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DOUBLE ROTATIONS

HIDEYUKI SUZUKI, SHUNJI ITO, AND KAZUYUKI AIHARA

Abstract. We consider a map called a double rotation, which is composed of
two rotations on a circle. Specifically, a double rotation is a map on the interval
[0, 1) that maps x ∈ [0, c) to {x + α}, and x ∈ [c, 1) to {x + β}. Although
double rotations are discontinuous and non-invertible in general, we show that
almost every double rotation can be reduced to a simple rotation, and the set
of parameters such that the double rotation is irreducible to a rotation has a
fractal structure. We also examine a characteristic number of double rotations
that is called a discharge number. The discharge number as a function of c
reflects the fractal structure, and is very complicated.

1. Introduction

In this paper, we consider the family of double rotations f(α,β,c) : [0, 1) → [0, 1)
defined by

f(α,β,c)(x) =

{
{x + α} if x ∈ [0, c)
{x + β} if x ∈ [c, 1)

for (α, β, c) ∈ [0, 1) × [0, 1) × [0, 1]. A typical graph of a double rotation is shown
in Figure 1(a). Although the map is apparently discontinuous and non-invertible
in general, we show that, for almost every parameter (α, β, c), the double rotation
f(α,β,c) can be reduced to a rotation. We also investigate a characteristic number
of double rotations that is called a discharge number. For f(α,β,c) and x ∈ [0, 1), we
consider the elements of the orbit starting from x, and define the discharge number
as the ratio of the elements that fall within the interval [c, 1). Figure 1(b) shows
a graph of the discharge number as a function of c for fixed α and β. Despite the
simple definition of the double rotation, the graph is complicated and like a devil’s
staircase. The complex appearance indicates a fractal structure in the parameter
space.

In the context of studies on piecewise isometries, the class of double rotations can
be considered as a special form of interval translation mappings (ITMs) introduced
by Boshernitzan and Kornfeld [1]. An ITM is defined as a transformation on an
interval such that there exists a partition of the interval into finitely many intervals
and, on each of the intervals, it is a translation. Then every double rotation is an
ITM, because a partition consisting of at most four such intervals always exists. In
fact, the example ITM given by them is a double rotation with a special parame-
ter. The class of ITMs recently investigated by Bruin and Troubetzkoy [2] is also
a subclass of double rotations such that c = 1− α. In both studies, induced trans-
formations (first return maps) of the maps are considered, and self-similarity in
the maps are reported. We also investigate such self-similarity in double rotations
by considering induced transformations in the present paper. Piecewise isometries
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Figure 1. (a) Double rotation. (b) Discharge number as a func-
tion of c for α ≈ 0.621 and β ≈ 0.813.

such as two-parameter piecewise rotations [3] are also closely related with double
rotations.

Double rotations appear in the field of electrical engineering as well. A simple
three capacitance equivalent circuit model of partial discharge phenomena [4] can
be reduced to a double rotation [5]. The parameter c of the double rotation cor-
responds to the amplitude of the voltage applied to the model, and the discharge
number corresponds to the average discharge rate of the model. Although the three
capacitance model is an old model, it is still important, for most partial discharge
models are based on it.

2. Partition of the parameter space

In this section, we define a partition of the parameter space and a transformation
on it. The meanings of the partition and the transformation will be given in the
next section.

Let D = [0, 1)× [0, 1)× [0, 1] be the parameter space of double rotations. Let us
define two regions D0 and D1 in D as

D0 = {(α, β, c) ∈ D | 0 < α < β}, D1 = {(α, β, c) ∈ D | 0 < β < α},
and let D∗ = D0 ∪D1. For each region D0 and D1, consider the partitions

D0,1 = {(α, β, c) ∈ D0 | c ≤ 1− β}, D1,1 = {(α, β, c) ∈ D1 | c ≤ β},
D0,2 = {(α, β, c) ∈ D0 | 1− β < c < 1− α}, D1,2 = {(α, β, c) ∈ D1 |β < c < α},
D0,3 = {(α, β, c) ∈ D0 | 1− α ≤ c}, D1,3 = {(α, β, c) ∈ D1 |α ≤ c},

as shown in Figure 2. Let D∗,j denote D0,j ∪ D1,j for each j ∈ {1, 2, 3}. The set
D \D∗ is called the boundary, and denoted by B. Then B can also be expressed as

B = {(α, β, c) ∈ D |α = 0, β = 0 or α = β}.
On each region De,j with e ∈ {0, 1} and j ∈ {1, 3}, let us define transformations
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Figure 2. Partition of the parameter space: the parameter space
D (grey cube) is composed of D0 and D1 (grey triangular prisms),
and each De is composed of De,j (black tetrahedra).

T(e,j) : De,j → D by

T(0,1)(α, β, c) =
({ α

1− β

}
,
{ β

1− β

}
,

c

1− β

)
,

T(0,3)(α, β, c) =
({α− 1

α

}
,
{β − 1

α

}
,
c + α− 1

α

)
,

T(1,1)(α, β, c) =
({α− 1

β

}
,
{β − 1

β

}
,
c

β

)
,

T(1,3)(α, β, c) =
({ α

1− α

}
,
{ β

1− α

}
,
c− α

1− α

)
.

Then, we define a transformation T : D∗,1 ∪D∗,3 → D simply as

T (α, β, c) = T(e,j)(α, β, c), if (α, β, c) ∈ De,j .

With the transformation T , for a given initial parameter (α, β, c), the sequence
of parameters T (α, β, c), T 2(α, β, c), . . . can be considered, as far as T is defined
for each parameter. Once the parameter is mapped into the set D∗,2 ∪ B, this
process terminates. When we consider such sequences, throughout this paper, we
let (αk, βk, ck) denote T k(α, β, c), if (αi, βi, ci) ∈ D∗,1 ∪D∗,3 for 0 ≤ i < k.

3. Induced transformation of double rotation

Before starting investigation on characteristics of double rotations, it should be
noted that the family of double rotations naturally has two symmetries as shown
in the following proposition.

Proposition 3.1. Let (α, β, c) ∈ D.



4 H. SUZUKI, S. ITO, AND K. AIHARA

(i) f(α,β,c) is isomorphic to fH(α,β,c), where H is the transformation given by
H(α, β, c) = (β, α, 1− c).

(ii) f(α,β,c) is isomorphic to f({1−β},{1−α},1−c) except for the behaviour at the
discontinuity points.

Proof. (i) Let Φθ denote a rotation given by Φθ(x) = x + θ (mod 1). Then, for
arbitrary x ∈ [0, 1), we have

Φ−1
c ◦ f(α,β,c) ◦ Φc(x) =

{
x + α (mod 1) if x ∈ [1− c, 1)
x + β (mod 1) if x ∈ [0, 1− c)

= f(β,α,1−c)(x).

(ii) Let h be the transformation given by h(x) = 1− x. If x 6= 0 and x 6= 1− c, we
have

h−1 ◦ f(α,β,c) ◦ h(x) =

{
x− α (mod 1) if x ∈ (1− c, 1)
x− β (mod 1) if x ∈ (0, 1− c)

= f({1−β},{1−α},1−c).

Note that both 0 and 1− c are the discontinuity points of f({1−β},{1−α},1−c). ¤

Because of these two symmetries, f(α,β,c) is also isomorphic to f({1−α},{1−β},c)
except for the discontinuity points. By the first symmetry, there is a one-to-one
correspondence of elements between D0,1 and D1,3, between D0,2 and D1,2, and
between D0,3 and D1,1. By the second symmetry, domains De,1 and De,3 are
symmetric to each other for e = 0 and 1. Furthermore, it should be noted that the
definition of T is also symmetric in the sense that H ◦ T ◦H(α, β, c) = T (α, β, c)
for arbitrary (α, β, c) ∈ D∗,1 ∪D∗,3.

In the case when (α, β, c) ∈ B, the double rotation f(α,β,c) is considered to be
trivial in the sense that it is a simple rotation or has an identity map on [0, c) or
[c, 1). In the following, for a non-trivial double rotation with a parameter (α, β, c) ∈
D∗, we consider the induced transformation of f(α,β,c) on the set I(α,β,c), which is
defined as

I(α,β,c) =





[0, 1− β) if (α, β, c) ∈ D0,1

[c + β − 1, c + α) if (α, β, c) ∈ D0,2

[1− α, 1) if (α, β, c) ∈ D0,3

[0, c) ∪ [c + 1− β, 1) if (α, β, c) ∈ D1,1

[0, β) ∪ [α, 1) if (α, β, c) ∈ D1,2

[0, c− α) ∪ [c, 1) if (α, β, c) ∈ D1,3.

Then, we show that the induced transformation is isomorphic to another double
rotation or a simple rotation, as shown in Figure 3. The definition of I(α,β,c) is also
symmetric in the sense that I(α,β,c) = Φc(IH(α,β,c)) for (α, β, c) ∈ D∗.

Lemma 3.1. If (α, β, c) ∈ D0,1, the induced transformation of f(α,β,c) on I(α,β,c)

is isomorphic to fT (α,β,c).
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(a) D0,1 (b) D0,2 (c) D0,3

Figure 3. Induced transformation of double rotation: double ro-
tations (black lines) and the induced transformations (grey lines)
for parameters in (a) D0,1, (b) D0,2, and (c) D0,3.

Proof. From the assumption (α, β, c) ∈ D0,1, we have α < β and c ≤ 1 − β.
Therefore f(α,β,c)(x) can be expressed as

f(α,β,c)(x) =





x + α if x ∈ [0, c)
x + β if x ∈ [c, 1− β)
x + β − 1 if x ∈ [1− β, 1).

Then f(α,β,c)(x) = x (mod 1 − β) for x ∈ [1 − β, 1). Since β − 1 < 0, any orbit
starting from x ∈ [1 − β, 1) visits the interval I(α,β,c) = [0, 1 − β) in a finite time.
Therefore, the induced transformation of f(α,β,c) on [0, 1− β) is

f(α,β,c)

∣∣
[0,1−β)

(x) =

{
x + α (mod 1− β) if x ∈ [0, c)
x + β (mod 1− β) if x ∈ [c, 1− β).

Then, with h(x) = (1− β)x, the induced transformation is isomorphic to the map

h−1 ◦ f(α,β,c)

∣∣
[0,1−β)

◦ h(x) =





x +
α

1− β
(mod 1) if x ∈

[
0,

c

1− β

)

x +
β

1− β
(mod 1) if x ∈

[ c

1− β
, 1

)
,

which is nothing but a double rotation fT (α,β,c) = f({ α
1−β },{ β

1−β }, c
1−β ). ¤

Lemma 3.2. If (α, β, c) ∈ D0,2, the restriction of f(α,β,c) to I(α,β,c) is isomorphic
to Φα/(1+α−β).

Proof. From the assumption (α, β, c) ∈ D0,2, we have 1−β < c < 1−α. Therefore
f(α,β,c)(x) can be expressed as

f(α,β,c)(x) =

{
x + α if x ∈ [0, c)
x + β − 1 if x ∈ [c, 1).
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Let h(x) = (1 + α− β)x + (c + β − 1). Then, for x ∈ [0, 1), we obtain

h−1 ◦ f(α,β,c) ◦ h(x) =





x +
α

1 + α− β
if x ∈

[
0,

1− β

1 + α− β

)

x +
β − 1

1 + α− β
if x ∈

[ 1− β

1 + α− β
, 1

)
,

= x +
α

1 + α− β
(mod 1),

which is the rotation Φα/(1+α−β). Since I(α,β,c) = h([0, 1)), the restriction of f(α,β,c)

to I(α,β,c) is isomorphic to Φα/(1+α−β). It should be noted that every x ∈ [0, 1) is
mapped into I(α,β,c) by f(α,β,c) in a finite time. ¤

Lemma 3.3. If (α, β, c) ∈ D0,3, the induced transformation of f(α,β,c) on I(α,β,c)

is isomorphic to fT (α,β,c).

Proof. From the assumption (α, β, c) ∈ D0,3, we have α < β and 1 − α ≤ c.
Therefore f(α,β,c)(x) can be expressed as

f(α,β,c)(x) =





x + α if x ∈ [0, 1− α)
x + α− 1 if x ∈ [1− α, c)
x + β − 1 if x ∈ [c, 1).

Then f(α,β,c)(x) = x (mod α) for x ∈ [0, 1−α). Hence the induced transformation
satisfies

f(α,β,c)

∣∣
[1−α,1)

(x) =

{
x + α− 1 (mod α) if x ∈ [1− α, c)
x + β − 1 (mod α) if x ∈ [c, 1).

Similarly to Lemma 3.1, we obtain h−1◦f(α,β,c)

∣∣
[1−α,1)

◦h = f({α−1
α },{ β−1

α }, α+c−1
α ) =

fT (α,β,c), where h(x) = αx + (1− α). ¤

Proposition 3.2. Let (α, β, c) ∈ De,j for e ∈ {0, 1} and j ∈ {1, 2, 3}.
(i) If j ∈ {1, 3}, the induced transformation f(α,β,c)

∣∣
I(α,β,c)

is isomorphic to
fT (α,β,c).

(ii) If j = 2, the restriction of f(α,β,c) to I(α,β,c) is isomorphic to a rotation
Φα/(1+α−β) and Φβ/(1−α+β) for e = 0 and 1, respectively.

Proof. If e = 0, the proof is given by Lemma 3.1, 3.2 and 3.3. We prove the case
for e = 1 by using the symmetry. Recall that the definitions of T and I(α,β,c)

are symmetric; H ◦ T ◦ H(α, β, c) = T (α, β, c) for (α, β, c) ∈ D∗,1 ∪ D∗,3, and
I(α,β,c) = Φc(IH(α,β,c)) for (α, β, c) ∈ D∗.

(i) Since (α, β, c) ∈ D1,1 ∪D1,3, Lemma 3.1 or 3.3 can be applied to H(α, β, c) ∈
D0,1 ∪D0,3. Therefore, we obtain

f(α,β,c)

∣∣
I(α,β,c)

= f(α,β,c)

∣∣
Φc(IH(α,β,c))

∼= fH(α,β,c)

∣∣
IH(α,β,c)

∼= fT◦H(α,β,c)
∼= fH◦T◦H(α,β,c) = fT (α,β,c).

(ii) Since (α, β, c) ∈ D1,2, Lemma 3.2 can be applied to H(α, β, c) ∈ D0,2.
Therefore the restriction of fH(α,β,c) to IH(α,β,c) is isomorphic to Φβ/(1−α+β). By
the symmetry, the restriction of f(α,β,c) to Φc(IH(α,β,c)) = I(α,β,c) is also isomorphic
to the rotation Φβ/(1−α+β). ¤
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In this way, reductions of double rotations correspond to the transformation T .
The example ITM given by Boshernitzan and Kornfeld [1] can be considered as

a double rotation with the parameter (α, α2, 1 − α) ∈ D, where α ≈ 0.311108 is
the unique root of the equation x3 − x2 − 3x + 1 = 0 such that α ∈ [0, 1). In fact,
(α, α2, 1−α) is a periodic point of T with period three, because (α, α2, 1−α) ∈ D1,3

and

T (α, α2, 1− α) =
( α

1− α
,

α2

1− α
, 1− α

1− α

)
∈ D1,3,

T 2(α, α2, 1− α) =
( α

1− 2α
,

α2

1− 2α
, 1− α

1− 2α

)
∈ D1,1,

T 3(α, α2, 1− α) =
(
1 +

3α− 1
α2

, 3 +
α2 + 2α− 1

α2
,
1− 3α

α2

)
= (α, α2, 1− α).

Thus f(α,α2,1−α) can be reduced to itself, as shown in [1]. The class of ITMs inves-
tigated by Bruin and Troubetzkoy [2] also corresponds to the plane in D specified
by c = 1−α. In the region D0, this plane is located at the boundary between D0,2

and D0,3. Therefore, f(α,β,1−α) can be reduced to a rotation. In the region D1,
although the behaviour of T is complicated as shown in [2], the plane is mapped
into itself by T . In this sense, the reductions are closed within the class.

4. Cantor structure

As shown in the previous section, reductions of double rotations can be described
by the transformation T on the parameter space. In this section, to investigate
the induced transformations successively reduced from a double rotation, we will
investigate the dynamics of T .

Firstly, in the following proposition, we consider the orbits starting from two
distinct initial parameters (α, β, c) and (α, β, c′) that share same α and β.

Proposition 4.1. Let j1, . . . , jn ∈ {1, 3}. Suppose both (αi, βi, ci) = T i(α, β, c)
and (α′i, β

′
i, c

′
i) = T i(α, β, c′) are elements of D∗,ji+1 for 0 ≤ i < n. Then αi = α′i

and βi = β′i for all i such that 0 ≤ i ≤ n.

Proof. As for the initial parameters, we assumed α0 = α′0 and β0 = β′0. Now let us
assume αi = α′i and βi = β′i. The next parameters are given by

(αi+1, βi+1, ci+1) = T(e,j)(αi, βi, ci) and (α′i+1, β
′
i+1, c

′
i+1) = T(e,j)(αi, βi, c

′
i)

for common e and j = ji+1. Then, in every definition of T(e,j), the values of αi+1

(or α′i+1) and βi+1 (or β′i+1) do not depend on the value of ci (or c′i). Therefore
αi+1 = α′i+1 and βi+1 = β′i+1. ¤

Let S = [0, 1) × [0, 1). For an initial parameter (α, β) ∈ S and a sequence
j1, . . . , jn such that j1, . . . , jn−1 ∈ {1, 3} and jn ∈ {1, 2, 3}, we define the set
Cj1,...,jn as

Cj1,...,jn = {c ∈ [0, 1] |T i(α, β, c) ∈ D∗,ji+1 for 0 ≤ i < n }.
Then, according to the proposition, if a sequence j1, . . . , jn ∈ {1, 3} is given, the
sequence of (αn, βn) starting from given (α, β) ∈ S can be uniquely determined by
(αn, βn, cn) = Tn(α, β, c), where c is arbitrarily chosen from Cj1,...,jn .
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Let C = [0, 1], because C can be considered as Cj1,...,jn for n = 0. To consider
the case n = 1, let us assume that (α, β) is in the set S∗ defined by

S∗ = {(α, β) ∈ [0, 1)× [0, 1) |α 6= 0, β 6= 0, and α 6= β}.

Then, from the definitions of the regions De,j , the sets C1, C2 and C3 turn out to
be the intervals given by

C1 = [0, 1− β], C2 = (1− β, 1− α), C3 = [1− α, 1], if α > β,

C1 = [0, β], C2 = (β, α), C3 = [α, 1], if α < β.

If (α, β) 6∈ S∗, the sets C1, C2 and C3 are not well-defined (empty sets), because
(α, β, c) is in the boundary B for any c. We also define σj(α, β) for j ∈ {1, 2, 3}
and (α, β) ∈ S∗ as the length of Cj . Specifically, σj(α, β) is given by

σ1(α, β) =

{
1− β if α < β

β if α > β,
σ3(α, β) =

{
α if α < β

1− α if α > β,

and σ2(α, β) = |β − α|. Then, under the assumption (α, β) ∈ S∗, every σj(α, β) is
always positive, and σ1(α, β)+σ2(α, β)+σ3(α, β) = 1. This definition is symmetric
in the sense that σ1(α, β) = σ3(β, α) and σ2(α, β) = σ2(β, α)

In the following proposition, we consider the structure of the sets Cj1,...,jn in the
parameter space C = [0, 1] for fixed α and β.

Proposition 4.2. Let j1, . . . , jn ∈ {1, 3}. Assume (αi, βi) ∈ S∗ for 0 ≤ i ≤ n.
Then the following statements are true.

(i) Cj1,...,jn is a closed interval. Let Cj1,...,jn = [λn, λn + δn] in the following.
(ii) The map from c ∈ Cj1,...,jn to cn ∈ [0, 1] is a linear homeomorphism given

by cn = (c− λn)/δn.
(iii) The sets Cj1,...,jn,1 and Cj1,...,jn,3 are closed intervals, and the set Cj1,...,jn,2

is an open interval. More explicitly, these intervals are given by

Cj1,...,jn,1 = [λn, λn + δnσ1(αn, βn)],

Cj1,...,jn,2 = (λn + δnσ1(αn, βn), λn + δn(1− σ3(αn, βn))),

Cj1,...,jn,3 = [λn + δn(1− σ3(αn, βn)), λn + δn].

Thus Cj1,...,jn is composed of the disjoint union of the intervals Cj1,...,jn,1,
Cj1,...,jn,2 and Cj1,...,jn,3.

(iv) The length of Cj1,...,jn,jn+1 for jn+1 ∈ {1, 2, 3} is given by
∣∣Cj1,...,jn,jn+1

∣∣ = σj1(α0, β0) · · ·σjn+1(αn, βn).

Proof. We prove the proposition by induction on n. For n = 0, the statements are
true as follows. (i) C = [0, 1] is a closed interval. (ii) c0 = c = (c− λ0)/δ0, because
λ0 = 0 and δ0 = 1. (iii) By definition, C1 = [0, σ1(α0, β0)], C2 = [σ1(α0, β0), 1 −
σ3(α0, β0)), C3 = [1− σ3(α0, β0), 1]. (iv) Also by definition, |Cj1 | = σj1(α0, β0).

Let us assume the proposition is true for n and verify it for n + 1. (i) Cj1,...,jn+1

is closed, because it is already assumed in the statement (iii) of the proposition for
n. Let Cj1,...,jn+1 = [λn+1, λn+1 + δn+1]. (ii) From the definitions of T(e,j) and σj ,
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we obtain

cn+1 =
cn

σ1(αn, βn)
=

c− λn

δnσ1(αn, βn)
if jn+1 = 1,

cn+1 =
cn − (1− σ3(αn, βn))

σ3(αn, βn)
=

c− (λn + δn(1− σ3(αn, βn)))
δnσ3(αn, βn)

if jn+1 = 3,

because cn = (c − λn)/δn. On the other hand, in the statement (iii) for n, it is
assumed that

λn+1 = λn and δn+1 = δnσ1(αn, βn) if jn+1 = 1,

λn+1 = λn + δn(1− σ3(αn, βn)) and δn+1 = δnσ3(αn, βn) if jn+1 = 3.

Therefore, we obtain cn+1 = (c− λn+1)/δn+1 for both jn+1 = 1 and 3. (iii) By the
the map obtained in (ii), Cjn+2 for (αn+1, βn+1) ∈ S∗ corresponds to Cj1,...,jn+1,jn+2

in the statement. (iv) immediately follows from (iii). ¤

In the proposition, we assumed (αi, βi) ∈ S∗ for 0 ≤ i ≤ n. In fact, it will be
proven in Proposition 6.1 that, if α and β are linearly independent over Q, then
(αi, βi) ∈ S∗ for all i ≥ 0, Therefore, we assume that (α, β) is in the set Ŝ defined
by

Ŝ = {(α, β) ∈ [0, 1)× [0, 1) | If s, t ∈ Z and sα + tβ ∈ Z, then s = t = 0}.
Under the assumption, we can consider the structure of the sets Cj1,...,jn without
taking account of the boundary. Parameters outside of the set Ŝ will be discussed
in Section 6.

In the following, we consider the length of Cj1,...,jn as n goes to infinity. For
convenience, let σj1,...,jn(α, β) for j1, . . . , jn−1 ∈ {1, 3} and jn ∈ {1, 2, 3} be an
abbreviation of the product σj1(α0, β0) · · ·σjn(αn−1, βn−1). Note that |Cj1,...,jn | =
σj1,...,jn(α, β) is always positive, because σji(αi−1, βi−1) is always positive.

Lemma 4.1. Let (α, β) ∈ S∗.
(i) Let n = [(1 − σ1(α, β))−1]. If 0 ≤ i < n and j1 = · · · = ji = 1, then

the lengths of the intervals Cj1,...,ji,ji+1 are given by |Cj1,...,ji,1| = 1− (i +
1)(1− σ1(α, β)), |Cj1,...,ji,2| = σ2(α, β), and |Cj1,...,ji,3| = σ3(α, β).

(ii) Let n = [(1 − σ3(α, β))−1]. If 0 ≤ i < n and j1 = · · · = ji = 3, then
the lengths of the intervals Cj1,...,ji,ji+1 are given by |Cj1,...,ji,1| = σ1(α, β),
|Cj1,...,ji,2| = σ2(α, β), and |Cj1,...,ji,3| = 1− (i + 1)(1− σ3(α, β)).

Proof. The statement (ii) is symmetric to (i). Therefore, we prove (i) by induction
on i. For i = 0, the equations are nothing but the definitions of σj(α, β).

Let us assume the lemma is true for i and verify it for i + 1 < n. Since the
lengths of Cj1,...,ji,1 and Cj1,...,ji are given by the lemma for i and i− 1, we obtain

σ1(αi, βi) =
|Cj1,...,ji,1|
|Cj1,...,ji |

=
1− (i + 1)(1− σ1(α, β))

1− i(1− σ1(α, β))

= 1− 1
1 + (1− σ1(α, β))−1 − (i + 1)

where i + 1 < n = [(1− σ1(α, β))−1]. Hence,

σ1(αi, βi) > 1− 1
1 + {(1− σ1(α, β))−1} >

1
2
.
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Then σ1(αi, βi) > 1− σ1(αi, βi) and it follows from the definition of T that

(αi+1, βi+1) =





( αi

1− βi
,

βi

1− βi

)
if αi < βi

(
1 +

αi − 1
βi

, 1 +
βi − 1

βi

)
if αi > βi.

Therefore, we obtain

σ2(αi+1, βi+1) =
σ2(αi, βi)
σ1(αi, βi)

, σ3(αi+1, βi+1) =
σ3(αi, βi)
σ1(αi, βi)

.

Applying this result to Proposition 4.2(iv), we obtain
∣∣Cj1,...,ji+1,2

∣∣ = σj1,...,ji
(α0, β0)σ1(αi, βi)σ2(αi+1, βi+1)

= σj1,...,ji(α0, β0)σ2(αi, βi) = |Cj1,...,ji,2| = σ2(α, β),∣∣Cj1,...,ji+1,3

∣∣ = σj1,...,ji
(α0, β0)σ1(αi, βi)σ3(αi+1, βi+1)

= σj1,...,ji
(α0, β0)σ3(αi, βi) = |Cj1,...,ji,3| = σ3(α, β),∣∣Cj1,...,ji+1,1

∣∣ =
∣∣Cj1,...,ji+1

∣∣− (∣∣Cj1,...,ji+1,2

∣∣ +
∣∣Cj1,...,ji+1,3

∣∣)

=
∣∣Cj1,...,ji+1

∣∣− (1− σ1(α, β)) = 1− (i + 2)(1− σ1(α, β)).

Therefore, the lemma is also true for i + 1. ¤

By using this property, we show that the interval [0, 1] is inevitably divided into
small intervals in the following lemma and proposition.

Let E(α, β) = (1−max(σ1(α, β), σ3(α, β)))−1.

Lemma 4.2. Let (α, β) ∈ Ŝ and n = [E(α, β)]. For any sequence j1, . . . , jn ∈ {1, 3}
of length n,

|Cj1,...,jn | = σj1,...,jn(α, β) <
1
2
.

Proof. At least one of σ1(α, β) or σ3(α, β) is less than 1/2, because σ1(α, β) +
σ3(α, β) < 1. If both σ1(α, β) and σ3(α, β) are less than 1/2, then n is 1 and the
statement is true. Therefore, we can assume only one of σ1(α, β) or σ3(α, β) is
less than 1/2. Moreover, because of the symmetry, we can assume σ3(α, β) < 1/2
and σ1(α, β) ≥ 1/2 without any loss of generality. Then, under the assumption,
n = [(1− σ1(α, β))−1]. If j1 = · · · = jn = 1, it follows from Lemma 4.1(i) that

|Cj1,...,jn | = 1− n(1− σ1(α, β)) = {(1− σ1(α, β))−1}(1− σ1(α, β)) <
1
2
.

Otherwise, let i ≤ n be the smallest integer such that ji = 3. Then j1 = · · · =
ji−1 = 1. Hence

|Cj1,...,jn | <
∣∣Cj1,...,ji−1,3

∣∣ = σ3(α, β) <
1
2

because of Lemma 4.1(i). ¤

Now it is easy to show the following proposition.

Proposition 4.3. Let (α, β) ∈ Ŝ.

lim
n→∞

max
j1,...,jn∈{1,3}

|Cj1,...,jn | = 0.
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Proof. Let n ≥ 0 be an integer and,

n′ = n + max
j1,...,jn∈{1,3}

[E(αn, βn)].

Then, for any sequence j1, . . . , jn′ ∈ {1, 3}, it follows from Lemma 4.2 that
∣∣Cj1,...,jn′

∣∣ = σj1,...,jn
(α, β)σjn+1,...,jn′ (αn, βn)

<
1
2
|Cj1,...,jn

| ≤ 1
2

max
j1,...,jn∈{1,3}

|Cj1,...,jn
| .

Therefore, for arbitrary ε > 0, we can find finite n such that the maximum length
of |Cj1,...,jn

| becomes less than ε by repeating this process recursively. ¤

In the following, we consider the set Γ defined by

Γ = {c ∈ [0, 1] |T i(α, β, c) ∈ D∗,1 ∪D∗,3 for i ≥ 0 }.
In fact, the previous proposition implies that Γ is a Cantor set as shown later in
Theorem 4.1. For the investigation of the Lebesgue measure of Γ, we define Γn for
n ≥ 0 as

Γn = {c ∈ [0, 1] |T i(α, β, c) ∈ D∗,1 ∪D∗,3 for 0 ≤ i < n }.
Then the sets Γ and Γn can be expressed by the intervals Cj1,...,jn as

Γ =
∞⋂

n=0

Γn, Γn =
⋃

j1,...,jn∈{1,3}
Cj1,...,jn .

Since Cj1,...,jn are always closed for j1, . . . , jn ∈ {1, 3}, the sets Γn and Γ are also
closed.

Let us consider a subset V of S∗ defined by

V = {(α, β) ∈ S∗ | 0 ≤ 3α− 2β ≤ 1 and 0 ≤ 3β − 2α ≤ 1}.
Then note that the condition of (α, β) ∈ V is equivalent to each of the following
two inequalities:

σ2(α, β)
σj(α, β)

≤ 1
2

for j = 1 and 3,(1)

σ2(α, β) ≤ 1
3E(α, β)

.(2)

Intuitively, if (α, β) ∈ V , the measure of Γ1 becomes relatively large and near to one,
because σ2(α, β) is relatively small. Therefore, the set V plays an important role
in evaluating the measure of Γn. The following lemma claims that it is impossible
for any sequence (αi, βi) to stay in the set V forever.

Lemma 4.3. Let (α, β) ∈ Ŝ. There exists an integer n > 0 such that, for any
sequence j1, . . . , jn ∈ {1, 3} of length n, a non-negative integer i < n such that
(αi, βi) 6∈ V can be found.

Proof. Let us assume that there exist a parameter (α, β) ∈ Ŝ and an infinite se-
quence of ji ∈ {1, 3} such that (αn, βn) ∈ V for all n ≥ 0. It follows from the
definition of T that

βi+1 − αi+1 =
βi − αi

σji+1(αi, βi)
(mod 1).
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Taking into account that σ2(α, β) can be both β − α and α− β, we obtain

σ2(αi+1, βi+1) =





σ2(αi, βi)
σji+1(αi, βi)

1− σ2(αi, βi)
σji+1(αi, βi)

≥ 1
2
≥ σ2(αi, βi)

σji+1(αi, βi)
,

because of Inequality (1). Therefore, in both cases,

σji+1(αi, βi) ≥ σ2(αi, βi)
σ2(αi+1, βi+1)

.

Applying this inequality to Proposition 4.2(iv), for arbitrary n > 0, we obtain

|Cj1,...,jn | = σj1(α0, β0) · · ·σjn(αn−1, βn−1) ≥ σ2(α, β)
σ2(αn, βn)

> σ2(α, β).

On the other hand, according to Proposition 4.3, the limit of |Cj1,...,jn
| as n goes to

infinity must be zero. This is a contradiction and thus the first assumption turns
out to be false. ¤

Thus, it is impossible for any sequence (αi, βi) to stay in the set V forever.
Furthermore, if (α, β) 6∈ V , by taking adequate n, µ(Γn) becomes relatively small,
where µ denotes the Lebesgue measure. Therefore, now we can show the following
lemma concerning the measure of Γn.

Lemma 4.4. Let (α, β) ∈ Ŝ. There exists an integer n > 0 such that

µ(Γn) =
∑

j1,...,jn∈{1,3}
|Cj1,...,jn | <

5
6
.

Proof. Let us consider the set of sequences

W1 = {{j1, . . . , jk}|(αi, βi) ∈ V for 0 ≤ i < k and (αk, βk) 6∈ V }
and let n = max{j1,...,jk}∈W1(k + [E(αk, βk)]).

Assume {j1, . . . , jk} ∈ W1. Then (αk, βk) 6∈ V and

σ2(αk, βk) >
1

3E(αk, βk)
>

1
3

1
[E(αk, βk)] + 1

.

Since n ≥ k + [E(αk, βk)], it follows from Lemma 4.1 that
∑

jk+1,...,jn∈{1,3}
|Cj1,...,jn | ≤ |Cj1,...,jk

| (1− [E(αk, βk)]σ2(αk, βk)
)

< |Cj1,...,jk
|
(
1− 1

3
1

1 + [E(αk, βk)]−1

)
≤ 5

6
|Cj1,...,jk

| ,

where [E(αk, βk)]−1 ≤ 1 is applied to the last inequality.
Therefore, for l = 1, the set of sequences Wl satisfies the following conditions.

(i) For arbitrary {j1, . . . , jk} ∈ Wl,
∑

jk+1,...,jn∈{1,3}
|Cj1,...,jn | <

5
6
|Cj1,...,jk

| .

(ii) For arbitrary sequence j1, . . . , jn ∈ {1, 3}, there exists a unique integer
k ≤ n such that {j1, . . . , jk} ∈ Wl.
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Now assume that Wl satisfies the conditions and contains two or more elements.
From the set Wl, we construct a new set Wl+1 in the following way. Let {j1, . . . , jk}
be one of the longest sequences in Wl. Then, Wl must contain both {j1, . . . , jk−1, 1}
and {j1, . . . , jk−1, 3}, because if otherwise Wl cannot satisfy the condition (ii). Let
us construct Wl+1 from Wl by putting a new element {j1, . . . , jk−1} instead of the
elements {j1, . . . , jk−1, 1} and {j1, . . . , jk−1, 3}. Then, Wl+1 satisfies the condition
(ii). Moreover, the new element {j1, . . . , jk−1} satisfies the condition (i), because

∑

jk,...,jn∈{1,3}
|Cj1,...,jn | =

∑

jk+1,...,jn∈{1,3}

(∣∣Cj1,...,jk−1,1,jk+1,...,jn

∣∣ +
∣∣Cj1,...,jk−1,3,jk+1,...,jn

∣∣)

<
5
6

(∣∣Cj1,...,jk−1,1

∣∣ +
∣∣Cj1,...,jk−1,3

∣∣) <
5
6

∣∣Cj1,...,jk−1

∣∣ .

Thus Wl+1 satsifies the conditions. The number of elements in Wl+1 decreased by
one from Wl.

By induction, there exists a finite integer l such that Wl contains only one element
and still satisfies the conditions. The only element must be an empty string, because
of the condition (ii). Then the condition (i) for the empty string, namely

∑

j1,...,jn∈{1,3}
|Cj1,...,jn | <

5
6
|C| = 5

6
,

is nothing but the statement of the lemma. ¤

Now we are ready to prove the first theorem.

Theorem 4.1. Let (α, β) ∈ Ŝ. Then Γ is a Cantor set and has measure zero.

Proof. Γ is compact, because it is closed and bounded within [0, 1]. The connected
components in Γn are the intervals Cj1,...,jn for j1, . . . , jn ∈ {1, 3}, because they are
separated by the intervals Cj1,...,jn−1,2. The length of each connected component
as n goes to infinity is zero because of Proposition 4.3. Therefore, every connected
component in Γ is a single point, which means Γ is totally disconnected. Γ is also
a perfect set, because, for arbitrary c ∈ Γ, we can construct a sequence γi ∈ Γ that
never equals to c but converges to c in the following way. For a positive integer
i, there exists a sequence j1, . . . , ji ∈ {1, 3} such that c ∈ Cj1,...,ji . Then one of
the intervals Cj1,...,ji,1 and Cj1,...,ji,3 does not contain c. Let γi ∈ Γ be one of the
endpoints of the interval not containing c. Then γi 6= c. Since |c− γi| ≤ |Cj1,...,ji |,
it follows from Proposition 4.3 that limi→∞ |c−γi| = 0. Thus Γ is compact, totally
disconnected and perfect. Therefore it is a Cantor set.

Let n be a positive integer. Then, by applying Lemma 4.4 for (αn, βn), we can
find an integer n′ > n such that

∑

jn+1,...,jn′

∣∣Cj1,...,jn′
∣∣ <

5
6
|Cj1,...,jn |

for any sequence j1, . . . , jn ∈ {1, 3}. Taking summation over all the sequences, we
obtain

µ(Γn′) =
∑

j1,...,jn′

∣∣Cj1,...,jn′
∣∣ <

5
6

∑

j1,...,jn

|Cj1,...,jn | =
5
6
µ(Γn).

Therefore, for arbitrary ε > 0, we can find finite n such that the µ(Γn) < ε by
repeating this process recursively. Then we obtain µ(Γ) = 0, because Γ ⊂ Γn for
all n > 0. ¤
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Almost every (α, β) ∈ S satisfies the assumption (α, β) ∈ Ŝ, and then almost
every c ∈ [0, 1] is not in the set Γ. Therefore, we can conclude that almost every
double rotation is reducible to a rotation. Besides, since f(αn,βn,cn) becomes a
rotation if cn ∈ {0, 1}, it should be noted that f(α,β,c) can also be reduced to a
rotation if c is an endpoint of an interval Cj1,...,jn for a sequence j1, . . . , jn ∈ {1, 3},
even if c ∈ Γ.

5. Discharge number

In this section, we consider a characteristic number of double rotations, which
is called the discharge number. For a parameter (α, β, c) ∈ D and an initial state
x ∈ [0, 1), the discharge number of f(α,β,c) for x is defined as

q(α,β,c)(x) = lim
n→∞

1
n

n−1∑

i=0

χ[c,1)(f
i
(α,β,c)(x)),

if the limit exists, where χ[c,1) denotes the characteristic function of [c, 1).
Figure 1(b) shows a graph of q(α,β,c)(x) as a function of c, where α and β are

fixed. In the graph, q(α,β,c)(x) is independent of x, so that the graph takes only
a single value for each c. At first glance, we notice that the graph is like a devil’s
staircase. It is monotonically non-increasing and seems closely related to the Cantor
structure we discussed in the previous section. Each flat step in the graph seems
likely to correspond to each interval Cj1,...,jn,2.

We will assume (α, β, c) ∈ D̂ = Ŝ × [0, 1] and investigate such properties of the
discharge number in this section.

For the first step, in the following lemma, we show that the discharge number is
well-defined, independent of x, and constant on the interval C2. It should be noted
that, from the symmetry, q(α,β,c)(x) = 1− qH(α,β,c)(Φ−1

c (x)).

Proposition 5.1. Let (α, β, c) ∈ D̂. If (α, β, c) ∈ D∗,2, then q(α,β,c)(x) is a con-
stant function given by

q(α,β,c)(x) =
σ3(α, β)

σ1(α, β) + σ3(α, β)
,

and the value is independent of c.

Proof. In the statement, the equation for D1,2 is symmetric to the equation for D0,2,
because the equations satisfy q(α,β,c)(x) = 1−qH(α,β,c)(Φ−1

c (x)) for (α, β, c) ∈ D1,2.
Therefore, we can assume (α, β, c) ∈ D0,2 without any loss of generality. Then, for
any x ∈ [0, 1), there exists a finite integer k such that f i

(α,β,c)(x) ∈ I(α,β,c) for all
i ≥ k. On the interval I(α,β,c), it has been shown in Proposition 3.2 that f(α,β,c)

is isomorphic to a rotation Φα/(1+α−β). This rotation is irrational because of the
assumption (α, β) ∈ Ŝ. Then the orbit starting from fk

(α,β,c)(x) is equidistributed
on the interval I(α,β,c). Therefore, we obtain the discharge number

q(α,β,c)(x) = lim
n→∞

1
n

n−1∑

i=0

χ[c,1)(f
i
(α,β,c)(x)) =

∣∣I(α,β,c) ∩ [c, 1)
∣∣

∣∣I(α,β,c)

∣∣ =
α

1 + α− β
,

where recall that I(α,β,c) = [c + β − 1, c + α). ¤
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Let U = {x ∈ [0, c) |x+α ≥ 1}∪{x ∈ [c, 1) |x+β ≥ 1}. For further investigation
of discharge numbers, we define two other characteristic numbers p(α,β,c) and r(α,β,c)

for the sets [0, c) and U , respectively, in a similar way that we have defined q(α,β,c)

for the interval [c, 1). We also define Pn(x), Qn(x) and Rn(x) for a positive integer
n as the number of integers i ∈ {0, . . . , n− 1} such that f i(x) is in [0, c), [c, 1) and
U , respectively. Then, we have

Pn(x) =
n−1∑

i=0

χ[0,c)(f
i
(α,β,c)(x)), p(α,β,c)(x) = lim

n→∞
1
n

Pn(x),

Qn(x) =
n−1∑

i=0

χ[c,1)(f
i
(α,β,c)(x)), q(α,β,c)(x) = lim

n→∞
1
n

Qn(x),

Rn(x) =
n−1∑

i=0

χU (f i
(α,β,c)(x)), r(α,β,c)(x) = lim

n→∞
1
n

Rn(x).

It should be noted that, using these numbers, we can express fn
(α,β,c)(x) as

(3) fn
(α,β,c)(x) = x + αPn(x) + βQn(x)−Rn(x).

Similarly, the values p(α,β,c)(x), q(α,β,c)(x) and r(α,β,c)(x) are closely related to each
other, as shown in the following lemma.

Lemma 5.1. If p(α,β,c)(x), q(α,β,c)(x) and r(α,β,c)(x) have respective limits, then
they satisfy the equations

p(α,β,c)(x) + q(α,β,c)(x) = 1,

αp(α,β,c)(x) + βq(α,β,c)(x) = r(α,β,c)(x).

Proof. Since [0, c) ∪ [c, 1) is a disjoint union and equals to the whole state space
[0, 1), it is clear that Pn(x) + Qn(x) = n. Therefore, we obtain the first equation

p(α,β,c)(x) + q(α,β,c)(x) = lim
n→∞

1
n

(Pn(x) + Qn(x)) = 1.

We also obtain the second equation, by dividing Equation (3) by n and taking the
limit as n goes to infinity, where note that both x and fn(x) are bounded within
the interval [0, 1). ¤

This lemma claims that, if one of the values p(α,β,c)(x), q(α,β,c)(x) and r(α,β,c)(x)
is obtained, other two can be derived from the equations. In this sense, these three
values can be considered as equivalent.

Now we consider dependencies between the discharge numbers of f(α,β,c) and
fT (α,β,c), for (α, β, c) ∈ D∗,1 ∪D∗,3.

For an initial state x ∈ [0, 1), let us consider the orbit xi = f i
(α,β,c)(x). Then

the subsequence that consists of the elements such that xi ∈ I(α,β,c) is nothing but
an orbit of the induced transformation f(α,β,c)

∣∣
I(α,β,c)

. Let xk be the first element

of the orbit. By the isomorphism between f(α,β,c)

∣∣
I(α,β,c)

and fT (α,β,c), the element
xk ∈ I(α,β,c) has a corresponding point x′ in [0, 1). Let us call x′ as the initial state
induced from x.

In the following lemma, we will evaluate q(α,β,c) in the form
(

p(α,β,c)(x)
q(α,β,c)(x)

)
∼

(
u
v

)
,
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where ∼ means that (p(α,β,c)(x), q(α,β,c)(x)) and (u, v) are equivalent to each other
in the sense that one is a non-zero real multiple of the other. Then the value of
q(α,β,c)(x) is obtained by v/(u + v).

Lemma 5.2. Let (α, β, c) ∈ D0,1 and x ∈ [0, 1). Suppose the discharge number
qT (α,β,c)(x′) is well-defined, where x′ is the initial state induced from x. Then, the
discharge number q(α,β,c)(x) is also well-defined and given by

(
p(α,β,c)(x)
q(α,β,c)(x)

)
∼




1 0
α

1− β

1
1− β




(
pT (α,β,c)(x′)
qT (α,β,c)(x′)

)
.

Proof. Firstly, consider the first n elements of the orbit starting from x. Let n′ be
the number of the elements of the orbit that is in I(α,β,c) = [0, 1 − β). Then we
have n′ = n−Rn(x), because U = [1−β, 1). As we have defined before, Pn(x) and
Qn(x) are the number of elements in the intervals [0, c) and [c, 1), respectively. As
for the induced transformation, let P ′n′(x

′) and Q′
n′(x

′) be the number of elements
in the intervals [0, c) and [c, 1 − β), respectively. Then we obtain Pn(x) = P ′n′(x

′)
and Qn(x) = Q′n′(x

′) + Rn(x). Applying these results to Equation (3), we obtain

(1− β)Rn(x) = αP ′n′(x
′) + βQ′

n′(x
′) + (x− fn(x)),

where note that |x− fn(x)| < 1. Then,

r(α,β,c)(x) = lim
n→∞

1
n

Rn(x) = lim
n→∞

Rn(x)
P ′n′(x′) + Q′n′(x′) + Rn(x)

= lim
n→∞

αP ′n′(x
′) + βQ′

n′(x
′) + (x− fn(x))

(1 + α− β)P ′n′(x′) + Q′n′(x′) + (x− fn(x))

=
αpT (α,β,c)(x′) + βqT (α,β,c)(x′)

(1 + α− β)pT (α,β,c)(x′) + qT (α,β,c)(x′)
,

because n′ also goes to infinity as n goes to infinity. From Lemma 5.1, we obtain

p(α,β,c)(x) =
(1− β)pT (α,β,c)(x′)

(1 + α− β)pT (α,β,c)(x′) + qT (α,β,c)(x′)
,

q(α,β,c)(x) =
αpT (α,β,c)(x′) + qT (α,β,c)(x′)

(1 + α− β)pT (α,β,c)(x′) + qT (α,β,c)(x′)
,

which is equivalent to the equation in the statement. ¤

Lemma 5.3. Let (α, β, c) ∈ D0,3 and x ∈ [0, 1). Suppose the discharge number
qT (α,β,c)(x′) is well-defined, where x′ is the initial state induced from x. Then, the
discharge number q(α,β,c)(x) is also well-defined and given by

(
p(α,β,c)(x)
q(α,β,c)(x)

)
∼




1
α

1− β

α
0 1




(
pT (α,β,c)(x′)
qT (α,β,c)(x′)

)
.

Proof. Similarly to the proof of Lemma 5.2, consider the first n elements of the orbit
starting from x and let n′ bet the number of the elements in I(α,β,c) = [1−α, 1). In
this case we have n′ = Rn(x), because U = I(α,β,c). Let P ′n′(x

′) and Q′n′(x
′) be the

number of elements in the intervals [1−α, c) and [c, 1), respectively. Then we obtain
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Pn(x) = P ′n′(x
′)+n−Rn(x) and Qn(x) = Q′

n′(x
′). Since Rn(x) = P ′n′(x

′)+Q′
n′(x

′),
from Equation (3), we obtain

α(n−Rn(x)) = (1− α)P ′n′(x
′) + (1− β)Q′n′(x

′) + (fn(x)− x),

where |fn(x)− x| < 1. Then

r(α,β,c)(x) = lim
n→∞

1
n

Rn(x) = lim
n→∞

P ′n′(x
′) + Q′n′(x

′)
P ′n′(x′) + Q′n′(x′) + n−Rn(x)

= lim
n→∞

αP ′n′(x
′) + αQ′

n′(x
′)

P ′n′(x′) + (1 + α− β)Q′
n′(x′) + (fn(x)− x)

=
αpT (α,β,c)(x′) + αqT (α,β,c)(x′)

pT (α,β,c)(x′) + (1 + α− β)qT (α,β,c)(x′)
,

because n′ also goes to infinity as n goes to infinity. From Lemma 5.1, we obtain

p(α,β,c)(x) =
pT (α,β,c)(x′) + (1− β)qT (α,β,c)(x′)

pT (α,β,c)(x′) + (1 + α− β)qT (α,β,c)(x′)
,

q(α,β,c)(x) =
αqT (α,β,c)(x′)

pT (α,β,c)(x′) + (1 + α− β)qT (α,β,c)(x′)
,

which is equivalent to the equation in the statement. ¤
Lemma 5.2 and 5.3 can be generalized as the following proposition.

Proposition 5.2. Suppose (α, β, c) ∈ D∗,j for j = 1 or 3.
(i) Let x ∈ [0, 1). Suppose the discharge number qT (α,β,c)(x′) is well-defined,

where x′ is the initial state induced from x. Then, the discharge number
q(α,β,c)(x) is also well-defined and given by

(
p(α,β,c)(x)
q(α,β,c)(x)

)
∼ Mj(α, β)

(
pT (α,β,c)(x′)
qT (α,β,c)(x′)

)
,

where

M1(α, β) =




1 0
σ3(α, β)
σ1(α, β)

1
σ1(α, β)


 ,

M3(α, β) =




1
σ3(α, β)

σ1(α, β)
σ3(α, β)

0 1


 .

(ii) In addition, let (α, β, c′) ∈ D∗,j and y ∈ [0, 1). If qT (α,β,c′)(y′) is well-
defined and qT (α,β,c)(x′) > qT (α,β,c′)(y′), then q(α,β,c)(x) > q(α,β,c′)(y),
where y′ is the initial state induced from y.

Proof. (i) If α < β, the statement is equivalent to Lemma 5.2 and 5.3. Suppose
β > α. By the symmetry, we obtain(

p(α,β,c)(x)
q(α,β,c)(x)

)
∼

(
0 1
1 0

)
Mj′(β, α)

(
0 1
1 0

) (
pT (α,β,c)(x′)
qT (α,β,c)(x′)

)
,

where j′ ∈ {1, 3} is the one that is different from j. Then, since Mj′ and Mj

satisfies the equation (
0 1
1 0

)
Mj′(β, α)

(
0 1
1 0

)
= Mj(α, β),
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the statement is also true even if β > α.
(ii) Let us define a matrix by

(
u u′

v v′

)
= Mj(α, β)

(
pT (α,β,c)(x′) pT (α,β,c′)(y′)
qT (α,β,c)(x′) qT (α,β,c′)(y′)

)
.

Since q(α,β,c)(x) = v/(u + v) and q(α,β,c′)(y) = v′/(u′ + v′), we obtain

q(α,β,c′)(y)− q(α,β,c)(x) =
1

(u + v)(u′ + v′)
det

(
u u′

v v′

)

=
detMj(α, β)

(u + v)(u′ + v′)
(qT (α,β,c′)(y′)− qT (α,β,c)(x′)),

where (u + v), (u′ + v′) and det Mj(α, β) = σj(α, β)−1 are all positive. Therefore,
the sign of q(α,β,c′)(y)− q(α,β,c)(x) is same as qT (α,β,c′)(y′)− qT (α,β,c)(x′). ¤

Thus we can reduce the calculation of the discharge number of a double rotation
to the calculation for its induced transformation. Accordingly, we can show the
following proposition and theorem.

Proposition 5.3. Let (α, β) ∈ S∗ and c ∈ Cj1,...,jn,2. Then the discharge number
q(α,β,c)(x) is independent of x and given by

(
p(α,β,c)(x)
q(α,β,c)(x)

)
∼ Mj1(α0, β0) · · ·Mjn(αn−1, βn−1)

(
σ1(αn, βn)
σ3(αn, βn)

)

Proof. By applying Proposition 5.1 to (αn, βn, cn) ∈ D∗,2, we obtain
(

p(αn,βn,cn)(x)
q(αn,βn,cn)(x)

)
∼

(
σ1(αn, βn)
σ3(αn, βn)

)

for arbitrary x. Then, applying Proposition 5.2 recursively, we obtain the equation
in the statement. ¤

Theorem 5.1. Let (α, β) ∈ Ŝ and c ∈ [0, 1]\Γ. Then q(α,β,c)(x) is well-defined for
all x ∈ [0, 1) and the value is independent of x. Furthermore, on each connected
component in [0, 1] \ Γ, the value of q(α,β,c)(x) is constant. If c < c′ and c′ belongs
to another connected component of [0, 1] \ Γ, then q(α,β,c)(x) > q(α,β,c′)(x).

Proof. Since c ∈ [0, 1] \ Γ, there exists a sequence j1, . . . , jn ∈ {1, 3} such that
c ∈ Cj1,...,jn,2. From Proposition 5.3, it is shown that q(α,β,c)(x) is well-defined for
all x ∈ [0, 1) and independent of x.

Every connected component in [0, 1]\Γ equals to an open interval Cj1,...,jn,2 for a
certain sequence j1, . . . , jn ∈ {1, 3}, because the two endpoints of Cj1,...,jn,2 belongs
to Γ. Therefore, q(α,β,c)(x) is constant on the component.

Let c ∈ Cj1,...,jn,2 and c′ ∈ Cj′1,...,j′
n′ ,2

, and assume c < c′. Let k be the smallest
integer such that jk 6= j′k. From Proposition 5.2(ii), we can assume k = 1, i.e. j1 6=
j′1, to prove q(α,β,c)(x) > q(α,β,c′)(x) without any loss of generality. Furthermore, j1
must be less than j′1 because of the assumption c < c′. Then, possible combinations
of (j1, j′1) are limited to (1, 2), (2, 3), and (1, 3). The last case can be derived from
the first two. The first two cases are symmetric to each other. Therefore, we only
have to examine the case (j1, j′1) = (1, 2). Assume c ∈ C1 and c′ ∈ C2. Then we
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have (
p(α,β,c)(x)
q(α,β,c)(x)

)
∼

(
σ1(α, β) 0
σ3(α, β) 1

)(
p(α1,β1,c1)(x)
q(α1,β1,c1)(x)

)
,

(
p(α,β,c′)(x)
q(α,β,c′)(x)

)
∼

(
σ1(α, β)
σ3(α, β)

)
=

(
σ1(α, β) 0
σ3(α, β) 1

)(
1
0

)
.

Since both p(α1,β1,c1)(x) and q(α1,β1,c1)(x) are non-negative, we have q(α,β,c)(x) ≥
q(α,β,c′)(x). If q(α,β,c)(x) = q(α,β,c′)(x), then q(α1,β1,c1)(x) = 0, and recursively, all
of q(α1,β1,c1)(x), . . . , q(αn,βn,cn)(x) must be zero. On the other hand, q(αn,βn,cn)(x)
cannot be zero, because

(
p(αn,βn,cn)(x)
q(αn,βn,cn)(x)

)
∼

(
σ1(αn, βn)
σ3(αn, βn)

)
,

and σ3(αn, βn) is positive. Therefore, q(α,β,c)(x) > q(α,β,c′)(x). ¤

6. Classification of double rotations

In the previous sections, we ignored the boundary B by assuming that α and
β are linearly independent over Q, namely (α, β, c) ∈ D̂ = Ŝ × [0, 1]. To justify
the discussion, we have to confirm that (αi, βi, ci) is never mapped into B by the
transformation T under the assumption (α, β, c) ∈ D̂. For the purpose, we will
show that the sequence (αi, βi, ci) is always in the set D̂, for the set D̂ has no
intersection with the boundary B. Let L = Z2 \ {(0, 0)}.
Proposition 6.1. Let (α, β, c) ∈ D∗,1 ∪D∗,3 and (α1, β1, c1) = T (α, β, c). Assume
(s, t) and (s1, t1) satisfy the equation

(4)
(

s1

t1

)
= Mj(α, β)−1

(
s
t

)
.

Then, (s1, t1) ∈ L and s1α1 + t1β1 ∈ Z if and only if (s, t) ∈ L and sα + tβ ∈ Z.
Therefore, (α1, β1, c1) ∈ D̂ if and only if (α, β, c) ∈ D̂.

Proof. Firstly, let us assume (s, t) and (s1, t1) satisfy Equation (4), and show the
following statements.

(i) Assume sα + tβ ∈ Z. Then, (s, t) ∈ L if and only if (s1, t1) ∈ L.
(ii) If (s1, t1) ∈ L and s1α1 + t1β1 ∈ Z, then sα + tβ ∈ Z.
(iii) If (s, t) ∈ L, (s1, t1) ∈ L, and sα + tβ ∈ Z, then s1α1 + t1β1 ∈ Z.

By the symmetry, we can assume (α, β, c) ∈ D0,1 ∪D0,3 without any loss of gener-
ality. (i) is true because (s1, t1) is given by

(
s1

t1

)
= M1(α, β)−1

(
s
t

)
=

(
s

t− (sα + tβ)

)
if (α, β, c) ∈ D0,1,

(
s1

t1

)
= M3(α, β)−1

(
s
t

)
=

(
(sα + tβ)− t

t

)
if (α, β, c) ∈ D0,3.

Then, (ii) is also true for (α, β, c) ∈ D0,3, because s1 + t1 = sα + tβ. For (α, β, c) ∈
D0,1, it follows from the definition of T that

sα + tβ = (s1α1 + t1β1) + s1

[
α

1− β

]
+ t1

[
β

1− β

]
.
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Therefore (ii) and (iii) for (α, β, c) ∈ D0,1 are true. Similarly, (iii) for (α, β, c) ∈ D0,3

is also true, because

(sα + tβ)− (s + t) = (s1α1 + t1β1) + s1

[
α− 1

α

]
+ t1

[
β − 1

α

]
.

Now, using these statements, we can show the proposition as follows. If we assume
(s, t) ∈ L and sα + tβ ∈ Z, we have (s1, t1) ∈ L from (i), and then s1α1 + t1β1 ∈ Z
from (iii). If we assume (s1, t1) ∈ L and s1α1 + t1β1 ∈ Z, we have sα+ tβ ∈ Z from
(ii), and then (s, t) ∈ L from (i). ¤

In addition, for (α, β, c) ∈ D∗,1∪D∗,3 and (α1, β1, c1) = T (α, β, c), it is clear that
(α, β) ∈ Q2 if and only if (α1, β1) ∈ Q2. Then, we notice that there are three classes
of parameters: (i) (α, β, c) ∈ D∩ (Q2× [0, 1]), (ii) (α, β, c) ∈ D \ (D̂∪ (Q2× [0, 1])),
(iii) (α, β, c) ∈ D̂. A parameter in a certain class is never mapped into other classes
by the transformation T .

For (α, β, c) ∈ D, let us define the rotation rank of the double rotation f(α,β,c)

as the dimension of the vector space over Q spanned by α, β and 1. The rotation
rank differs from the rank of ITMs defined in [1], for the rank of f(α,β,c) as an ITM
is the dimension of the space spanned by α, β, c and 1. For each possible rotation
rank d = 1, 2 and 3, let Ωd denote the set of parameters (α, β, c) ∈ D such that
the rotation rank of f(α,β,c) is d. Then the three classes can be denoted by (i)
Ω1 = D ∩ (Q2 × [0, 1]), (ii) Ω2 = D \ (D̂ ∪ (Q2 × [0, 1])), (iii) Ω3 = D̂. We have
investigated the class Ω3 in the previous sections, and we will consider the classes
Ω1 and Ω2 in the following.

Firstly, we assume the parameter (α, β, c) is in the second class Ω2. In other
words, we assume that α and β are linearly dependent over Q and that at least one
of α and β is irrational. Then there exists (s, t) ∈ L that satisfies sα + tβ ∈ Z, and
the pair (s, t) is unique except for its rational multiples. Moreover, if (α, β, c) ∈
D∗,1∪D∗,3, the pair (s1, t1) obtained from Equation (4) is the unique solution such
that s1α1 + t1β1 ∈ Z. Recursively, for n ≥ 0, (sn, tn) that satisfies snαn + tnβn ∈ Z
can also be obtained uniquely by

(
sn

tn

)
= Mjn(αn−1, βn−1)−1 · · ·Mj1(α0, β0)−1

(
s
t

)
,

if (αi, βi, ci) ∈ D∗,ji+1 for 0 ≤ i < n.
Let us divide L into two disjoint regions L+ = {(s, t) ∈ L | st ≥ 0} and L− =

{(s, t) ∈ L | st < 0}. Then the following lemma shows that, intuitively speaking,
(si, ti) flows from L+ to L− and toward the origin (0, 0) as i increases.

Lemma 6.1. Let (α, β, c) ∈ D∗,1 ∪ D∗,3. Suppose (s, t) and (s1, t1) ∈ L satisfies
Equation (4).

(i) If (s, t) ∈ L+ and (s1, t1) ∈ L+, then |s1 + t1| < |s + t|.
(ii) If (s, t) ∈ L−, then (s1, t1) ∈ L−.
(iii) If (s, t) ∈ L− and (α, β, c) ∈ D∗,1, then |t1| < max(|s|, |t|).
(iv) If (s, t) ∈ L− and (α, β, c) ∈ D∗,3, then |s1| < max(|s|, |t|).
(v) If (s, t) ∈ L−, then max(|s1|, |t1|) ≤ max(|s|, |t|).

Proof. By reversing the sign of (s, t) if necessary, we only have to consider the case
that s is positive if s is non-zero, and that t is positive if s is zero. Furthermore, we
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can assume (α, β, c) ∈ D∗,1 without any loss of generality, because all the statements
are symmetric. Then, (s1, t1) is given by s1 = s and

t1 = −sσ3(α, β) + tσ1(α, β).

(i) From the assumption, t, t1 and s = s1 are all non-negative. Besides, s + t > 0
and s1 + t1 > 0. Then |s + t| − |s1 + t1| is given by

|s + t| − |s1 + t1| = t− t1 = (s + t)σ3(α, β) + tσ2(α, β) > 0.

Hence |s1 + t1| < |s + t|. (ii) From the assumption, st < 0. Then s1t1 is given by

s1t1 = −s2σ3(α, β) + stσ1(α, β) < 0.

Hence (s1, t1) ∈ L−. (iii) From the assumption and (ii), both t and t1 are negative,
and s = s1 are positive. Firstly, consider the case s + t ≥ 0, where max(|s|, |t|) =
max(s,−t) = s. Then we obtain s = s1 > −t1 = |t1|, because

s1 + t1 = (s + t)(1− σ3(α, β))− tσ2(α, β) > 0.

Now, assume the other case s+ t < 0, where max(|s|, |t|) = max(s,−t) = −t. Then
we also obtain −t > −t1 = |t1|, because

t− t1 = (s + t)σ3(α, β) + tσ2(α, β) < 0.

(v) In addition to (iii), s1 = s ≤ max(|s|, |t|). ¤

By using these results on the behaviour of (si, ti), we can examine the behaviour
of (αi, βi, ci) in the following proposition.

Proposition 6.2. Let (α, β, c) ∈ Ω2. There exists a finite integer n such that
(αn, βn, cn) ∈ D∗,2 ∪B or cn ∈ {0, 1}.
Proof. Suppose that (αi, βi, ci) ∈ D∗,1 ∪D∗,3 for all i ≥ 0.

In addition, if we suppose (si, ti) ∈ L+ for all i ≥ 0, from Lemma 6.1(i), there
must be an infinitely descending sequence of positive integers

|s + t| > |s1 + t1| > · · · > |si + ti| > · · · > 0,

but this is impossible. Hence, there must be a finite integer n such that (sn, tn) ∈
L−.

Therefore, we only have to consider the case (s, t) ∈ L−. Then, from Lemma
6.1(ii), (si, ti) ∈ L− for all i ≥ 0. From Lemma 6.1(v), there exists a non-ascending
infinite sequence of positive integers

max(|s|, |t|) ≥ max(|s1|, |t1|) ≥ · · · ≥ max(|si|, |ti|) ≥ · · · ≥ 1.

Therefore, there exist integers n and K such that

max(|sn|, |tn|) = max(|sn+1|, |tn+1|) = · · · = K ≥ 1.

For this n, assume (αn, βn, cn) ∈ D∗,1. Then, because of Lemma 6.1(iii), |tn+1| <
K. Therefore |sn+1| = K. Furthermore, the parameter (αn+1, βn+1, cn+1) must be
also in D∗,1, because, if (αn+1, βn+1, cn+1) ∈ D∗,3, Lemma 6.1(iv) claims |sn+2| <
K and |tn+2| = |tn+1| < K. Recursively, we obtain (αi, βi, ci) ∈ D∗,1 for all
i ≥ n. Similarly, we can show that, if (αn, βn, cn) ∈ D∗,3, then (αi, βi, ci) ∈ D∗,3
for all i ≥ n. Therefore, if we consider Cjn+1,jn+2,... for (αn, βn), then we obtain
cn ∈ C1,1,... ∪ C3,3,.... Besides, since (αi, βi, ci) does not fall into the boundary,
Lemma 4.2 can be applied even if (αi, βi) 6∈ Ŝ, and, in a similar way to Proposition
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4.3, it can be shown that the limit of |Cjn+1,...,jn′ | as n′ goes to infinity is zero. This
implies that cn ∈ {0, 1}. ¤

For a double rotation f(α,β,c), let us consider the sequence

[0, 1) ⊃ f(α,β,c)([0, 1)) ⊃ f2
(α,β,c)([0, 1)) ⊃ · · · .

If there exists an integer n such that

fn
(α,β,c)([0, 1)) = fn+1

(α,β,c)([0, 1)) = fn+2
(α,β,c)([0, 1)) = · · · ,

f(α,β,c) is called a double rotation of finite type [1]. If otherwise, it is called a double
rotation of infinite type.

As shown in the following theorem, Proposition 6.2 implies that every double
rotation f(α,β,c) for (α, β, c) ∈ Ω2 is of finite type. For the class (α, β, c) ∈ Ω1, the
double rotation f(α,β,c) is known to be of finite type, because the rank of f(α,β,c)

is at most 2, and it has already been shown in [1] that every ITM with the rank
not more than 2 is of finite type. However, in the following proposition, we give
another short proof specific to double rotations.

Proposition 6.3. Let (α, β, c) ∈ Ω1. There exists a finite integer n such that
(αn, βn, cn) ∈ D∗,2 ∪B.

Proof. Suppose (αi, βi, ci) ∈ D∗,1 ∪D∗,3 for all i ≥ 0. Let m0 be a positive integer
such that m0α0, m0β0 ∈ Z. From the integer m0, we construct a sequence of
positive integers m1, m2, . . . in the following way. For a positive integer mi such
that miαi, miβi ∈ Z, let mi+1 = miσji+1(αi, βi) if (αi, βi, ci) ∈ D∗,ji+1 . Then
mi+1, mi+1αi+1 and mi+1βi+1 are also all positive integers, because σji+1(αi, βi),
σji+1(αi, βi)αi+1 and σji+1(αi, βi)βi+1 are all Z-linear combinations of αi, βi and
1. Furthermore mi+1 < mi. By induction, there must be an infinitely descending
sequence of positive integers m0 > m1 > · · · > mi > · · · > 0, but this is impossible.
Hence, there exists a finite integer n such that (αn, βn, cn) ∈ D∗,2 ∪B. ¤

Thus, for (α, β, c) ∈ Ω1, the double rotation can be reduced to a rational rotation.
Since a rational rotation may have two discharge numbers depending on the initial
state, the double rotation also may have two discharge numbers.

The results for Ω1 and Ω2 can be summarized as follows.

Theorem 6.1. Every double rotation with rotation rank d ≤ 2 is of finite type.

Proof. Let (α, β, c) ∈ D. If an induced transformation of f(α,β,c) is of finite type,
then f(α,β,c) is also of finite type. Therefore, from Proposition 6.2 and 6.3, we only
have to show that f(α,β,c) is of finite type if (α, β, c) ∈ D∗,2∪B or c ∈ {0, 1}. In the
cases when f(α,β,c) is a rotation, it is of finite type. Therefore, we can assume either
α or β is zero, and 0 < c < 1. Furthermore, by the symmetry, we only consider the
case α = 0. Then f(α,β,c) is identity on [0, c). If β 6∈ Q, every x ∈ [c, 1) is mapped
into [0, c) in a finite time. If β ∈ Q, by the map fn

(α,β,c) for any n such that nβ ∈ Z,
every x ∈ [c, 1) is mapped into [0, c) or to x itself. Therefore, in either case, f(α,β,c)

is of finite type. ¤

Therefore, double rotations of infinite type only exist in Ω3. For (α, β) ∈ Ŝ,
let us construct the set Γ′ from Γ by eliminating the endpoints of all the intervals
Cj1,...,jn for all finite sequences j1, . . . , jn ∈ {1, 3}. Then, if c ∈ Γ′, the double
rotation f(α,β,c) is of infinite type. Otherwise, f(α,β,c) is of finite type.
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7. Concluding remarks

We have shown that, for every non-trivial double rotation with the parameter
(α, β, c) ∈ D∗, there exists an interval such that the induced transformation on
it becomes a simple rotation or another double rotation. Although this approach
does not seem directly applicable to general ITMs, it is a convenient tool at least
for double rotations. In the sense that this approach is effective, double rotations
seem to be an important class of ITMs.

By considering the induced transformations, we have investigated the fractal
structure in the parameter space, and shown that almost every double rotation can
be reduced to a rotation. The discharge number as a function of c for fixed α and
β turned out to reflect the fractal structure. Continuity of the discharge number
as a function of c for fixed (α, β) ∈ Ŝ is an interesting open problem.

Besides, there may be some intriguing relation between double rotations and
injective discontinuous piecewise-linear functions such as the function reduced from
Caianiello’s equation [6], for similar fractal structures in the parameter spaces are
observed in both maps.
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