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Abstract

In this note, we study a constrained independent set problem for matroids and certain
generalizations. The basic problem can be regarded as an ordered version of the matroid
parity problem. By a reduction of this problem to matroid intersection, we prove a min-max
formula. Studying the weighted case and a delta-matroid generalization, we prove that some
of them are not more complex than matroid intersection, but others are as hard as matroid
parity. We show how earlier results of Hefner and Kleinschmidt on so called MS-matchings
fit in our framework. We also point out another connection to electric networks.

1 Introduction

In this note, we shall study the following constrained independent set problem for matroids.
Let M = (V,Z) be a matroid with |V| even and II be the partition of V' into ordered pairs. An
1deal independent set is an independent set I € 7 that satisfies the constraint:

if (u,v) el and u € I, thenv e I . (1)

Our basic problem, the ordered matroid parity problem is to find a maximum cardinality ideal
independent set. We shall show that the ordered matroid parity problem can be reduced to
matroid intersection, that is to the problem of maximizing the size of a common independent
set of two matroids.
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The ordered matroid parity problem looks similar to the matroid parity problem, i.e., the
problem of finding a maximum size independent set I of M so that

if (u,v) € II, then u € I if and only if v € I . (2)

In contrast to our ordered version, the matroid parity problem includes NP-hard problems. It is
even known to be intractable with an ordinary oracle model of matroids, although it is solvable
in polynomial time for linearly represented matroids [9].

If M is the transversal matroid of some graph G = (U, V; E), then the ordered matroid
parity problem is equivalent to the problem of finding a matching M of G that has the property
that for any (u,v) € II, the vertex v is covered by M whenever u is covered by M. This is a
special case of the so-called MS-matching problem introduced by Hefner and Kleinschmidt [8].

The MS-matching problem involves a graph G and a digraph D on the common vertex set
W. The task that was originated from a practical manpower scheduling problem was to find a
maximum cardinality matching M of G so that no arc of D leaves the set of vertices that are
covered by M. It was shown in [8] that an NP-complete version of the satisfiability problem can
be reduced to a restricted MS-matching problem in which each weak component of D has size at
most three. They also proved that if all weak components of dependence graph D have size at
most two, then even the edge-weighted MS-matching problem can be solved in polynomial time.
Furthermore, for the above bipartite special case, Hefner [7] has found a min-max formula. We
shall derive this min-max formula from a more general result on ordered parity problem.

It is interesting to observe that the ordered matroid parity problem is also present in the
theory of electric networks. In [10], Recski considered the problem of unique solvability of
networks that consist of voltage and current sources, resisters, capacitors, inductors, and 2-
ports. There is a known necessary and sufficient condition for the unique solvability of such
a network in the “general case”, and Recski proved that if no 2-port is in a so-called critical
situation, then the condition for the general case applies for the above networks. However,
a 2-port can belong to five different types of critical situations. As Recski remarked, two of
these critical situations are related to the matroid partition problem, one other situation to
the matroid parity problem, and the remaining two situations are related to our basic problem.
Recski mentioned that Bland had reduced this latter problem to linear matroid parity, which
is solvable in polynomial time. As a result of our present work, it follows that a reduction of
the problem to the easier matroid intersection problem is also possible.

Our work is organized as follows. In Section 2, we prove a min-maxformula on the ordered
matroid parity problem. We also solve the weighted ordered matroid parity problem in a special
case. Then we show that the min-max formula extends that of Hefner in Section 3. Section 4
is devoted to a generalized matroid problem that we can also reduce to matroid intersection.
Section 5 contains a generalization of the ordered matroid parity problem for delta-matroids.
At last, in Section 6, we indicate some other generalizations that are as hard as matroid parity.



2 Ordered Parity Problem

Let us fix a matroid M and a set of ordered pairs Il for the ordered matroid parity problem.
Let S be the set of all the second elements and R be the set of all first elements in the pairs in
IT. For any v € S, let U denote its mate, i.e., (7,v) is a pair in II. For any subset X of S, we
denote {7:v € X} by X.

Let J denote the family of all the ideal independent sets. The weighted ordered matroid
parity problem is to find for a given weight function w : V' — R, an ideal independent set [
that is of maximum weight, i.e., we look for max{w([) : I € J} where w(l) := > c;w(v). A
weight function w : V' — Ry is called consistent if w(u) < w(v) holds for any pair of u € R
and v € S. Clearly, the ordered matroid parity problem is a weighted ordered matroid parity
problem for the consistent weight function w = 1.

Lemma 2.1. If, in the framework of the ordered matroid parity problem, weight function w is
consistent, then there is an optimal solution I of the weighted ordered matroid parity problem
that contains a base of S.

Proof. Suppose I € J is an optimal solution that satisfies |I 0S| < r(S), and let J be an
arbitrary base of S containing I N'S. For any v € J\I, if JU{v} € Z, then I U {v} € J, which
contradicts the optimality of I. Therefore, I U {v} is not independent, and there exists an
element u € I\S such that I’ = I U {v}\{u} € Z. Since w is consistent, we have w(I’) > w(I).
Then I’ is another optimal solution with |[I'N S| = |[I N S|+ 1. Thus, we may assert there is an
optimal solution I° that satisfies |[I° N S| = r(S5). O

Let M - S denote the restriction of M to S, and M/S denote the contraction of M by S.
Lemma 2.1 implies that the ordered parity problem for M can be reduced to an ordered parity
problem for the direct sum M° =M -S @& M/S. We now reduce this problem to the matroid
intersection problem.

Let J C S be an independent set in M- S such that J is also independent in M/S. Let K be
an arbitrary base in M-S containing J. Then I = JU K satisfies the ordered parity condition.
Conversely, an optimal solution I for M ° must be in this form. Note that || = r(S) +|J| holds
independently of the choice of K. Therefore, an optimal solution I of the ordered parity problem
can be obtained by finding a maximum cardinality J, which is the matroid intersection problem.
The following min-max theorem follows from the matroid intersection theorem of Edmonds [4].

Theorem 2.2. For the ordered parity problem, we have

max{|/|: [ € J} = min{r(X)+ r(V\X): X C S}. (3)

Proof. The matroid intersection theorem implies that the maximum cardinality of J is given
by

|J| = min{r(X)+rs(R\X): X C S}

= min{r(X)+r(V\X): X C S} —r(9),



where rg is the rank function of M/S. Since |I| = |J| + r(S), we obtain (3). O

The weighted ordered matroid parity problem for particular weight w = % is exactly
the NP-hard matroid parity problem. But if weight w is consistent, then by Lemma 2.1, the
weighted ordered matroid parity problem for M can be reduced to the weighted ordered matroid
parity problem for the above M°. In what follows, we reduce this latter problem to weighted
matroid intersection.

Define matroid Mp := M/S @ Fg where Fg is the free matroid on S, i.e. each element of
S is a coloop in M . Let Mg be the matroid on V so that elements v and v are parallel and
Mg - S =M-S. Define weight function w’ on V' by w/(s) := w(s) and w'(3) := w(s) + w(3) for
all s € S.

Let K be a base of M-S and J C K. Clearly, if I = J U K is an independent set of
M° = M-S @&M/S, then I’ := I\ J is a common independent set of M and Mg with
w(I) = w'(I'). On the other hand, if I’ = J U L is a common independent set of Mz and Mg
for J,L C S, then J and L are disjoint and I := I’ U J is an independent set of M° satisfying
(1) and w'(I') = w(I). That is, if I’ is a maximum w’-weight common independent set of Mg
and Mg, then [ is a maximum w-weigth independent set of M° with (1). Note that the above
argument did not use the consistency of w.

As the maximum weight matroid intersection problem can be solved in polynomial time, we

have the following theorem.

Theorem 2.3. The weighted ordered matroid parity problem for consistent weight can be solved
i polynomial time. ]

3 MS-matchings

In this section, we derive the min-max theorem of Hefner on bipartite MS-matchings from
Theorem 2.2.

Let G = (U, V; E) be a bipartite graph with the vertex set W = U UV and the edge set E.
Suppose the vertex set V is of even cardinality and partitioned into ordered pairs II, and just
like in Section 2, R and S denote the set of first and second elements of pairs in II, respectively.
For a subset M C FE, we denote by M the set of vertices covered by M. A matching M in
G is called an MS-matching if 7 € 9M implies v € OM for every ordered pair (v, v) € TI. The
problem of finding a maximum cardinality MS-matching in G is nothing but an ordered parity
problem for the transversal matroid on V.

An MS-cover is a vector y € Z" that satisfies

v

1 V(u,v) € E,v € R, (4)

y(u) +y(v) > 1,
1,  V(u,v)€ E,veS. (5)

y(u) +y(v) — y(v)

v



The value of an MS-cover y is defined by

val(y) = > y(u) + > _y().

ucU vES

Then it is easy to see that |M| < val(y) for any pair of an MS-matching M and an MS-cover
y. Hefner [7] showed that the equality holds for an optimal pair of M and y.

Theorem 3.1 (Hefner[7]). The mazimum cardinality of an MS-matching is equal to the min-
imum value of an MS-cover. O

We prove this by applying Theorem 2.2 to the transversal matroid. For Y C V', let I'(Y)
denote the set of vertices in U adjacent to Y. The rank function 7 of the transversal matroid
is given by

7(X) = min{'(Y) — [Y] | Y C X} + [ X]. (6)

Let M be a maximum MS-matching. Theorem 2.2 asserts that there exists a subset X C S
such that |M| = 7(X) + 7(V\X). Since |M| < val(y) holds for any MS-cover y, the follwoing
lemma completes the proof of Theorem 3.1.

Lemma 3.2. For any X C S, there exists an MS-cover y such that val(y) = 7(X) + 7(V\X).

Proof. Let Y be the unique minimal minimizer that determines 7(X) in the right-hand side of
(6). Similarly, let Z be a minimizer that determines 7(V\ X). Then we claim that Y C Z. Note
that [I'(X)|+|T'(Y)| > T(YNZ)|+ | T(YUZ)| and |Y|+ |Z] = |Y N Z| + |Y U Z| hold. Since
IDZ2)| - |Z| <[ T(YUZ)|—|YUZ|, we have Y NZ)|—|YNZ| <|T'(Y)| = |Y]|, which implies
Y C Z by the minimality of Y.

We now construct an MS-cover y. For each u € U, we assign

2 if wel(Y),
ylu)y=< 1 if wel(2)\[(Y),
0 if weU\I(2).

For each v € R, we also assign y(v) by

(v) = 1 if veR\Z,
YW=V 0 if veRNZ

For each v € S, we assign y(v) = z(v) + y(v), where z(v) is defined by

1 if velS\Z,
z(v) =4 0 if veZ\Y,
-1 if veY.



Then the resulting y € Z" is an MS-cover and its value is given by

wily) = [T+ T(2)] + [B\Z] +$\Z) — |V
= [T +[D(2)] + V\X| + | X[ = 2] - Y]
= 7(X)+1(V\X).

Thus we obtain an MS-cover y with val(y) = 7(X) + 7(V\X). O

4 Supermodular Functions

In this section, we study another generalization of our basic ordered matroid parity problem.
Let M be a matroid on ground set V and let (S, R) be a 2-partition of V. Further, let D be
a ring family on V. That is, D is a subset of 2V with ( € D so that the intersection and the
union of any two members of D belongs to D.

A function p : D — R is supermodular if p(X) +p(Y) < p(X UY) +p(X NY) for any
members X, Y of D. Given an integral supermodular function p on D with p()

subset J of V' balanced if

=0, we call a

[JNX NS —|JNnXNR|>p(X) for any member X of D. (7)

The balanced base problem is the decision problem whether there exists a basis of M that
is balanced. In the mazimum balanced independent set problem we have to find balanced
independent set of M of maximum size. Let us denote the family of balanced independent sets
by J.

Observe that the ordered matroid parity problem is a special case of the maximum balanced
independent set problem. Namely, if p = 0 and D := {ZU Z : Z C S}, then a maximum
balanced independent set is exactly an independent set with property (1). If a weight function
w:V — Ry is given, then we can talk about the maximum weight balanced independent set
problem.

Similarly to Lemma 2.1, we have the following observation.

Lemma 4.1. Let M = (V,Z) be a matroid and let (S, R) be a 2-partition of V. Let moreover
D be a ring family on V, w be a consistent weight function on V and p be supermodular on
D. If there exists a balanced independent set, then there exists a mazrimum w-weight balanced
independent set I of M so that I NS spans S.

Proof. Let I be a maximum weight balanced independent set of M with |I N S| maximum. As
J is nonempty and finite, I is well defined. If I does not span element v of S, then there is an
element u of R so that I’ :== I U {v}\ {u} is independent in M. Clearly, w(I’) > w(I), by the
consistency of w. As I was balanced, (7) holds for I’, contradicting the choice of 1. U



A function b : D — R is submodular if —b is supermodular. For a pair of sub- and supermod-
ular functions, we have the following discrete separation theorem [5]. See also [6, Theorem 4.12].

Lemma 4.2. Let V be a finite set, b : 2¥ — R be a submodular function and p : D — R be
a supermodular function on a ring family D C 2V with b(() = p(#) = 0. If p(X) < b(X) for
any X € D, then there is a vector y : V. — R such that p(X) < y(X) for any X € D and
y(X) <b(X) for any X C V. If p and b are integer-valued, then y can be chosen integral. O

Lemma 4.3. Let M = (V,Z) be a matroid and let (S, R) be a 2-partition of V. Moreover, let
D be a ring family on V and p be a supermodular function on D with p(()) = 0. There erists a
balanced independent set if and only if

p(X) <r(XNS) (8)
holds for any member X of D.

Proof. If I is a balanced independent set, then for every member X of D
r(XNS)>[INnXnNS|>|[INnXNS|—[INXNR|>p(X)

by (7). This shows the necessity of (8).

Conversely, suppose (8) holds for any X € D. Let b be the rank function of the direct sum
of M - S and the trivial matroid on R. Namely, b(X) = r(X N S) for any X C V. Then by
Lemma 4.2 there is an integral vector y with p(X) < y(X) for any X € D and y(X) < b(X) for
any X C V. Then y(v) <1 for v € S and y(v) <0 for v € R. The subset J = {v | y(v) =1} is
an independent set that satisfies |J N X| > p(X) for any X € D. Since J C S, this means J is
balanced. O

Theorem 4.4. Suppose there exists a balanced independent set. For a fixred k > r(S), there
exists a balanced independent set of cardinality k if and only if

r(XNS)+r(V—(XNR))>pX)+k (9)
holds for every X € D.
Proof. For a balanced independent set I and a member X of D, we have

| r(V—-—(XNR)+|INXNR|

<
< r(XnS)+r(V—(XNR)+|[INXNR—|[INXNS]
< r(XNS)+r(V—-(XNR)) —p(X),

which shows the necessity of (9).



To show the converse, suppose (9) holds for any X € D. Let N be the dual matroid of the
(k —r(S))-truncation of M/S. The rank function b of the direct sum M-S @ N is given by

W(X)=r(XNS)+min{|XNR|,|XNR|+r(V—-(XNR)) -k}

It follows from Lemma 4.3 and (9) that p(X) + | X N R| < b(X) holds for any X € D. Then by
Lemma 4.2 there is an integral vector y that satisfies p(X) + | X N R| < y(X) for any X € D
and y(X) < b(X) for any X C V. Since b is a rank function, y(v) < 1 for each v € V. Let J be
the positive support of y, i.e., J = {v | y(v) > 0}. Then J is an independent set of M - S & N.
Let K be a base of R — J in M/S. Then [ = (JNS)U K is an independent set of cardinality

k. Moreover, we have
p(X)<|XNnJ|—|XNR=|XNnJNS|—|XN(R=-J)|<|XNnINS|—|XNINR|
for any X € D. Thus [ is a balanced independent set of cardinality k. ]

The following min-max formula is immediate from Theorem 4.4.

Corollary 4.5. For the mazimum size of a balanced independent set (if such a set exists) we
have

max{|/|: ] € J} =min{r(XNS)+r(V-(XNR)) —p(X): X € D}
O

In order to find a maximum weight balanced independent set of cardinality k for a consis-
tent weight function w, we have to obtain an integral vector y in the proof of Theorem 4.4
that maximizes ) qw(v) — > ,cpw(u). This can be done in polynomial time by solving a
submodular flow problem [5].

5 Delta-Matroids

Let V be a finite set. A delta-matroid (or pseudomatroid), introduced by Bouchet [1] and
Chandrasekaran—Kabadi [3], is a set system (V, F) with F being a nonempty family of subsets
of V' that satisfies the following exchange property:

VFy, Fy € F,Vv € F1AF2, Ju e FiAFy - Flﬁ{u,v} € F,

where A denotes the symmetric difference. A member of F is called a feasible set of the delta-
matroid. Note that the base and the independent-set families of a matroid satisfy this exchange

property. Thus, a delta-matroid is a generalization of a matroid.

The rank function ¢ of (V, F) is defined by

¢(X,Y)=max{|XNF|+ |Y\F|: F € F}



for X, Y CV with X NY = 0.

Let (V, F) be a delta-matroid with |V| even and II be a partition of V into ordered pairs.
For any F' € F, we denote by drr(F') the number of pairs (u,v) € Il with w € F'and v ¢ F. The
ordered parity problem for (V| F) is to find a feasible set F' € F with minimum 0 (F). If F is
a matroid base family, then this is equivalent to the ordered parity problem for the matroid.

Let R denote the set of all the first elements in the pairs in II, and consider the set family
FAR = {FAR : I € F}. Then (V,FAR) is a delta-matroid. For any H € FAR, we
denote by &(H) the number of pairs in II that contain at least one element in H. Since
on(F) = |R| —&n(FAR), it suffices to find H € FAR that maximizes r;(H). We may further
restrict H to be a maximal member of FAR. Let H denote the family of all the maximal
feasible sets in (V, FAR). Then H forms a matroid base family.

Theorem 5.1. For the ordered parity problem on delta-matroid (V, F), we have

%nigéH(F):max{|X|—q(X,X) : X C S} (10)
€
Proof. Let b be the rank function of the matroid (V, H). It follows from the matroid intersection

theorem that

?aﬁfn(H) =min{b(X UX) + |S\X|: X C S}.
€
On the other hand, the rank function b is given by b(W) = ¢(W NS, W N R) for W C V. Thus

we obtain

= 1 — N C N
mas € (1) = min{q(X, ) = | X| : X C S} +18),

which implies (10) by |S| = |R| and min{ép(F) : F € F} = |R| — max{&n(H) : H € H}. O

6 Other Extensions

A possible generalization of the ordered matroid parity problem is the following closed indepen-
dent set problem. Matroid M = (V,Z) and directed graph D = (V, A) is given. We ask for a
maximum cardinality independent set I of M that has outdegree 0 in D (that is, I € Z so that
u € I implies v € I for all arcs uv of D). Clearly, the special case of this closed independent
set problem in which D consists of oppositely directed arcs on disjoint pairs of vertices contains
the NP-hard matroid parity problem.

This shows that we can expect polynomial time solvability only if we put some restrictions
on M or on D. If we try to restrict D, then to avoid the straightforward reduction of matroid
parity to the closed independent set problem, we had better consider only acyclic graphs for
D. Still, it is not very difficult to see that if a matroid M = (V,Z) and partition IT of V into
pairs are given, the problem of finding a basis B of M that contains a maximum number of
pairs from II can be polynomially reduced to the closed independent set problem such that
all components of D are out-stars on three vertices. (Namely, for each pair (u,v) of II take a



new element z,,. Let D consist of arcs z,,u and z,,v for (u,v) € II, and consider the closed
independent set problem on M’ := M @ F, where F is the free matroid on the z,, elements. If
I is a maximum size closed independent set of M’, then I NV is a basis of M that contains a
maximum number of pairs of II.)

Similarly, the question, whether there exists an independent set I of M that is the union of
k pairs of II can also be polynomially reduced to a closed independent set problem with digraph
D consisting of disjoint in-stars of size three. (Take for each pair (u,v) of II a new element
Zup- Let D consist of arcs uz,, and vz, for (u,v) € II, and consider the closed independent set
problem on M’ := M @ Uy, where Uy, is the uniform matroid of rank k on the z,, elements.
If I is a maximum size closed independent set of M’ of size 3k, then I NV is an independtent
set of M consisting of k pairs of II. If the maximum size closed independent set has cardinality
less than 3k, then no & pair of II is independent in M.)

At last, it is also not hard to see that by introducing parallel elements in M, both closed
independent, set problems above can be polynomially reduced to one in which D consists of
disjoint directed paths on three vertices. Being all these problems NP-hard, if we look for an
efficiently solvable class of the closed independent set problem by restricting D, it is reasonable
to assume that D consists of disjoint arcs. But this problem is the ordered matroid parity
problem that we have studied in Section 2.
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present work to electric networks.
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