MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

A Network Flow Approach to Cost Allocation for
Rooted Trees

Satoru Iwata Nozomu Zuiki

METR 2003-14 April 2003

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY
THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.i.u-tokyo.ac.jp/mi/mi-e.htm

The METR technical reports are published as a means to ensure timely dissemination of
scholarly and technical work on a non-commercial basis. Copyright and all rights therein
are maintained by the authors or by other copyright holders, notwithstanding that they
have offered their works here electronically. It is understood that all persons copying this
information will adhere to the terms and constraints invoked by each author's copyright.
These works may not be reposted without the explicit permission of the copyright holder.

A Network Flow Approach to Cost Allocation for
Rooted Trees

Satoru Iwata * Nozomu Zuiki

April 2003

Abstract

In the game theory approach to cost allocation, the main computational issue
is an algorithm for finding solutions such as the Shapley value and the nucleolus.
In this paper, we consider the problem of allocating construction cost of a tree
network that connects the supply source at the root to the users in the leaves. The
Shapley value of this game can be computed in O(n) time, where n is the number
of leaves. We show that the core of the game can be expressed in terms of network
flows. Based on this observation, we present O(nlogn) algorithms for computing
the nucleolus and the egalitarian allocation.

*Department of Mathematical Informatics, Graduate School of Information Science and Technology,
University of Tokyo, Tokyo 113-8656, Japan.

1 Introduction.

Suppose we plan to construct a pipeline network to supply gas from a source to each
house in a village. What is a reasonable way for the residents to share the construction
cost? This situation can be naturally formulated as a cooperative game.

Let T = (V, E) be a rooted directed tree that models the pipeline network. The
root r corresponds to the source, and the leaves N = {1,---,n} to the residents. For
each arc e € F, we denote by c(e) the cost to construct the corresponding part of the
network. For a nonempty subset S C N, let Eg be the set of arcs in the paths from
the root r to the leaves in S. Namely, F'g is the minimum arc set that is required to
construct so that the residents in S should be able to obtain gas from the source. The
cost to construct Fg is given by

v(S) =) cle). (1)

ecEg

If S is the set of residents who want to construct the pipeline, the residents in .S have
to pay v(S) in total.

Regarding the residents IV as players and v as a characteristic function, we consider
a cooperative game (N,v).The game (NN,v) is a convex game, whose characteristic
function is submodular, i.e.,

v(S) —v(§ — {i}) > o(T) — (T — {i}), Yie ScTCN. 2)

Cost allocation problems on trees have been considered by several authors. Megiddo
[8] studied the case in which each resident exists in each vertex except for the root in a
tree. He described an O(n) algorithm for computing the Shapley value and an O(n?)
algorithm for finding the nucleolus, where n is the number of vertices of the tree. Galil
[4] improved the latter O(n?) bound to O(nlogn) by using efficient mergeable heaps.

Given an instance of Megiddo’s model, attach a new arc with zero construction cost
to each internal node, and move the resident to the end of the new arc. The resulting
equivalent instance has each resident in each leave. Thus Megiddo’s model is a special
case of our framework.

Granot, Mashler, Owen, and Zhu [5] considered another extension of Megiddo’s
model and called it a standard tree game. The standard tree game allows each vertex
except for the root to have an arbitrary number of residents. They presented an
algorithm for computing the nucleolus.

Apparently, the standard tree games include our framework. On the other hand,
any standard tree game can be transformed to our game by attaching to each node
the same number of arcs as the residents therein and moving them to the distinct end
vertices. Thus our framework is as wide as the standard tree games. Since our model

is simpler to describe, it seems more suitable as a canonical model of these types of
problems.

In this paper, we show that the core of our game can be expressed in terms of
network flows. Based on this observation, we devise an algorithm for computing the
nucleolus in O(nlogn) time with the aid of efficient mergeable heaps. Moreover, we
show that the egalitarian allocation can be found in O(nlogn) time by a quadratic
optimization algorithm of Hochbaum and Hong [6].

The concept of egalitarian allocation was proposed by Dutta and Ray [2]. In a
convex game, the core forms a base polyhedron and the egalitarian allocation is the
lexicographically optimal base introduced by Fujishige [3]. The lexicographically op-
timal base generalizes the lexicographically optimal flow in a network with multiple
sources and sinks investigated by Megiddo [7]. Fujishige [3] showed that the lexi-
cographically optimal base minimizes among all bases a separable convex quadratic
objective function. Hochbaum and Hong [6] presented an efficient algorithm for solv-
ing this problem when the base polyhedron comes from the flows in tree network. We
apply this algorithm to the egalitarian allocation of our game.

2 The Shapley value.

The Shapley value of a cooperative game (N, v) is defined by

Yi = Z

S:eSCN

[St(n — S|~ 1!

n!

[v(S) = v(S\{i})]

In our game with 7' = (V, E), let P; denote the set of arcs in the path from r to
i € N and A(e) the set of leaves that use e € E. Namely, A(e) = {i | e € P;} for each
ec E.

The Shapley value of our game can be characterized as an allocation such that the
cost of an arc is equally paid by its users. This is a straightforward generalization of
the result of Megiddo [8]. It suggests a simple linear time algorithm for computing the

Shapley value.

Theorem 1 The Shapley value y of our game on the tree T = (V, E) is given by

 «)
v= 2 e

eePR;

Proof. Suppose the users join the construction plan one by one in a random order and
each user is charged with the additional cost when he joins. The Shapley value is the
expectation of the cost that each user has to pay in such a situation.

For e € P,, if resident i is at the head in the order among the users in A(e), then
i must be charged with c(e). The probability of this event is 1/|A(e)|. Therefore, the
expectation of the cost that i has to pay is the sum of c(e)/|A(e)| for e € P;. Thus we
obtain the formula for the Shapley value. |

3 The core.

In this section, we show that the core of the game (N, v) can be expressed in terms of
network flows.

For any vector z € RN and S C N, we denote x(S) = 3;cq ®;. The core is the set
of allocation defined by

C(v) ={z e RN | z(S) <wv(S),VS C N, z(N) = v(N)}.
Let u: 2V — R be defined by u(S) = v(N) — v(N\S). Then we have
C(w) ={zr € RN | 2(N) = u(N), z(S) > u(S), VS C N}. (3)

If N\S construct the arcs to obtain the gas, they must be charged with v(/N\S). Then
u(S) is the rest of the total cost. Thus, u(S) is the minimum cost S must be charged
with.

Though the core is expressed in (3) by 2" — 1 inequality constraints, many of them
are redundant. In fact, only |E| = n — 1 constraints that correspond to the arcs are
needed to describe the core. This will be shown in Theorem 2.

For § C N, let Fg denote the set of arcs that are used only by S. Then Fg is a
forest that consists of rooted directed subtrees. Let Dg be the roots of those subtrees.
For each p € V, we denote by T}, the subtree of T' rooted at p containing every vertex
below p. We also denote by V), and N, respectively, the set of vertices and leaves of
T,. Then we have the following lemma.

Lemma 1 For an arbitrary S C N, we have

ec€Fg
which together with S = U,¢p, Np implies
Youly) =) D cle)
pEDg pEDg eeFNp

4

Since the arc sets Fiy, for p € Dg are disjoint, we have
Y. ulNy) =) cle).
pEDg ecFg

Thus we obtain

p€Dg
[|

For each p € V\{r}, we denote by e, the arc that enters p in 7. Namely, we have
N, = A(ep).

Theorem 2 [n the game (N, v), the core C(v) is given by
C(v)={z e RN | 2(N) =v(N), z(A(e)) > u(A(e)), Ve € E}. (4)

Proof. Let C'(v) denote the polyhedron described in the right-hand side of (4). Since
C(v) has all inequalities in C’(v), it is clear that C'(v) C C'(v). To prove C(v) C C'(v),
we derive z(S) — u(S) > 0 for an arbitrary S C N from the inequality constraints in
(4). If z € C’"(v), we have

z(Alep)) > u(Alep))
for each p € Dg. Summing up the both sides of these inequalities over Dg, we have
> w(Aley) > D u(Aley)).
pEDg pEDg

Because of S = U,epy A(ep) and Lemma 1, we have
z(S) > u(S).
This leads to C'(v) 2 C(v). Thus we obtain C(v) = C’(v). []

We now consider how to express the core in terms of network flows. A vertext € V
is called a child of s € V, if there is an arc from s to t. For each s € V, let I'(s) denote
the set of children of s. A flow is a function f : £ — R that satisfies the conservation
law f(ep) = Y ger(p) f(eq) for each internal vertex p. The value of a flow f is defined
by val f = 3 cr() f(eq)- Let £: E— R be the lower bound defined by I(e) = u(A(e)).
A flow f is called feasible if it satisfies f(e) > £(e) for each arc e € E and val f = u(N).
Then we have the following theorem.

Theorem 3 The core of the game (N, v) can be expressed by
C(w)={z € RN | z; = f(e&),Vi € N, f: feasible flow} (5)

Theorem 3 shows that the core in the game (N, v) can be expressed by the set of feasible

flows in T

4 The nucleolus.

In this section, we present an efficient algorithm to compute the nucleolus in the game
(N, v) based on the connection between the core and the feasible flows. The resulting
algorithm is quite close to that of Megiddo when applied to the special case discussed
in [8].

For the definition of the nucleolus, first we define h(S,x) = z(S) — u(S) for each
proper nonempty subset S of N. Let n(z) be the (2" — 2)-tuple of the numbers h(S, z)
arranged in order of increasing magnitude. Then the nucleolus z = (z1,---,2,) is
defined to be the unique vector that lexicographically maximizes 1(z) in the core.

Similarly to Lemma 1, we have the following.

Lemma 2 For an arbitrary S C N, we have

h(S,ZE) = Z h(A(ep)vI)
p€Dg
Proof. By the definition of h, we have h(A(ey),z) = z(A(ep)) — u(A(ep)) for p € Dg.
Summing up the both sides of these equations for p € Dg, we have

Y MAlep),2) = Y x(Alep)) — D ulAley))-

p€Dg e€Dg pEDg

Then it follows from Lemma 1 that

h(Sv m) = Z h(A(ep)am)

pEDg
holds. [|

Lemma 2 implies that the nucleolus is a vector x € C'(v) that lexicographically max-
imizes h(A(e),x) for e € E. By the definitions of f(e) and ¢(e), we have h(A(e),z) =
f(e)—£(e). Therefore, to compute the nucleolus, we should lexicographically maximize
the gap between the feasible flow and the lower bound.

For a feasible flow f, let n(f) denote the numbers f(e) — ¢(e) arranged in the
increasing order of magnitude. We call a feasible flow f* the v-flow if it lexicographically
maximizes n(f*).

We now define functions g for s € V\{r} and g, for s € V recursively by

gs(€) = max{l(es) + ¢, gs(e)},
gs(e) = Z gt(e€).
tel'(s)

Note that, for s € N, we have I'(s) = (), and hence gs(€) = 0 holds. Then gs(e) is the
lower bound on the flow through es when £ is uniformly increased by e. Furthermore,

gr(€) is the lower bound on the value of feasible flows in the same situation. The
functions gs; and gs are piece-wise linear, monotone nondecreasing, and convex. Let €4
be the maximum value of € such that gs(€) = £(es) + €. Then gg(e) = £(e) + € if € < ¢4,
and gs(€) = gs(€) otherwise.

Let ¢ be the maximum value that satisfies §,.(¢*) = (V). Then €* is the maximum
gap between a feasible flow and its lower bound. Let T* = (W, F) be the unique
maximal subtree of T such that e, < ¢* for s € W\{r}, and let R be the set of vertices in
VAW adjacent to W. Then we have g,(¢*) = > cp 9s(€*) = €*|R| + > ;e ¢(es). On the
other hand, there is a feasible flow f such that f(es) = gs(€*) for s € WUR. Hence a v-
flow f* must satisfy f*(es) > £(es) +€* for s € R. It also satisfies >, f*(e5) = u(N).
Therefore, we have f*(es) = f(es) + €* for every s € R. Furthermore, this implies
[(es) = gs(€*) + € for every s € W\{r}. Thus, we obtain the following recursive
procedure to compute the v-flow.

Procedure Nu-Flow(p, a)
Step 1: Find ¢* with g,(¢*) = a.

Step 2: Identify the unique maximal subtree T = (W, F') of T}, such that e; < €* for
s € W\{p}. Let R be the set of vertices in V,,\W, adjacent to W.

Step 3: For each s € W\{r}, assign f(es) = gs(€*). For each ¢ € R, assign f(eq) =
l(eq) + €.

Step 4: For each ¢ € R, apply Nu-Flow(g, f(eg)).

In order to accomplish Nu-Flow, we need a preprocess Breaks(¢) that computes €
for each s € V\{r}. It detects all the break points of gs smaller than €z, and finally
it finds all the break points of g,. It also assigns the information on the shape of g,
between 0 and €, to each s € V.

A naive implementation of this in a bottom-up manner takes O(n?) time. However,
it can be implemented to run in O(nlogn) time with the aid of efficient mergeable
heaps as follows.

Suppose all the break points of g; are stored in a heap H; for each ¢t € T'(s). To
compute €, we construct a heap H, by merging all H; and delete the smallest €, in H,
repeatedly unless ¢(e) + €, > Gs(€,). Then we are able to compute the break point e,
which is added to Hy.

While deleting ¢, from Hy, the algorithm associates the related information of g, to
s € V. Once ¢, is deleted from Hj, it will not appear as a break point. Therefore the
total number of deletions from the heap is O(n). Using efficient mergeable heaps such
as the 2-3 tree, we are able to perform all these operations in O(nlogn) time [1].

The algorithm for finding the nucleolus z* is now described as follows.

Algorithm Nucleolus

Step 1: Apply Breaks(¢).

Step 2: Apply Nu-Flow(r, u(N)).

Step 3: For each i € N, assign] = f(e;).

We now discuss the time complexity of this algorithm. The preprocess Breaks
requires O(nlogn) time. Step 1 of Nu-Flow(p, o) takes linear time in the number of
break points of g, smaller than €,. As the total number of such break points are at
most n, the overall time spent for Step 1 of Nu-Flow during the algorithm is O(n).
Step 2 of Nu-Flow uses the depth first search, which requires a linear time in the size
of W U R. Hence the total time spent for Steps 2 and 3 during the algorithm is again
O(n). Thus the overall running time of the algorithm is O(nlogn).

5 The egalitarian allocation

In this section, we show that the egalitarian allocation in the game (N, v) can be found
in O(nlogn) time.

For an allocation z € R, let (x) be the sequence of numbers x; for i € N. The
egalitarian allocation with respect to a weight vector w € R is defined to be the
unique vector that lexicographically maximizes 0(x) in the core.

Similarly to Section 4, we investigate the egalitarian allocation of based on network
flows. For an arbitrary arc e € E, we define the flow of e and its lower bound as
f(e) = Yicae) i and l(e) = u(A(e)) = v(N) — v(N\A(e)), respectively. From Section
3, the core in the game (N, v) is denoted by (5). To have the egalitarian allocation in
(N, v), we should lexicographically maximize the flow into N.

The egalitarian allocation with respect to the weight vector w; is the unique optimal
solution to the following separable convex quadratic minimization problem on a flow f
inT.

12
Minimize E —

ien Wi
subject to z(A(e)) = f(e) (e€ E),
val f = v(N),

fle)> tle) (e€ E).

This is equivalent to the following problem with 8 = v(N) and f(e) = 8 — f(e) for
ee k.

Minimize Y (B-2)”

ien Wi

subject to Z(A(e)) = f(e) (e € E),
0< fe) < BlA(e)| — Le) (e € B).

va

Hochbaum and Hong [6] presented an algorithm to solve this latter type of problems in

O(nlogn) time. Thus the egalitarian allocation for a tree can be found in O(nlogn)

time.

References

1]

2]

A. V. Aho, J. E. Hopcroft, and J. D. Ullman: The Design and Analysis of Computer
Algorithms, Addison-Wesley, 1974.

B. Dutta and D. Ray: A concept of egalitarianism under participation constraints.
Econometrica, vol. 57 (1989), pp. 615 635.

S. Fujishige: Lexicographically optimal base of a polymatroid with respect to a
weight, vector. Mathematics of Operations Research, vol. 5 (1980), pp. 186 196.

Z. Galil: Applications of efficient mergeable heaps for optimization problems on
trees. Acta Informatica, vol. 13 (1980), pp. 53 58.

D. Granot, M. Mashler, G. Owen, and W. R. Zhu: The kernel/nucleolus of a
standard tree game. International Journal of Game Theory, vol. 25 (1996), pp. 219
244.

D. Hochbaum and S.-P. Hong: About strongly polynomial time algorithms for
quadratic optimization over submodular constraints. Mathematical Programming,
vol. 69 (1995), pp. 269-309.

N. Megiddo: Optimal flows in networks with multiple sources and sinks. Mathe-
matical Programming, vol. 7 (1974), pp. 97-107.

N. Megiddo: Computational complexity of the game theory approach to cost allo-
cation for a tree. Mathematics of Operations Research, vol. 3 (1978), pp. 189-196.

D. Schmeidler: The nucleolus of a characteristic function game. SIAM Journal on
Applied Mathematics, vol. 17 (1969), pp. 1163 1170.

[10] L. S. Shapley: A value for n-person games. Contributions to the Theory of Games,

H. W. Kuhn and A. W. Tucker, eds., 1953, pp. 305 317.

[11] L. S. Shapley: Cores of convex games. International Journal of Game Theory, vol.

1 (1971), pp. 11 26.

