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Abstract

We propose a simple and efficient scheme for ranking all teams in a tournament,
where matches can be played simultaneously. We show that the distribution of the
number of rounds of the proposed scheme can be derived by lattice path counting
techniques used in ballot problems. We also discuss our method from the viewpoint
of parallel sorting algorithms.
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1 Introduction

Consider a tournament style matching of teams or players in sports, such as football or
tennis. The winner of the final match is naturally considered to be the strongest. Usually
the loser of the final match is considered to be the second strongest. However this might
not be true, considering the possibility that the true second strongest team might have
been defeated by the strongest team at an early stage of the tournament. In this case,
the true second strongest team could not proceed further. In fact any team defeated
by the strongest team at some stage may be the second strongest team. In order to
determine the true second strongest team, we have to arrange further matches between
the teams defeated by the strongest team. If we want to determine the third strongest
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team, the problem becomes more complicated. In this paper we propose a simple and
efficient scheme for determining ranks of all teams in a tournament.

The tournament above refers to single elimination or knockout tournament, where a
team exits from the tournament once it is defeated by another team. The problem of
a strong team being eliminated too early can be alleviated by double elimination tour-
naments ([6], [16]), where a team exits from the tournament after two losses. However
double elimination does not directly address the problem of ranking.

Initial motivation for this work was the above simple question of how to determine the
true second (third, fourth, etc.) strongest player in a tournament. However we found that
this problem dates back to Lewis Carroll [4], that it has close connections with lattice
path counting in ballot problems, extreme value distribution, partially ordered sets and
the parallel sorting algorithms. We believe that, in addition to proposing a new scheme
and deriving its properties, the present paper has merits in bringing together these rather
separate fields in a problem of historical interest.

In many sports games, matches can be played simultaneously. We call each set of
simultaneous matches a round. We use the number of rounds as a measure of the efficiency
of a ranking scheme while there have been several researches evaluating the number of
matches for some tournaments (for example, [5]). We assume some probabilistic models
of the result of each game and investigate the distribution of the number of rounds for
determining the whole ranking. It is combinatorially very difficult to obtain the optimal
ranking scheme in the sense of minimizing the expected number of rounds. Although our
scheme is not optimal, we will check numerically that the expected number of rounds of
our scheme is close to optimal for small number of teams.

We adopt the following notations and assumptions in this paper. “Match” and “game”
are used synonymously.

1. The set of teams is denoted by T = {t1, . . . , tN}, where N is the number of teams.
For example T = {Yankees, Blue Jays, . . .}. The ranking function is defined to
be an injection r : T → {1, . . . , N}, such that r(ti) < r(tj) if and only if ti is
(considered to be) stronger than tj . The strongest team t∗ satisfies r(t∗) = 1.
Similarly for a subset S ⊂ T , the relative rank of ti ∈ S in S is denoted by rS(ti)
(1 ≤ rS(ti) ≤ #S).

2. Each match is played between two teams. The result of each game is either win or
lose. We assume no tie. Each team plays at most one game in a round and each
game between two teams is played at most once. We denote the match between ti
and tj by [ti vs tj] or simply by [i vs j] and the set of matches by G = {[ti vs tj ] |
1 ≤ j < i ≤ N}. Furthermore let

wij =

{
1, if ti wins against tj ,
−1, if tj wins against ti .

Thus wij = −wji.
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3. Let Gk ⊂ G denote the set of matches belonging to the k-th round. We do not impose
any upper bound on the size of Gk and �N/2� matches can be played simultaneously.
This corresponds to the situation, where there is no restriction on play fields.

4. Gk can depend on the results of the past rounds ∪k−1
i=1 Gi.

5. If team ti wins against tj in a match, the ranking of ti must be higher than tj. In
other words, wij = 1 ⇒ r(ti) < r(tj).

6. Two teams ti and tj should not play a match, if their relative strength is already
determined by results of past rounds, i.e., if there exist teams tl1 , . . . , tlm such that
wil1 = wl1l2 = · · · = wlmj = 1 (or −1) in past rounds.

The last three assumptions are special characteristics of our problem, which are dif-
ferent from the problem of parallel sorting algorithms. Since the outcome of a match
may be random, a ranking scheme can lead to loops or contradictions. For example if
wij = wkl = 1 in past rounds, we should avoid matches [i vs l] and [j vs k] simultaneously
at the current round, because if wil = wkj = −1, then we have the contradiction

r(ti) < r(tj) < r(tk) < r(tl) < r(ti).

Therefore in designing a ranking scheme we have to consider not only the result of the
past rounds but also all possible results of the future rounds. Our goal is to find a
non-contradictory game scheduling scheme which needs small number of rounds for de-
termining the whole ranking.

Before proposing our ranking scheme, we consider the following subproblem:

Parallel merge problem
Suppose that there are two sets of teams A = {a1, . . . , an} and B = {b1, . . . , bm} with
n ≤ m and assume that relative ranks within each set are already determined as rA(ai) = i,
i = 1, . . . , n and rB(bi) = i, i = 1, . . . , m. Determine the ranks of the teams in the union
A ∪ B.

We propose equivalent rank matching(ERM) as a solution to this problem. For sim-
plicity we first assume that the sizes of the sets A and B are equal, i. e. n = m.

• Step 1: At the first round, ai matches against bi for each i = 1, . . . , n, simultaneously.
As a result a partial order is introduced into A ∪ B. The partial order can be
conveniently displayed by a diagram, where we put a stronger team immediately
above the teams next in the partial order. This diagram is called the Hasse diagram
representing the partial order (see the next section for precise definition of the
Hasse diagram). As the result of the first round, the Hasse diagram becomes some
combination of (single or connected) diamonds as Figure 1 and line segments as
Figure 2. Connected diamonds correspond to the winning streaks of teams from A
or teams from B. The rankings of the parts of line segments are already determined
at this stage. Thus, if the Hasse diagram becomes a single line, the whole ranking
is determined.
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Figure 1: A diamond (left) and connected diamonds (right).

Figure 2: Line segments.

• Step 2: At the next round, only the parts of connected diamonds have to be con-
sidered. Next we match the teams corresponding to the horizontal diagonal nodes
of each diamond in the Hasse diagram. Figure 3 shows an example of this process.
In Figure 3 “W” indicates the winner of the match between horizontal diagonal
nodes. It is easy to see that the result of this round is also represented by a Hasse
diagram consisting of line segments and diamonds. The diamonds correspond to
further winning streaks from the same set of teams as in the previous round.

• Step 3: If the Hasse diagram becomes a line, the whole ranking is determined.
Otherwise go back to step 2.

This method is finished in at most n rounds because the first round creates at most n
diamonds and the number of diamonds decreases at every round.

So far we have treated the case n = m for simplicity. If n < m we add m− n dummy
teams an+1, . . . , am, which are defined to be weaker than bm. Then we apply the above
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Figure 3: The process of step 2 of ERM.

merging scheme for the case n = m.
With ERM, we can determine the whole ranking of T recursively as follows:

• Step 1: Divide randomly the set of all teams T into two sets of teams such that the
difference of the sizes is at most 1. Repeat these divisions until each set consists of
just one team. This process is represented as a binary tree whose leaf corresponds
to each team (Figure 4). We call the binary tree merging tree.

• Step 2: Merge the sets of the teams in the reverse order of Step 1. Use ERM for
each merging (Figure 5). Sets at the same horizontal level of the merging tree are
merged in parallel and each merging requires a random number of rounds. We call
the set of rounds needed to merge sets at the same horizontal level a stage. For
example the rounds at the bottom of the binary tree constitute the first stage of
rounds and the rounds of the final merging of two sets constitute the last stage.

We call this method parallel merge sort by equivalent rank matching (PMS). If we use
the PMS, it is easy to visualize and grasp the schedule and progress of the games. This
is one of the benefits of the PMS.

The rest of the paper is organized as follows. In section 2, basic notions of partially
ordered sets and their Hasse diagrams are stated and a class of scheduling schemes in-
cluding PMS is defined. In section 3, the sure winner probabilistic model is investigated.
In section 4, the totally random probabilistic model is investigated, where each match is
a fair coin tossing. These two models are simple probabilistic models and the distribution
of the number of rounds can be evaluated by lattice path counting techniques used in
ballot problems. We prove that there exists a stochastic order between these two models
(theorem 4.6). In section 5, we discuss our scheme in view of existing literature on paral-
lel sorting algorithms. We also evaluate by simulation the distribution of the number of
rounds in the case of a one-parameter Bradley-Terry model connecting the sure winner
model and the totally random model.
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Figure 4: Step 1 of PMS (N=9).

2 Preliminaries

In this section we prepare some basic tools for investigating the behavior of PMS. First,
we review basic notions of partially ordered sets and their Hasse diagrams. In the later
part of this section, we propose a class of schemes for merging two sets of teams called
rectangle merge scheme.

2.1 Partially ordered set and Hasse diagrams

Here we quote basic notions of partially ordered set from Chapter 3 of [15]. Partially
ordered set P is a set together with a binary relation ≤, satisfying the following three
axioms: reflexivity (∀x ∈ P, x ≤ x), antisymmetry (x ≤ y and y ≤ x ⇒ x = y) and
transitivity (x ≤ y and y ≤ z ⇒ x ≤ z). The notation x < y means x ≤ y and x �= y. We
say two elements x and y of P are comparable if x ≤ y or y ≤ x, otherwise x and y are
incomparable. If every pair of elements of P is comparable, P is called a totally ordered
set. If x, y ∈ P , then we say y covers x if and only if x < y and there is no element z ∈ P
satisfying x < z < y. The Hasse diagram of a finite partially ordered set P is the graph
whose vertices are the elements of P , whose edges are the cover relations, and such that
if x < y then y is drawn with a higher horizontal coordinate than x.

In our case P = T and partial order is induced by matches between the teams. Note
that in the Hasse diagram of the teams, we put stronger teams higher. Since a stronger
team has a smaller rank, the order in the above definition is conversely related to the
ranks. Note that the teams ti and tj can be comparable, i.e., their relative strength has
been already determined, even if they did not play each other in a match.

If team ti covers tj, then it follows that ti has defeated tj in a match, but the converse
is not necessarily true. Suppose that in past rounds both ti and tj have defeated tk and
both cover tk before the current round. If the match [i vs j] is played at the current round
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Figure 5: Step 2 of PMS (N=9).
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and if wij = 1, then ti no longer covers tk.
As the rounds progress, the partial order becomes finer and finer until a whole ranking

is determined and T becomes a totally ordered set.
The Hasse diagram is one of the effective ways to display the game process. However,

for most of the game scheduling schemes, the Hasse diagram becomes much more compli-
cated than PMS. If the PMS is used, all Hasse diagrams during the game consist of line
segments and diamonds only.

2.2 Probabilistic models

In next two sections, we investigate the following two probabilistic models:

• sure winner case
The “true” ranking is determined before the tournament. If team ti is truly stronger
than tj , then ti wins against tj with probability 1. The randomness comes from the
random assignment of N teams to the leaves of the merging tree. All permutations
of the teams are equally likely.

• totally random case
The result of each match is independently and identically sampled from Bernoulli
distribution with success probability 1/2.

With the sure winner model, of course the final ranking “determined” by the results
of the games is equal to the true ranking. On the other hand, in the totally random
case, the final ranking is determined only by the random result of the matches. The
Bradley-Terry model, which is an intermediate model between the sure winner case and
the totally random case, seems to be more realistic than these two models. However
theoretical investigation of the Bradley-Terry model in our case seems to be difficult. We
study the Bradley-Terry model by simulation in section 5.

2.3 Rectangle merge scheme for parallel merge problem

In this subsection, we consider a parallel merge problem of teams A = {a1, . . . , an} and
B = {b1, . . . , bm}. We assume that these two sets are already ordered, i.e., rA(ai) = i, i =
1, . . . , n and rB(bi) = i, i = 1, . . . , m. Let In,m = {(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ m} be
the index set of pairs of a team in A and a team in B. We construct an n × m matrix
X = (xij) whose element xij represents the round of the match between ai and bj. For
example if x12 = 2, the match between a1 and b2 is scheduled in the second round. Note
that the match between ai and bj might or might not be played. Therefore xij stands
for the round in the case that the match between ai and bj has to be played. One of our
strategies is to determine all elements of X before the matches. We call this class of game
scheduling scheme static rectangle scheme. We have to impose some restriction on X to
cause no contradiction. If we select all matches [i vs j] for round k such that xij = k
and ai and bj are incomparable, then any set of results of the round k must make no
contradiction. Matrix X satisfying this requirement is called adequate scheduling matrix.
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Conditions of adequacy of X are different for the sure winner case and for the totally
random case. If X is adequate for the totally random case, then it is adequate for the sure
winner case. However the converse does not hold. The necessary and sufficient conditions
for the two cases are as follows:

X is an adequate scheduling matrix for sure winner model ⇔

∀(i1, j), (i2, j) ∈ In,m s. t. i1 < i2 and xi1j = xi2j ;

∃i s. t. i1 < i < i2 and xij < xi1j ,

and (1)

∀(i, j1), (i, j2) ∈ In,m s. t. j1 < j2 and xij1 = xij2;

∃j s. t. j1 < j < j2 and xij < xij1 .

X is an adequate scheduling matrix for totally random model ⇔

∀(i1, j1), (i2, j2) ∈ In,m s. t. i1 ≤ i2, j2 ≤ j1 and xi1j1 = xi2j2;

∃(i, j) ∈ In,m s. t. i1 ≤ i ≤ i2, j2 ≤ j ≤ j1 and xij < xi1j1 . (2)

Proofs of (1) and (2) are given in Appendix A. The bitonic merge discussed in section 5.1
satisfies (1) but not (2).

Static rectangle schemes determine all elements of X before the matches. A more
general class of scheduling methods is to determine the matches of the k-th round de-
pending on the result of the past rounds. We call this class dynamic rectangle scheme.
Every non-contradictory merging scheme can be specified by dynamic rectangle scheme
satisfying the above conditions at each round. However dynamic rectangle scheme is not
represented as a single matrix while the static rectangle scheme is. Therefore, it is very
difficult to understand visually the process of games with dynamic rectangle schemes.

We define X̆ = (x̆ij) where x̆ij = xj,m−i+1, i.e.,

X̆ =




x1m x2m . . . xnm
...

...
...

x12 x22 . . . xn2

x11 x21 . . . xn1


 .

X̆ is used for notational consistency with lattice path counting techniques.
We consider a class of scheduling method whose matrix X̆ has the same values in

the elements at each diagonal line of 45 degrees. We arrange the diagonal lines such
that between any two lines whose values are same there is at least one line which has a
smaller value (for example Table 1). It is evident that the methods in this class satisfy
the conditions (1) and (2). This class is called 45 degrees method.

Furthermore, matrixes X̆ of ERM are like Table 2. Thus ERM is a scheme of 45
degrees method and satisfies the conditions (1) and (2).
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Table 1: An example of matrix X̆ of 45 degrees method for the n × m merge problem.

5 2 4 3 1 4
2 4 3 1 4 2
4 3 1 4 2 3
3 1 4 2 3 4
1 4 2 3 4 5

Table 2: The matrix X̆ of equivalent rank matching for the n × m merge problem.

5 4 3 2 1 2
4 3 2 1 2 3
3 2 1 2 3 4
2 1 2 3 4 5
1 2 3 4 5 6

2.4 Notations for merging trees and stages

Finally we set up notations for merging tree and its stages. Let T be a merging tree.
Let J denote the number of stages of T . J + 1 is the depth of the rooted tree T . At
the j-th stage (1 ≤ j ≤ J), 2 × kj sets of teams are merged into kj sets in parallel. Let
Yjl, l = 1, . . . , kj, denote the number of rounds needed to merge the sets. Then the total
number of rounds Yj of the j-th stage is given by

Yj = max(Yj1, . . . , Yjkj
).

The total number of rounds is given by

Y = Y1 + · · ·+ YJ . (3)

Note that in the above definition of Yj, all teams wait until all of kj mergings are
finished at the j-th stage. We call this synchronous tree merging. In terms of reducing the
total number of rounds, synchronous tree merging is clearly not optimal. For example, as
soon as Aj1 and Aj2 are merged and Aj3 and Aj4 are merged at the j-th stage, we can begin
merging Aj1∪Aj2 and Aj3∪Aj4 at the (j +1)-th stage. We call this scheme asynchronous
tree merging. In the asynchronous case, the notion of stages lose simultaneity and it
becomes harder to grasp the progress of the games. Furthermore the total number of
rounds is only defined recursively. For example, with N = 8 teams the total number of
rounds for the asynchronous case is written as

Y = Y31 + max(Y21 + max(Y11, Y12), Y22 + max(Y13, Y14)).

In this paper we adopt synchronous tree merging for simplicity.
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3 Sure winner case

In this section, we study distribution of number of rounds in the sure winner probabilistic
model. First we establish the basic independence of number of rounds for different merg-
ings in theorem 3.1. Then in theorem 3.2 we derive recursion formula for evaluating the
distribution function of the number of rounds in ERM for merging two sets of teams.

Let Yj1, . . . , Yjkj
, j = 1, . . . , J, be defined as in section 2.4. Consider any merging

scheme of two sets of teams A, B. We call the merging scheme local, if the resulting
ranking of A ∪ B only depends on the outcomes of matches between a team of A and a
team of B. Then we have the following basic independence of number of rounds for the
sure winner probabilistic model.

Theorem 3.1 Assume the sure winner model. For any local merging scheme of two
sets of teams, Yjl, l = 1, . . . , kj, j = 1, . . . , J , are mutually independently distributed.

Proof. We argue recursively from the last stage. At the last stage we merge two sets of
teams of A and B of sizes n and m, n + m = N . Because the assignment of the teams at
the leaves of the binary tree is random, the set of ranks of teams of A are equally likely
and each set has the probability 1/

(
N
n

)
. Given the set of ranks of A, the merging process

up to A depends only on relative ranks of teams within A. Therefore the (conditional)
joint distribution of the rounds to form A is the same as in the original problem with
N replaced by n and the joint distribution does not depend on the ranks of teams of A
within T = A ∪ B. The same thing holds for B. Therefore by induction the number of
rounds are all mutually independent. �

By this independence the distribution function of Yj = max(Yj1, . . . , Yjkj
) is evaluated

as

P (Yj ≤ y) =

kj∏
l=1

P (Yjl ≤ y).

Furthermore Y1, . . . , YJ are independent. Therefore the distribution function of Y =
Y1 + · · · + YJ can be evaluated if the distribution of Yjl is evaluated.

Now we consider the distribution of number of rounds Yjl in a parallel merge problem.
First, we show a necessary and sufficient condition of identification of the ranking from
the viewpoint of rectangle scheme. We use the same notation of T , A, B, ti, ai, bj as in the
previous sections. Here T = A∪B and the size of T is n + m. Consider an n×m square
lattice whose nodes are denoted as {(i, j) | i = 0, 1, . . . , n, j = 0, 1, . . . , m}. We consider a
path which starts from the origin and proceeds at the i-th step to the right by the vector
e1 = (1, 0) if r−1(i) ∈ A, i.e. the i-th strongest team in the true ranking belongs to A, and
upward by the vector e2 = (0, 1) if r−1(i) ∈ B. Thus, each true ranking order corresponds
to a path of length n + m from the origin to (m, n) along the edges of the square lattice.
If we compare the square lattice and the matrix X̆, each square is regarded as a match. It
is evident that the ranking is identified if and only if the matches at every “inner corner”
of the corresponding path have been held. Here the inner corner is defined to be the lower
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Figure 6: A path corresponding to a “true” ranking order in the sure winner case.

right square when the path turns to the right (
�

) and the upper left square when the
path turn to the left ( �). For example, the path denoted by the thick line segments in
Figure 6 is identified by the matches α (x12), β (x43) and γ (x55). Comparing Figure 6
and matrix X̆ (Table 2), x12 = x43 = 2 and x55 = 1. Therefore, this path is identified at
the second round.

Let Y (n, m) denote the number of rounds for the n × m merge problem and let

Qn,m(k) = P (Y (n, m) ≤ k | sure winner model)

denote the distribution function of Y (n, m) under the sure winner model. For the case
of n = 0 or m = 0, Qn,m is formally defined as Qn,m(k) = 1 for all k ≥ 0. The following
theorem presents a recurrence formula of Qn,m(k).

Theorem 3.2 For all n, m ≥ 1,

(
n+m

n

)
Qn,m(k) =



(
2m+k−2

m

)
Qm+k−2,m(k), if n ≥ m + k, (4a)(

2n+k−2
n

)
Qn,n+k−2(k), if m ≥ n + k, (4b)(

n+m−1
n

)
Qn,m−1(k) +

(
n+m−1

m

)
Qn−1,m(k), otherwise. (4c)

Proof. We first prove the case of n ≥ m + k. Figure 7 is an example of square lattice
of this case (n = 6, m = 4, k = 2). The squares with the diagonal ( � ) correspond to
the matches held until the k-th round. Because n ≥ m + k in this example, the top and
rightmost square of the lattice (corresponding to xnm) does not have a diagonal. The top
and rightmost square which has the diagonal is the one corresponding to xm+k−1,m. Thus,
all paths from the origin to (n, m) pass through the point (m + k − 2, m). Conversely,
all paths from the origin to (m + k − 2, m) can be extended to (n, m). The number of
such paths is

(
2m+k−2

m

)
Qm+k−2,m(k). Therefore,

(
n+m

n

)
Qn,m(k) =

(
2m+k−2

m

)
Qm+k−2,m(k) if

n ≥ m + k. When m ≥ n + k, the equation is proved by the symmetry. Otherwise, the
square corresponding xnm has the diagonal. In this situation, all paths from the origin
to (n, m − 1) or (n − 1, m) can be extended to (n, m). The number of such paths is
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Figure 7: All paths must pass (m + k − 2, m). (In this example, n = 6, m = 4, k = 2.)

(
n+m−1

n

)
Qn,m−1(k) +

(
n+m−1

m

)
Qn−1,m(k). Therefore,

(
n+m

n

)
Qn,m(k) =

(
n+m−1

n

)
Qn,m−1(k) +(

n+m−1
m

)
Qn−1,m(k). �

For understanding the distribution Qn,m(k), it is convenient to consider a slack problem
such that paths can pass through all edges of squares with the diagonal. We call this slack
problem SP. The slack problem is directly related to lattice path counting for two-sample
Kolmogorov Smirnov statistic. Let Ỹ (n, m) denote the number of rounds for SP. Ỹ (n, m)
corresponds to the largest (horizontal or vertical) distance from the 45 degrees line through
the origin to the path. The following inequality holds between Y (n, m) and Ỹ (n, m):

Ỹ (n, m) ≤ Y (n, m) ≤ Ỹ (n, m) + 1. (5)

Let Q̃n,m(k) denote the distribution function of Ỹ (n, m) and let EQ̃
n,m = E[Ỹ (n, m)] denote

the expectation. The following facts (see e.g. [10], [7], [8] and [13]) on the two-sample
Kolmogorov-Smirnov statistic are well known.

Lemma 3.3

Q̃n,m(k) =

(
n + m

n

)−1 ∞∑
j=−∞

(−1)j

(
n + m

n + j(k + 1)

)
,

EQ̃
n,m =

(
n + m

n

)−1 ∞∑
k=0

∑
j �=0

(−1)j+1

(
n + m

n + j(k + 1)

)
. (6)

If m = n or n + 1, for z > 0

lim
n→∞

Q̃n,m(
√

nz) = 1 − 2

∞∑
j=1

(−1)j−1 exp(−j2z2).

From these results we can prove the following results.
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Lemma 3.4 (a) For any odd natural number J1 and even natural number J2,

(
n + m

n

)−1 J2∑
j=1

(−1)j+1αj ≤ EQ̃
n,m ≤

(
n + m

n

)−1 J1∑
j=1

(−1)j+1αj (7)

where

αj = j−1

j−1∑
l=0

ω−ln
j (1 + ωl

j)
n+m −

(
n + m

n

)

and ωj is a primitive j-th root of unity. In particular,

(
n + m

n

)−1

2n+m−1 ≤ EQ̃
n,m ≤

(
n + m

n

)−1

2n+m − 1. (8)

(b) If m = n or n + 1,

lim
n→∞

EQ̃
n,m/

√
n =

√
π log 2.

Proof. Let ai =
∞∑
l=0

(
n + m

i + jl − 1

)
for i = 1, . . . , j. Thus




(1 + 1)n+m

(1 + ωj)
n+m

(1 + ω2
j )

n+m

...

(1 + ωj−1
j )n+m




=




1 1 1 1 . . . 1

1 ωj ω2
j ω3

j . . . ωj−1
j

1 ω2
j ω4

j ω6
j

1 ω3
j ω6

j ω9
j

...
...

...
. . .

1 ωj−1
j . . . ω

(j−1)2

j







a1

a2

...

aj




.

The inverse of the matrix is simple and




a1

a2

...

aj




= j−1




1 1 1 1 . . . 1

1 ω−1
j ω−2

j ω−3
j . . . ω

−(j−1)
j

1 ω−2
j ω−4

j ω−6
j

1 ω−3
j ω−6

j ω−9
j

...
...

...
. . .

1 ω
−(j−1)
j . . . ω

−(j−1)2

j







(1 + 1)n+m

(1 + ωj)
n+m

(1 + ω2
j )

n+m

...

(1 + ωj−1
j )n+m




.

From (6),

EQ̃
n,m =

(
n + m

n

)−1 ∞∑
j=1

(−1)j+1αj

14



where

αj = a(n+1 mod j) −
(

n + m

n

)

= j−1

j−1∑
l=0

ω−ln
j (1 + ωl

j)
n+m −

(
n + m

n

)
.

From the definition, αj is nonnegative and monotonically nonincreasing. Thus inequality
(7) is valid. Let J1 = 1 and J2 = 2, (8) is derived.

Next we prove (b). The asymptotic expectation under Q̃ is evaluated as

lim
n→∞

EQ̃
n,n/

√
n = lim

n→∞

∞∑
k=0

(1 − Q̃n,n(k))/
√

n

= 2
∞∑

j=1

(−1)j−1

∫ ∞

0

exp(−j2z2)dz

=
√

π

∞∑
j=1

(−1)j−1j−1

=
√

π log 2.

Here the interchanges of integrals and limits can be easily justified by dominated conver-
gence theorem and Fubini’s theorem. The result is the same for m = n + 1. �

Let EQ
n,m = E[Y (n, m)] denote the expectation of Y (n, m). By (5), inequalities for

EQ
n,m, the asymptotic distribution of the number of rounds for ERM and the asymptotic

expectation EQ
n,n and EQ

n,n+1 are evaluated as follows:

Theorem 3.5 (a) (
n + m

n

)−1

2n+m−1 ≤ EQ
n,m ≤

(
n + m

n

)−1

2n+m.

(b) If m = n or n + 1,

lim
n→∞

Qn,m(
√

nz) = 1 − 2

∞∑
j=1

(−1)j−1 exp(−j2z2), z > 0,

lim
n→∞

EQ
n,m/

√
n =

√
π log 2.

4 Totally random case

In this section, we evaluate the number of rounds in totally random model with ERM.
The result of each match is independently and identically sampled from the Bernoulli trial
with success probability 1/2.

15



+ +

+

−
+

+

−
+ +

�

�
(0,m) (n,m)

(0,0) (n,0)

Figure 8: The games held until a path is identified. (+: A wins, −: B wins.)

First, as in the sure winner model, we state the following basic independence of number
of rounds for the totally random model.

Theorem 4.1 Assume the totally random model. For any local merging scheme of
two sets of teams, Yjl, l = 1, . . . , kj, j = 1, . . . , J , are mutually independently distributed.

Proof. In totally random model, result of each match is sampled independently from
Bernoulli distribution. Therefore the theorem is evident. �

Now we concentrate on square lattices as in the previous section. In the sure winner
case, the uniform probability is assigned to each path. However, in the totally random
case, the probabilities are different. If k matches are necessary to identify the path, the
probability assigned to the path is 2−k because the other matches are not held by ERM.
In Figure 8, 9 games are needed to identify the path denoted by the thick line segments.
By Table 2, the number of rounds k equals 3 in the example.

Let Pn,m(k) denote the distribution of the number of rounds with ERM in the totally
random case.

Pn,m(k) = P (Y (n, m) ≤ k | totally random model).

The following theorem presents the recurrence formula of Pn,m(k).

Theorem 4.2 For all n, m ≥ 1,

Pn,m(k) =




Pm+k−1,m(k) − 2−kPm+k−1,m−1(k), if m + k ≤ n, (9a)

Pn−1,m(k) − 2−n+m−1Pn−1,m−1(k) + 2−n+m−1Pn,m−1(k),

if m < n < m + k, (9b)

2−1Pn−1,m(k) + 2−1Pn,m−1(k), if n = m, (9c)

Pn,m−1(k) − 2n−m−1Pn−1,m−1(k) + 2n−m−1Pn−1,m(k),

if n < m < n + k, (9d)

Pn,n+k−1(k) − 2−kPn−1,n+k−1(k), if n + k ≤ m. (9e)

16
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Figure 9: Paths through (m + k − 1, m). (In this example, n = 7, m = 4, k = 2.)

Proof. For the case n = m the equation follows from the fact that the match [an vs bn]
is played at the first round. Because Pn,m(k) = Pm,n(k) by symmetry, we have only to
prove the case of m < n. As in the sure winner case, if n ≥ m+k all paths corresponding
to the ranking orders identified until the k-th round must pass the point (m + k − 2, m).
We compute the probability of these paths by subtracting the probability of paths through
(m+k−1, m−1) and (m+k−1, m) from the probability of paths through (m+k−1, m)
(Figure 9). The probability of the former paths is given by 2−kPm+k−1,m−1(k). Here, 2−k

is the probability such that bm loses to all of am, am+1, . . . , am+k−1. Thus,

Pn,m(k) = Pm+k−1,m(k) − 2−kPm+k−1,m−1(k). (10)

If m < n < m + k, all paths corresponding to the ranking orders which are identified
until the k-th round must pass point (n − 1, m) or (n, m − 1) (Figure 10). By similar
argument to (10), the probability of the paths through (n− 1, m) is given by Pn−1,m(k)−
2−(n−m+1)Pn−1,m−1(k). On the other hand, the probability of the paths through (n, m −
1) is 2−(m−n+1)Pn−1,m(k). Here, 2−(n−m+1) is the probability such that bm loses all of
am, am+1, . . . , an. Thus Pn,m(k) = Pn−1,m(k)−2−(n−m+1)Pn−1,m−1(k)+2−(n−m+1)Pn,m−1(k).
�

The following lemma gives some properties of Pn,m(k). We use them later in the proof
of the theorems which evaluate Pn,m(k) and its expected value.

Lemma 4.3
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Figure 10: All paths must pass (n − 1, m) or (n, m − 1). (In this example, n = 6, m =
4, k = 3.)

(a)
Pn,n(k) = Pn,n−1(k) = Pn−1,n(k). (11)

(b) If m < n ≤ m + k,
Pn,m(k) ≤ Pn−1,m(k). (12)

The inequality is strict if and only if n ≥ k + 1.

(c) If m < n < m + k,
Pn,m(k) ≥ Pn,m−1(k). (13)

The inequality is strict if and only if n ≥ k + 1.

(d) If m ≤ n,
Pn,m(k) ≥ 2−1Pm,m(k). (14)

Proof. (a) is an immediate consequence of (9c) and the symmetry Pn,n−1(k) = Pn−1,n(k).
Next we prove (b) and (c). If m < n ≤ k, Pn,m(k) = Pn−1,m(k) = Pn,m−1(k) = 1.

Therefore we have only to prove for n ≥ k + 1. If m = n − k, Pn,m(k) − Pn−1,m(k) =
−2−kPn−1,m−1(k) < 0 by (9a). Assume Pn,m(k) < Pn−1,m(k) for a (m, n) such that
m + 1 < n ≤ m + k, then Pn,m+1 − Pn−1,m+1(k) = 2−n+m(Pn,m(k) − Pn−1,m(k)) < 0
because of (9b). Induction on m proves (b). If m < n < m + k,

Pn,m(k) = Pm,m(k) +
n−m∑
j=1

(Pm+j,m(k) − Pm+j−1,m(k))

(9b)
= Pm,m(k) +

n−m∑
j=1

2−(j+1)(Pm+j,m−1(k) − Pm+j−1,m−1(k))

(a),(b)

≥ Pm,m−1(k) +
n−m∑
j=1

(Pm+j,m−1(k) − Pm+j−1,m−1(k))

= Pn,m−1(k).

18



Thus, (c) is proved.
A proof of (d) is as follows. From (b) and (9a), if n < m + k < n′, Pn,m(k) ≥

Pm+k,m(k) = Pn′,m(k). Therefore, it is enough to prove the case n = m + k.

Pm+k,m(k)
(9a),(9b)

= Pm,m(k) +

k−1∑
j=1

2−(j+1)(Pm+j,m−1(k) − Pm+j−1,m−1(k))

− 2−kPm+k−1,m−1(k)

≥ Pm,m(k) −
k−1∑
j=1

2−(j+1)Pm+j−1,m−1(k) − 2−kPm+k−1,m−1(k)

(b)

≥ Pm,m(k) − Pm,m−1(k)

(
k−1∑
j=1

2−(j+1) + 2−k

)

(a)
= 2−1Pm,m(k).

Thus, (d) is proved. �

Note that from (11) and (12) we have

Pn,n(k) ≤ Pn−1,n−1(k),

i.e. Pn,n(k) is decreasing in n.
Let EP

n,m denote the expectation of Y (n, m) under the totally random model. The
following theorem gives the order of EP

n,m.

Theorem 4.4 If m = n or n + 1,

lim
n→∞

EP
n,m

(log n)1/2
=

√
2

log 2
. (15)

Proof. Fix an arbitrarily small δ > 0. At the end of the proof we let δ ↓ 0.
We first consider an upper bound of EP

n,m for m = n or n+1. Let W M
n = (wM

ij )i,j=1,...n

be defined such that wM
ij = 1 if ai wins against bj , wM

ij = −1 if bj wins against ai and

wM
ij = 0 if the match is not played. Let W̆ M

n = (w̆M
ij ), w̆M

ij = wM
j,m−i+1, be defined as in

section 2.3. At least k + 1 rounds are necessary to identify a ranking if and only if W̆ M
n

contains at least one (k + 1) × (k + 1) submatrix as




wM
t,t+k . . . wM

t+k,t+k
...

...
wM

tt . . . wM
t+k,t


 =




0 0 . . . 0 1
0 0 . . . 1 1
...

...
. . .

...
...

0 1 . . . 1 1
1 1 . . . 1 ±1


 or




±1 −1 . . . −1 −1
−1 −1 . . . −1 0
...

...
. . .

...
...

−1 −1 . . . 0 0
−1 0 . . . 0 0


 .
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Thus by Bonferroni’s inequality,

1 − Pn,m(k) ≤ (n − k)2−(k+1)(k+2)/2+2 ≤ 4n2−k2/2. (16)

Therefore

EP
n,m = 1 +

m−1∑
k=1

(1 − Pn,m(k))

≤ 1 +

�2(log2 n)1/2�∑
k=1

(1 − Pn,m(k)) +
m−1∑

k=�2(log2 n)1/2�+1

(n − k)2−(k+1)(k+2)/2+2

≤ 1 +

�2(log2 n)1/2�∑
k=1

(1 − Pn,m(k)) + 4n22−2 log2 n =

�2(log2 n)1/2�∑
k=1

(1 − Pn,m(k)) + 5.

Now we divide the sum on the right hand side into two parts:

�2(log2 n)1/2�∑
k=1

=

�(2(1+δ) log2 n)1/2�∑
k=1

+

�2(log2 n)1/2�∑
k=�(2(1+δ) log2 n)1/2�+1

. (17)

By (16) for k ≥ (2(1 + δ) log2 n)1/2

1 − Pn,m(k) ≤ 4n × n−(1+δ) = 4n−δ.

Therefore
�2(log2 n)1/2�∑

k=�(2(1+δ) log2 n)1/2�+1

(1 − Pn,m(k)) ≤ 8(log2 n)1/2n−δ.

For the first summation on the right hand side of (17) we only use 1 − Pn,m(k) ≤ 1.
Combining these we obtain

EP
n,m ≤ 5 + (2(1 + δ) log2 n)1/2 + 8(log2 n)1/2n−δ.

Therefore

lim sup
n→∞

EP
n,m

(log n)1/2
≤

√
2(1 + δ)

log 2
. (18)
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We now give a lower bound of EP
n,m.

Pn,n(k) = Pn,n−1(k)

(9a),(9b)

≤ Pn−1,n−1(k) − 2−2(Pn−1,n−2(k) − Pn,n−2(k))

≤ Pn−1,n−1(k) − 2−2−3(Pn−1,n−3(k) − Pn,n−3(k))

≤ . . .

≤ Pn−1,n−1(k) − 2−k(k+1)/2+1(Pn−1,n−k(k) − Pn,n−k(k))

(9a)
= Pn−1,n−1(k) − 2−(k+1)(k+2)/2+2Pn−1,n−k−1(k)

(14)

≤ Pn−k−1,n−k−1(k) − 2−(k+1)(k+2)/2+1Pn−k−1,n−k−1(k)

= (1 − 2−(k+1)(k+2)/2+1)Pn−k−1,n−k−1(k).

From Pk,k(k) = 1,

Pn,n(k) ≤ (1 − 2−(k+1)(k+2)/2+1)�(n−k)/(k+1)� ≤ (1 − 2−(k+2)2/2)n/(k+2)−2.

Pn,n(k) is increasing in k. Thus for k ≤ (2(1 − δ) log2 n)1/2 − 2,

Pn,n(k) ≤ (1 − n−(1−δ))n/(2(1−δ) log2 n)1/2−2

=
(
(1 − n−(1−δ))n1−δ

)nδ/(2(1−δ) log2 n)1/2−2

→ 0 (n → ∞).

Therefore ∃N > 0, ∀n ≥ N,

EP
n,m ≥ EP

n,n ≥ 1 +
n∑

k=1

(1 − Pn,n(k))

≥ 1 +

�(2(1−δ) log2 n)1/2−2�∑
k=1

(1 − Pn,n(k))

> 1 + (1 − δ)((2(1 − δ) log2 n)1/2 − 3).

Therefore

lim inf
n→∞

EP
n,m

(log n)1/2
≥ (1 − δ)

√
2(1 − δ)

log 2
. (19)

Letting δ ↓ 0 in (18) and (19) proves (15). �

In section 3, we derived the asymptotic distribution of Qn,m. We now argue that the
asymptotic distribution of Pn,m does not exist.

Remark 4.5 There exists no sequence {cn} and a distribution function F (z) such that
Pn,n((z − cn)(log n)1/2) → F (z).
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This fact is derived from the asymptotic theory of extreme values. Let n be large
and consider matching [ai vs bi], i = 1, 2, . . . , in sequence. As the first round of ERM
progresses, the Hasse diagram grows and consists of blocks of connected diamonds and
line segments. The distribution of number of rounds for each block of connected dia-
monds is independently and identically distributed. By strong law of large numbers, the
asymptotics in n and the asymptotics in the number of blocks is essentially the same.
We denote the distribution the number of rounds in each block by P CD(k). Then Pn,n(k)
corresponds to the distribution of the maximum value of i.i.d. samples from P CD(k).
Because 1−P CD(l) ≤

∑∞
k=0 2−(l+k)+1(k +1)(1−P CD(l−1)), there exists c > 0 such that

1 − P CD(l + 1) ≤ 2−lc(1 − P CD(l)) for all sufficiently large l. From theorem 2.4.5 of [9]
or theorem 1.7.13 of [11], the asymptotic distribution of Pn,n does not exist.

From the theorem 3.5 and 4.4, the asymptotic order of EP
n,m is smaller than that of

EQ
n,m when m = n or n + 1. Next we prove that EP

n,m is smaller than that of EQ
n,m for all

n, m ≥ 1. Actually we prove a stronger result of stochastic order under two models.

Theorem 4.6 Y (n, m) is stochastically larger under the sure winner model than under
the totally random model, i.e.

Pn,m(k) ≥ Qn,m(k) for all n, m ≥ 1, k ≥ 1. (20)

The inequality is strict if and only if max(n, m) ≥ k + 1.

Proof. If max(n, m) ≤ k, then Pn,m(k) = Qn,m(k) = 1. Therefore, we assume that
max(n, m) ≥ k +1. Because of the symmetry, we assume that n ≥ m. From theorem 3.2,
and by induction we have only to prove(

n + m

m

)
Pn,m(k) >

(
2m + k − 2

m

)
Pm+k−2,m(k) if n ≥ m + k, (21)

(
n + m

m

)
Pn,m(k) >

(
n + m − 1

m

)
Pn−1,m(k) +

(
n + m − 1

n

)
Pn,m−1(k) if m < n < m + k

(22)
and(

n + m

m

)
Pn,m(k) =

(
n + m − 1

m

)
Pn−1,m(k) +

(
n + m − 1

n

)
Pn,m−1(k) if n = m. (23)

We first prove (21). If k = 1 and n ≥ m + 1,

Pn,m(1)
(14)

≥ 2−1Pm,m(1)

(11)
= 2−1Pm−1,m(1)

>

(
2m + 1

m

)−1(
2m − 1

m

)
Pm−1,m(1)

≥
(

n + m

m

)−1(
2m − 1

m

)
Pm−1,m(1).
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If k ≥ 2 and n ≥ m + k,

Pn,m(k)
(9a)
= Pm+k−1,m(k) − 2−kPm+k−1,m−1(k)

(9b)
= Pm+k−2,m(k) − 2−kPm+k−2,m−1(k)

(13)

≥ (1 − 2−k)Pm+k−2,m(k)

>

(
n + m

m

)−1(
2m + k − 2

m

)
Pm+k−2,m(k). (24)

The last inequality is derived as(
n + m

m

)−1(
2m + k − 2

m

)
≤
(

2m + k

m

)−1(
2m + k − 2

m

)

<
m + k − 1

2m + k − 1

= 1 − (2 + (k − 1)/m)−1

≤ 1 − 2−k. (25)

Inequality (22) is proved as follows:

Pn,m(k)
(9b)
= Pn−1,m(k) − 2−n+m−1Pn−1,m−1(k) + 2−n+m−1Pn,m−1(k)

(11),(13)

≥ (1 − 2−(n−m+1))Pn−1,m(k) + 2−(n−m+1)Pn,m−1(k)

>

(
n + m

m

)−1{(
n + m − 1

m

)
Pn−1,m(k) +

(
n + m − 1

n

)
Pn,m−1(k)

}
.

The last inequality is derived from (25), Pn−1,m(k) > Pn,m−1(k) which follows from lemma
4.3(b) and (c), and the fact

1 = (1 − 2−(n−m+1)) + 2−(n−m+1) =

(
n + m

m

)−1{(
n + m − 1

m

)
+

(
n + m − 1

n

)}
.

Equation (23) is derived from lemma 4.3(a). Thus, the theorem is proved. �

From theorem 4.6, the following fact is proved.

Corollary 4.7
EP

m,n ≤ EQ
m,n. (26)

The inequality is strict if and only if max(m, n) ≥ 2.

Table 5, 6 and Figure 12 in appendix B present Qn,n(k) and Pn,n(k) for some small n.
Since stochastic order is preserved under convolution and under taking maximum of

independent random variables, we have the following corollary on the stochastic order of
the total number of rounds Y in (3) under two models.
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Corollary 4.8 Let Y be the total number of rounds to determine ranking of N teams.
Then

P (Y ≤ k | totally random model) ≥ P (Y ≤ k | sure winner model), ∀k ≥ 1.

The inequality is strict for all N ≥ 3 and for all k in the support of Y .

Table 7 and Figure 13 in appendix C present the expected value and the standard
deviation of the total number of rounds Y by PMS for N = 2, . . . , 40 teams. Figure 14 is
the distribution of the number of rounds Y for some N .

5 Some discussions

5.1 Parallel sorting

There is extensive literature on parallel sorting algorithms[14], [12]. EREW P-RAM is
exclusive read exclusive write parallel random-access machine which allows no concurrent
reads and no concurrent writes. This computing model is the closest to our setting.
However there are several differences between the parallel sorting problem by EREW P-
RAM and our parallel matching problem. In the parallel sorting problem, only the sure
winner stochastic model is assumed, i.e. a “true” ranking is given first and fixed during
the whole algorithm. No contradiction of ranking occurs. Thus wider class of algorithms
(scheduling methods) are admissible than the parallel matching problem. Furthermore,
the parallel sorting algorithms compare already comparable teams. Although this seems
to be waste of calculation cost (or the number of necessary rounds), if we consider the cost
of the worst ordering case (or the worst “true” ranking case), the waste does not usually
affect the order of the cost. Actually, most papers on parallel sorting algorithms evaluate
the number of rounds in the worst case. This is one of the largest difference between those
papers and the present paper, which evaluates the expectation of the number of rounds.

In spite of these differences, some results on the parallel sorting are useful for the
parallel matching problem. Odd-even merge is one of the standard parallel merge algo-
rithms [2]. If we omit matches between comparable teams, odd-even merge corresponds
to a rectangle method which has the matrix X as xij = min{k > 0 | n + 1 − i − j ≡ 0
mod 2�log2 n	−k+1} (see Table 3). It is evident that this algorithm is a 45 degrees method
and an adequate rectangle method. The order of the calculation cost of the worst case
of this algorithm is easily proved to be O(logn). Thus the expected number of rounds
with the sure winner model is at most O(log n). This means that the order of expectation
O(

√
n) of ERM with sure winner model is not optimal. Another standard parallel merge

algorithm is the bitonic merge [2], whose scheduling matrix is upside down of Table 3. In
particular the bitonic merge matches teams in the reverse order: [a1 vs bn], [a2 vs bn−1],
. . . , [an vs b1] at the first round. This is clearly contradictory in the totally random model.

Even if we use the odd even merge or bitonic merge, the whole sorting needs O((log n)2)
costs in the worst case. The algorithm given by Ajatak, Komlos and Szemeredi [1] and
several other algorithms present O(log n) optimal parallel sorting algorithm. However, all
of them are contradictory in the totally random case.
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Table 3: An example of scheduling matrix X̆ of odd-even merge (n = m = 8).

4 3 4 2 4 3 4 1
3 4 2 4 3 4 1 4
4 2 4 3 4 1 4 3
2 4 3 4 1 4 3 4
4 3 4 1 4 3 4 2
3 4 1 4 3 4 2 4
4 1 4 3 4 2 4 3
1 4 3 4 2 4 3 4

5.2 Some optimality of PMS for small size problems

This subsection presents some results of sure winner model with PMS. When the number
of teams is small, we can count all permutations of “true” ranking and find the optimal
algorithm in the sense minimum expected number of rounds. For example, we present
the optimal algorithm for N = 5 in appendix D. The result of N = 2, 3, 4, 5 is given in
Table 4. This shows that PMS is optimal if N ≤ 4. Although the order of the expected
number of rounds for n × n PMS is not optimal, PMS is close to optimal with small N .
For larger N , it seems combinatorially formidable to find the optimal algorithm under
the sure winner case.

Table 4: The expected number of rounds by optimum scheduling and PMS.

#teams optimum PMS
2 1.00 1.00
3 2.67 2.67
4 2.67 2.67
5 4.00 4.77

5.3 Bradley-Terry model

We assume in the true strength order t1, t2, . . . , tN ∈ T satisfy r(t1) < r(t2) < · · · < r(tN).
In general Bradley-Terry model [3], a positive parameter of strength πi is assigned to each
team ti. The probability that team ti wins team tj is calculated as pij = πi/(πi +πj). One
of the most remarkable properties of the model is that it satisfies pijpjkpki = pjipikpkj.
In other words, there is no three-cornered deadlock. It is evident that if πi = πj for all i
and j, the Bradley-Terry model corresponds to the totally random model. On the other
hand, if πi/πj → ∞ for all j = i+1, the asymptotic model corresponds to the sure winner
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Figure 11: Expected number of rounds by PMS with Bradley-Terry model (N = 32).

model. Therefore, the two probabilistic models investigated in the previous sections are
two extremes of Bradley-Terry model.

In this sense, Bradley-Terry model is much general than the two probabilistic models
and more realistic in the actual games. However, it is very difficult to evaluate the number
of rounds of general Bradley-Terry model because we have to consider the ranking of each
team in the whole teams even in the recursive subproblems. If we adopt the sure winner
or totally random model, only the ranking in the each subset is needed.

We did some simulation studies of PMS with Bradley-Terry model. Figure 11 presents
the expected number of rounds in the following simple one-parameter Bradley-Terry
model.

πi

πi + πi+1

= p, i = 1, . . . , N − 1,
1

2
≤ p ≤ 1.

Figure 11 shows that the expected number increases monotonically in p.

5.4 Concluding remarks and future works

This paper presented a new game scheduling scheme, parallel merge sorting with equiv-
alent rank matching. The ranking by this scheme does not cause any contradiction for
all possible results of simultaneous matches. Furthermore, Hasse diagram of the partial
order by this scheme is simple and easy to understand. Two probabilistic models, sure
winner model and totally random model, are investigated. For each model, the recurrence
formula of the distribution function of the number of rounds for merging is given and the
order of the expected number of rounds is evaluated.

In sure winner case, a parallel sorting algorithm for parallel computers gives smaller
order of the expected number of rounds than the proposed scheme. The optimality in
the sense of the expected number of rounds needs more research. Our investigation of
the optimal ranking scheme for the case N = 5 suggests that it is combinatorially very
difficult to obtain the optimal ranking scheme for N ≥ 6.
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Concerning the totally random case, almost nothing is known on the optimality.
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A Proof of (1) and (2)

Proof of (1)
(⇐)
At least one of the pairs(ai1 , bj) and (ai2 , bj) has become comparable by the match (ai, bj).
Thus in every round, each bj has at most one match. For the same reason, each ai

has at most one match in a round. In the sure winner model, this evidently makes no
contradiction for any results of the matches.
(⇒)
We prove the contraposition. Assume that ∃(i1, j), (i2, j) ∈ In,m s. t. i1 < i2 and xi1j =
xi2j ; there is no i s. t. i1 < i < i2 and xij < xi1j . Consider paths such that r(ai1) =
r(ai1+1) − 1 = · · · = r(ai2) − (i2 − i1) = r(bj) − (i2 − i1 + 1) or r(bj) = r(ai1) − 1 =
r(ai1+1) − 2 = · · · = r(ai2) − (i2 − i1 + 1). Let k = xi1j. Then by the results until the
round k−1 these paths are not identified and both of the matches [ai1 vs bj ] and [ai2 vs bj ]
have to be played. This is contradiction because bj can have only one match in a round.
Thus X is not an adequate scheduling matrix. �

Proof of (2)
(⇐)
At least one of the pairs (ai1 , bj1) or (ai2 , bj2) has become comparable by the match (ai, bj).
In the totally random model, this makes no contradiction for any result of the matches.
(⇒)
We prove the contraposition. Assume that ∃(i1, j1), (i2, j2) ∈ In,m s. t. i1 ≤ i2, j2 ≤
j1 and xi1j1 = xi2j2; there is no (i, j) ∈ In,m s. t. i1 ≤ i ≤ i2, j2 ≤ j ≤ j1 and xij < xi1j1.
Let k = xi1,j1. Suppose that in the all games until the (k− 1)-th round, ai′ wins bj′ if and
only if i′ ≥ i1 and j′ ≥ j1, then (ai1 , bj1) and (ai2 , bj2) have not become comparable until
the (k − 1)-th round. This means that both of the matches [ai1 vs bj1 ] and [ai2 vs bj2]
should be done in the k-th round. However, if bj1 wins ai1 and ai2 wins bj2 , we have
contradiction

r(bj1) < r(ai1) < r(ai2) < r(bj2) < r(bj1)

Thus, X is not an adequate scheduling matrix. �
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B Pn,n(k) and Qn,n(k)

Table 5: Pn,n(k) and Qn,n(k) for n = 2, . . . , 6.

k P2,2(k) Q2,2(k)
1 0.5 0.333333333333333
2 1 1

k P3,3(k) Q3,3(k)
1 0.25 0.1
2 0.9375 0.8
3 1 1

k P4,4(k) Q4,4(k)
1 0.125 0.0285714285714286
2 0.890625 0.628571428571429
3 0.99609375 0.942857142857143
4 1 1

k P5,5(k) Q5,5(k)
1 0.0625 0.00793650793650794
2 0.84375 0.476190476190476
3 0.99267578125 0.865079365079365
4 0.9998779296875 0.984126984126984
5 1 1

k P6,6(k) Q6,6(k)
1 0.03125 0.00216450216450216
2 0.7998046875 0.354978354978355
3 0.9892578125 0.779220779220779
4 0.999763488769531 0.954545454545455
5 0.999998092651367 0.995670995670996
6 1 1
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Table 6: Pn,n(k) and Qn,n(k) for n = 7, . . . , 10.

k P7,7(k) Q7,7(k)
1 0.015625 0.000582750582750583
2 0.758056640625 0.261072261072261
3 0.985847473144531 0.692890442890443
4 0.999649047851563 0.914918414918415
5 0.999996244907379 0.985431235431235
6 0.999999985098839 0.998834498834499
7 1 1

k P8,8(k) Q8,8(k)
1 0.0078125 0.000155400155400155
2 0.718505859375 0.19020979020979
3 0.982449531555176 0.61025641025641
4 0.999534636735916 0.868842268842269
5 0.999994397163391 0.969230769230769
6 0.999999970430508 0.995493395493396
7 0.999999999941792 0.9996891996892
8 1 1

k P9,9(k) Q9,9(k)
1 0.00390625 4.11353352529823e-005
2 0.681015014648438 0.137556561085973
3 0.979063272476196 0.533525298231181
4 0.999420234933496 0.819086795557384
5 0.999992549477611 0.947799259563966
6 0.999999955762178 0.989387083504731
7 0.999999999884039 0.998642533936652
8 0.999999999999886 0.999917729329494
9 1 1

k P10,10(k) Q10,10(k)
1 0.001953125 1.0825088224469e-005
2 0.645481109619141 0.0988980060187491
3 0.975688681006432 0.46371430427158
4 0.999305846402422 0.76768278161467
5 0.999990701800925 0.92212431531317
6 0.999999941093904 0.980319989607915
7 0.999999999826287 0.996471021238823
8 0.999999999999773 0.999599471735695
9 1 0.999978349823551
10 1 1
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Figure 12: Pn,n(k) and Qn,n(k) for n = 5, 10, 15, 20.
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C The distribution of the number of rounds for PMS

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40

# 
to

ta
l r

ou
nd

s

# total teams

totally random
sure winner

Figure 13: Expectation and standard deviation of the number of rounds by PMS
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Figure 14: Distribution of the number of rounds by PMS for N = 8, 16, 32, 64.
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Table 7: Expectation and standard deviation of the number of rounds Y by PMS, P :
totally random model, Q: sure winner model.

#teams N EP [Y ] σP [Y ] EQ[Y ] σQ[Y ]
2 1 0 1 0
3 2.5 0.25 2.6666667 0.22222222
4 2.5 0.25 2.6666667 0.22222222
5 4.3125 0.52734375 4.7666667 0.51222222
6 4.5625 0.46484375 4.9888889 0.38876543
7 4.7382813 0.43345642 5.2888889 0.51019400
8 4.7382813 0.43345642 5.2888889 0.51019400
9 6.5386963 0.66468607 7.5 0.99920635
10 6.9097900 0.59875284 7.9055556 0.91769400
11 7.1135197 0.52202997 8.2263829 1.0159289
12 7.1760197 0.47124872 8.2510742 0.99245689
13 7.3160209 0.49145171 8.6853533 1.2643305
14 7.3772850 0.50862291 8.8490268 1.3243800
15 7.4281625 0.52404641 9.0688791 1.4676343
16 7.4281625 0.52404641 9.0688791 1.4676343
17 9.1198993 0.84516094 11.337687 2.0752866
18 9.4910901 0.83603157 11.878133 2.0667551
19 9.7198121 0.80287764 12.278142 2.1570787
20 9.8377168 0.77797932 12.405467 2.1251380
21 9.9496437 0.78142229 12.766808 2.3309827
22 10.004891 0.78279367 12.912042 2.3748439
23 10.048581 0.78611977 13.092216 2.5087774
24 10.052488 0.78225930 13.092521 2.5084728
25 10.168297 0.83129325 13.559209 2.7858319
26 10.245227 0.86588579 13.813915 2.8703629
27 10.316693 0.89282647 14.084322 3.0217865
28 10.353913 0.90992329 14.174794 3.0255882
29 10.418159 0.92376163 14.471967 3.2367407
30 10.450092 0.93056406 14.595246 3.2900150
31 10.479308 0.93389641 14.749723 3.4268167
32 10.479308 0.93389641 14.749723 3.4268167
33 12.138754 1.2616910 17.013258 4.0685685
34 12.512224 1.2606555 17.616033 4.1023615
35 12.752424 1.2301378 18.055634 4.2155490
36 12.898304 1.2164817 18.264664 4.1962134
37 13.030912 1.2135887 18.616938 4.3775149
38 13.118209 1.2175961 18.795943 4.4048197
39 13.192656 1.2220949 18.987325 4.5129092
40 13.236359 1.2274871 19.029573 4.4864944
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D The optimal algorithm for N = 5

The following pictures from Figure 15(a) to Figure 16(d) are Hasse diagrams of the optimal
algorithm for N = 5 under the sure winner model. It has the minimum expected number
of rounds among all adequate dynamic merging schemes.
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Figure 15: The optimal algorithm for n = 5: PART 1.

34



c c cc

W

W

W

W

W W W

W

(a) after “c”

e
f

d d dd
W

W

W

W

W

W W

W

(b) after “d”

e e

W
W

(c) after “e”

ff f f

W

W

W

W W

W

W

W

(d) after “f”

Figure 16: The optimal algorithm for n = 5: PART 2.

35



Acknowledgement. We are very grateful to Tomomi Matsui for initial suggestion of
the idea of ERM.

References

[1] Ajtai, M., Komlos, W. and Szemeredi, E., “Sorting in c log(n) parallel steps,” Com-
binatorica, 3, pp. 1–19, 1983.

[2] Batcher, K., “Sorting networks and their applications,” AFIPS Spring Joint Com-
puting Conference, 32, pp. 33–39 , 1968.

[3] Bradley, R. A. and Terry, M. E., “Rank analysis of incomplete block designs I. the
method of paired comparisons,” Biometrika, 39, pp. 324–345, 1952.

[4] Carroll, L., “Lawn Tennis Tournaments,” The complete works of Lewis Carroll, Mod-
ern Library, New York, 1947.

[5] David, H. A., Method of Paired Comparisons, 2nd edition, Oxford University Press,
1988.

[6] Edwards, C. T., “Double elimination tournaments: counting and calculating”, Amer.
Statistician, 50, pp. 27–33, 1996.

[7] Feller, W., “On the Kolmogorov-Smirnov limit theorems for empirical distributions,”
Ann. Math. Statist., 19, pp. 177–189, 1948.

[8] Feller, W., Introduction to Probability Theory and Its Applications , 3rd edition, John
Willy & Suns, 1968.

[9] Galambos, J., The Asymptotic Theory of Extreme Order Statistics (2nd ed.), Robert
E. Krieger Publishing Company, Florida, 1987.

[10] Gnedenko, B. V. and Koroljuk, V. S.,“On the maximum discrepancy between two
empirical distributions,” Selected Translations in Mathematical Statistics and Prob-
ability, 1, pp. 13–16, 1961.

[11] Leadbetter, M. R., Extremes and Related Properties of Random Sequences and Pro-
cesses, Springer-Verlag, New York, 1983.

[12] Leighton, F. T., Introduction to Parallel Algorithms and Architectures, Morgan Kauf-
mann Publishers, California, 1992.

[13] Mohanty, S. G., Lattice Path Counting and Applications, Academic Press, New York,
1979.

[14] Parhami, B., Introduction to Parallel Processing, Plenum Press, New York, 1999.

36



[15] Stanley, R. P., Enumerative Combinatorics. Volume I, Cambridge University Press,
Cambridge, 1997.

[16] Thompson, P., Jaryszak, E. and Wamil, J., “Reducing the pairing effect in 4-team
double-elimination tournaments,” Math. Scientist, 24, pp. 110–121, 2000.

37


