(b� l)uj�1;

where k 2 f1; 2; : : : ; b� 1g and Cb = C(ui; uj ; b); Cb+1 = C(ui; uj ; b+1): (Here

we note that for any sequence of real numbers f�lg, we de�ne
PU

l=L �l = 0, if
L > U .) Each pair of states (x0;y0) 2 
0 satis�es that (x0;y0) 2 A.

To complete the description of Case 3, we need to show that the above
probability is non-negative and the sum total is equal to 1. It is easy to see that
the sum total is equal to 1. The following lemma shows the non-negativity.

Lemma 1 If the parameters ui and uj are non-negative, the inequalties

Pr[((X 0
i ; X

0
j); (Y

0
i ; Y

0
j )) = ((k; b� k); (k + 1; b� k))] � 0; (1)

Pr[((X 0
i ; X

0
j); (Y

0
i ; Y

0
j )) = ((k; b� k); (k; b� k + 1))] � 0; (2)

hold for each k 2 f1; 2; : : : ; b� 1g.

The proof of the above lemma is complicated and described in Appendix. Here
we note that when ui; uj � 1, the corresponding functions have log-concavity,
and so we can show the non-negativity in an ordinary way. However, at least one
of parameters is less than 1, the function is neither log-concave nor concave. If
both parameters are less that 1, the corresponding function is convex and so we
cannot apply an ordinary method to show the non-negativity of the transition
probability of joint process. See Appendix for detail.

Next, we show that marginal distributions of the joint process are faithful
copy of the original chain M. Marginal distributions of X 0, Y 0 satisfy that

Pr[(X 0
i ; X

0
j) = (k; b� k) and (Y 0i ; Y

0
j ) 2 
(b+ 1)]

= Pr[((X 0
i ; X

0
j); (Y

0
i ; Y

0
j )) = ((k; b� k); (k + 1; b� k))]

+Pr[((X 0
i ; X

0
j); (Y

0
i ; Y

0
j )) = ((k; b� k); (k; b� k + 1))]

= Cb

Pk

l=1 l
ui�1(b� l)uj�1 � Cb+1

Pk

l=1 l
ui�1(b� l + 1)uj�1

+Cb+1

Pk

l=1 l
ui�1(b� l + 1)uj�1 � Cb

Pk�1
l=1 l

ui�1(b� l)uj�1

= Cb

Pk

l=1 l
ui�1(b� l)uj�1 � Cb

Pk�1
l=1 l

ui�1(b� l)uj�1 = Cbk
ui�1(b� k)uj�1;

Pr[(X 0
i ; X

0
j) 2 
(b) and (Y 0i ; Y

0
j ) = (k; b� k + 1)]

= Pr[((X 0
i ; X

0
j); (Y

0
i ; Y

0
j )) = ((k � 1; b� k + 1); (k; b� k + 1))]

+Pr[((X 0
i ; X

0
j); (Y

0
i ; Y

0
j )) = ((k; b� k); (k; b� k + 1))]

= Cb

Pk�1
l=1 l

ui�1(b� l)uj�1 � Cb+1

Pk�1
l=1 l

ui�1(b� l + 1)uj�1



+Cb+1

Pk

l=1 l
ui�1(b� l + 1)uj�1 � Cb

Pk�1
l=1 l

ui�1(b� l)uj�1

= Cb+1

Pk

l=1 l
ui�1(b� l + 1)uj�1 � Cb+1

Pk�1
l=1 l

ui�1(b� l + 1)uj�1

= Cb+1k
ui�1(b� k + 1)uj�1:

Lastly, we note that the pair of picked states satis�es that (X 0; Y 0) 2 A.
(Case 4) The pair of indices fi; jg picked at Step 1 satis�es f1; 2g\fi; jg = f1g.

We choose (X 0; Y 0) 2 
(b + 1) � 
(b) where b = yi + yj in a similar way
as Case 3. The procedure is obtained by substituting the indices 1 and 2, and
states x and y simultaneously in Case 3. In this case, the picked pair of states
also satis�es that (X 0; Y 0) 2 A.

Now we completed the description of the transition procedure of joint process.
In the rest of this section, we show a proof of the theorem.
Proof of Theorem 1

For any pair of states (x;y) 2 
2 adjacent on the graph G de�ne above,
i.e., (x;y) 2 A, we put the length of the edge (x;y) is equal to 1. Then the
distance from a state x0 2 
 to y0 2 
, denoted by d(x0;y0), is equal to the
length of a shortest path on G from x

0 to y0 where the length of a path is equal
to the number of edges contained in the path. For any state x 2 
, we de�ne
d(x;x) = 0. It is clear that the diameter of the graph G, the distance between
a farthest pair of vertices, is equal to �� n.

Next, we estimate the expectation of the distance from X 0 to Y 0 obtained
by applying the transition procedure of the joint process to an adjacent pair of
states (x;y) 2 A. Without loss of generality, we can assume that the pair (x;y)
satis�es that x1 = y1 + 1; x2 = y2 � 1; x3 = y3; : : : ; xn = yn.

In Cases 1, 3 and 4, the distance from X 0 to Y 0 is equal to 1. When Case 2
occurred, the distance from X 0 to Y 0 decreases to 0. Since the probability of the
event that Case 2 is selected is equal to 2=(n(n � 1)), the expectation of the
distance E[d(X 0; Y 0)] becomes to 1� 2=(n(n� 1)). Path coupling theorem [1, 2]
shows that the mixing time �(") satis�es �(") � (1=2)n(n� 1) ln((� � n)"�1).

4 Experimental Study

In this section, we show some simulation results. The settings of our simulations
are as follows. Through all simulations, we use Mersenne Twister[7] as a pseudo-
random generator. We run these simulations on the PC Linux machine with
following speci�cations.

Machine: Dell Precision 450
CPU: Intel Xeon 2.8GHz (FSB 533MHz) � 2
OS: RedHat Linux 8.0 (Kernel 2.4.18-14smp)
Memory: Dual channel PC2100 DDR SDRAM 2GByte
Compiler: Intel C++ Compiler 7.0



For each simulation, we ran 109 processes of our Markov chain. For each Markov
chain process, we chose a random seed deterministically and transitions are ex-
ecuted 50 steps. The initial state is an integer vector in 
 obtained by rounding
(�=n; � � � ; �=n). The running time of 109 processes, i.e., 5�1010 steps, is between
10�30 hours.

First, we show results on the relation between parameters and mixing time.
We �xed the dimension n to 4 and the discretizing grid size 1=� to 1/100. We
selected parameters from (1; 1; 1; 1), (4; 3; 2; 1), (2; 1:5; 1; 0:5), (0:1; 0:1; 0:1; 0:1),
and (0:4; 0:3; 0:2; 0:1). We note that the case (1; 1; 1; 1) corresponds to the uni-
form distribution over 
. In Fig. 1, along the vertical axis we give the total
variation distance ", and the horizontal axis means the number of transitions
of chains from the initial state. As Fig. 1 shows, the decrease of total variation
distance are saturated at about 10�2, though it must descend constantly. This
is caused by the limitation of the number of samples (109) from Markov chains,
that is, the total variation distance has a positive lower bound for each vector
of parameters. Fig. 1 shows that the larger number of executions we run, the
smaller the di�erence will be. Aside from this saturation, we can see that if the
value of a parameter is greater than or equal to 1, the mixing time is less than
the case that all values of a parameter are less than 1.
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Fig. 1. Relation between mixing time and the magnitude of parameters.

Next, we con�rm how the discretizing value � contribute to the mixing
time. We �xed the dimension n to 4 again and the parameter to (1; 1; 1; 1). We
chose � from 10, 20, 50, 100, and 200. In Fig. 2, we plotted the total variation
distance " for each�. This �gure shows that� will have little contribution to the
mixing time. More speci�cally, until the decrease of " is saturated, the ratios of
decreasing have little di�erence for each �. In the proof of Theorem 1, the term
(��n) is arti�cially introduced as the diameter of the graph G = (
;A). These
experimental results, however, suggest that the mixing time does not depend on



�. This property is substantiated by the fact that the diameter of our chain is
bounded by n and independent of �.
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Fig. 2. Relation between � and the mixing time.
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Fig. 3. Relation between number of transitions and total variation distance.

Finally, we checked the relation between the dimension n and the mixing
time. Because of restriction of the memory, we �xed the discretizing grid size
1=� to 1/20 and chose the dimension n between 3 and 7. We also �xed each
parameter to 1. We show all results in Fig. 3. Since our purpose is to compare
the mixing time and dimension, we picked up the �rst time instance that the
total variation distance " exceeds 0:1, 0:5, 0:05, and/or 0:01. These picked time
instances are marked in Fig. 3. In Fig. 3(b), we show the results for each ".
Though accurate consideration cannot be made because of the insu�cient range



of dimension, our results indicate that the mixing time is �(n) rather than
�(n2).

5 Conclusion

In this paper, we proposed a Markov chain whose stationary distribution is a
discretized Dirichlet distribution. We showed that our Markov chain is rapidly
mixing by using coupling method. Our upper bound of the mixing time does
not depend on the magnitudes of parameters. When parameters are less than
1, the corresponding density function is convex and so, ordinary technique re-
lated to log-concavity is not applicable. We have shown the required property
in Appendix. Our computational experiences indicates that the mixing time of
the chain is much smaller than our theoretical upper bound.

Appendix

Proof of Lemma 1

Since the inequalities (1) and (2) are symmetric in terms of ui and uj , we only
need to show one of the inequalities. In the following, we discuss the inequality

Pr[((X 0
i ; X

0
j); (Y

0
i ; Y

0
j )) = ((k; b� k); (k; b� k + 1))] � 0:

From the de�nition of the transition probability of the joint process, we have

Pr[((X 0
i ; X

0
j); (Y

0
i ; Y

0
j )) = ((k; b� k); (k; b� k + 1))]

= Cb+1

Pk

l=1 l
ui�1(b� l + 1)uj�1 � Cb

Pk�1
l=1 l

ui�1(b� l)uj�1

= (1� Cb+1

Pb

l=k+1 l
ui�1(b� l + 1)uj�1)� (1� Cb

Pb�1
l=k l

ui�1(b� l)uj�1)

= Cb

Pb

l=k+1(l � 1)ui�1(b� l+ 1)uj�1 � Cb+1

Pb

l=k+1 l
ui�1(b� l + 1)uj�1

=
Pb

l=k+1(Cb(l � 1)ui�1(b� l + 1)uj�1 � Cb+1l
ui�1(b� l + 1)uj�1)

=
Pb

l=k+1 Cbl
ui�1(b� l + 1)uj�1

��
1� 1

l

�ui�1 � Cb+1

Cb

�
:

Similarly, we can also show that

Pr[((X 0
i ; X

0
j); (Y

0
i ; Y

0
j )) = ((k; b� k); (k; b� k + 1))]

= Cb+1

Pk

l=1 l
ui�1(b� l + 1)uj�1 � Cb

Pk�1
l=1 l

ui�1(b� l)uj�1

� Cb+1

Pk

l=2 l
ui�1(b� l + 1)uj�1 � Cb

Pk

l=2(l � 1)ui�1(b� l + 1)uj�1

=
Pk

l=2(Cb+1l
ui�1(b� l + 1)uj�1 � Cb(l � 1)ui�1(b� l + 1)uj�1)

=
Pk

l=2 Cbl
ui�1(b� l + 1)uj�1

�
Cb+1

Cb
�
�
1� 1

l

�ui�1�
:



By introducing the function h : f2; 3; : : : ; bg ! R de�ned by h(l)
def:
=
�
1� 1

l

�ui�1�
Cb+1

Cb
, we have the following equality and inequality

Pr[((X 0
i ; X

0
j); (Y

0
i ; Y

0
j )) = ((k; b� k); (k; b� k + 1))]

=
Pb

l=k+1 Cbl
ui�1(b� l+ 1)uj�1h(l) (3)

� �
Pk

l=2 Cbl
ui�1(b� l + 1)uj�1h(l): (4)

(a) The case that ui � 1.
Since ui�1 � 0, the function h(l) is monotone non-decreasing. When h(k) �

0 holds, we have 0 � h(k) � h(k + 1) � � � � � h(b), and so (3) implies the
non-negativity

Pr[((X 0
i ; X

0
j); (Y

0
i ; Y

0
j )) = ((k; b�k); (k; b�k+1))] =

bX
l=k+1

Cbl
ui�1(b�l+1)uj�1h(l) � 0:

If h(k) < 0, then inequalities h(2) � h(3) � � � � � h(k) < 0 hold, and so (4)
implies that

Pr[((X 0
i ; X

0
j); (Y

0
i ; Y

0
j )) = ((k; b�k); (k; b�k+1))] � �

kX
l=2

Cbl
ui�1(b�l+1)uj�1h(l) � 0:

(b) The case that 0 � ui � 1.
Since ui � 1 � 0, the function h(l) is monotone non-increasing. If the in-

equality h(b) � 0 hold, we have h(2) � h(3) � � � � � h(b) � 0 and inequality (3)
implies the non-negativity

Pr[((X 0
i ; X

0
j); (Y

0
i ; Y

0
j )) = ((k; b�k); (k; b�k+1))] =

bX
l=k+1

Cbl
ui�1(b�l+1)uj�1h(l) � 0:

In the rest of this section, we show that h(b) = ( b�1
b
)ui�1 � Cb+1

Cb
� 0.

We de�ne a function H0(b; �i; �j) by H0(b; �i; �j) = (b�1)�iC�1b+1� b�iC�1b :
It is clear that if the condition [�1 � 8�i � 0; �1 � 8�j ; 8b 2 f2; 3; 4; : : :g;
H0(b; �i; �j) � 0] holds, we obatin the required result that h(b) � 0 for each
b 2 f2; 3; 4; : : :g. Now we transform the function H0(b; �i; �j) and obtain another
expression as follows;

H0(b; �i; �j) = (b� 1)�i
bX

k=1

k�i(b� k + 1)�j � b�i
b�1X
k=1

k�i(b� k)�j

=
Pb

k=1(b� 1)�ik�i(b� k + 1)�j (b�k)+(k�1)
b�1 � b�i

Pb�1
k=1 k

�i(b� k)�j

=
Pb�1

k=1

h
(b� 1)�ik�i(b� k + 1)�j

�
b�k
b�1

�
+ (b� 1)�i(k + 1)�i(b� k)�j

�
k

b�1

�
�b�ik�i(b� k)�j ]

=
Pb�1

k=1
(b�1)�ik�i (b�k)�j

b�1

h�
1 + 1

b�k

��j
(b� k) +

�
1 + 1

k

��i
k �

�
b

b�1

��i
(b� 1)

i
:



Then it is enough to show that the function

H1(b; �i; �j ; k)
def:
=

�
1 + 1

b�k

��j

(b� k) +
�
1 + 1

k

��i
k �

�
b

b�1

��i

(b� 1)

is nonnegative for any k 2 f1; 2; : : : ; b�1g. Since 1+1=(b�k) > 1 and �j � �1，
we have

H1(b; �i; �j ; k) � H1(b; �i;�1; k) =
(b�k)2

b�k+1 +
�
1 + 1

k

��i
k �

�
b

b�1

��i

(b� 1):

We di�erentiate the function H1 by �i, and obtain the following

@

@�i

H1(b; �i;�1; k) =
�
1 + 1

k

��i
k log

�
1 + 1

k

�
�
�

b
b�1

��i

(b� 1) log
�

b
b�1

�

=
�
1 + 1

k

��i
log

�
1 + 1

k

�k
�
�
1 + 1

b�1

��i

log
�
1 + 1

b�1

�(b�1)
:

Since k; b is a pair of positive integers satisfying 1 � k � b�1, the non-positivity
of �i implies 0 � (1+1=k)�i � (1+1=(b�1))�i and 0 � log(1+1=k)k � log(1+
1=(b�1))b�1. Thus the functionH1(b; �i;�1; k) is monotone non-decreasing with
respect to �i � 0. Thus we have

H1(b; �i;�1; k) � H1(b; 0;�1; k) =
(b�k)2

b�k+1 +
�
1 + 1

k

�0
k �

�
b

b�1

�0
(b� 1)

= (b�k)2

b�k+1 + k � b+ 1 = (b�k)2+12�(b�k)2

b�k+1 = 1
b�k+1 � 0:
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