
MATHEMATICAL ENGINEERING

TECHNICAL REPORTS

Polynomial Time Perfect Sampler

for Discretized Dirichlet Distribution

Tomomi MATSUI and Shuji KIJIMA

METR 2003–17 April 2003

DEPARTMENT OF MATHEMATICAL INFORMATICS

GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO

BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.i.u-tokyo.ac.jp/mi/mi-e.htm

The METR technical reports are published as a means to ensure timely dissemi-

nation of scholarly and technical work on a non-commercial basis. Copyright and

all rights therein are maintained by the authors or by other copyright holders,

notwithstanding that they have offered their works here electronically. It is un-

derstood that all persons copying this information will adhere to the terms and

constraints invoked by each author’s copyright. These works may not be reposted

without the explicit permission of the copyright holder.

Polynomial Time Perfect Sampler

for Discretized Dirichlet Distribution

Tomomi Matsui? and Shuji Kijima

Department of Mathematical Informatics,
Graduate School of Information Science and Technology,

The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan.
http://www.simplex.t.u-tokyo.ac.jp/~tomomi/

kijima@simplex.t.u-tokyo.ac.jp

version: April 24th

Abstract. In this paper, we propose a perfect (exact) sampling algo-
rithm according to a discretized Dirichlet distribution. Our algorithm is
a monotone coupling from the past algorithm, which is a Las Vegas type
randomized algorithm. We propose a new Markov chain whose limit dis-
tribution is a discretized Dirichlet distribution. Our algorithm simulates
transitions of the chain O(n3 ln ∆) times where n is the dimension (the
number of parameters) and 1/∆ is the grid size for discretization. Thus
the obtained bound does not depend on the magnitudes of parameters.
In each transition, we need to sample a random variable according to
a discretized beta distribution (2-dimensional Dirichlet distribution). To
show the polynomiality, we employ the path coupling method carefully
and show that our chain is rapidly mixing.

1 Introduction

In this paper, we propose a polynomial time perfect (exact) sampling algorithm
according to a discretized Dirichlet distribution. Our algorithm is a monotone
coupling from the past algorithm, which is a Las Vegas type randomized algo-
rithm. We propose a new Markov chain for generating random samples according
to a discretized Dirichlet distribution. In each transition of our Markov chain, we
need a random sample according to a discretized beta distribution (2-dimensional
Dirichlet distribution). Our algorithm simulates transitions of the Markov chain
O(n3 ln ∆) times in expectation where n is the dimension (the number of param-
eters) and 1/∆ is the grid size for discretization. To show the polynomiality, we
employ the path coupling method and show that the mixing rate of our chain is
bounded by n(n − 1)2(1 + ln n(∆ − n)/2).

Statistical methods are widely studied in bioinformatics since they are pow-
erful tools to discover genes causing a (common) disease from a number of ob-
served data. These methods often use EM algorithm, Markov chain Monte Carlo

? Supported by Superrobust Computation Project of the 21st Century COE Program
”Information Science and Technology Strategic Core.”

method, Gibbs sampler, and so on. The Dirichlet distribution appears as prior
and posterior distribution for the multinomial distribution in these methods since
the Dirichlet distribution is the conjugate prior of parameters of the multino-
mial distribution [11]. For example, Niu, Qin, Xu, and Liu proposed a Bayesian
haplotype inference method [7], which decides phased (paternal and maternal)
individual genotypes probabilistically. Another example is a population structure
inferring algorithm by Pritchard, Stephens, and Donnely [8]. Their algorithm is
based on MCMC method. In these examples, the Dirichlet distribution appears
with various dimensions and various parameters. Thus we need an efficient al-
gorithm for sampling from the Dirichlet distribution with arbitrary dimensions
and parameters.

One approach of sampling from a (continuous) Dirichlet distribution is by
rejection (see [4] for example). In this way, the number of required samples
from the gamma distribution is equal to the size of the dimension of the Dirich-
let distribution. Though we can sample from the gamma distribution by using
rejection sampling, the ratio of rejection becomes higher as the parameter is
smaller. Thus, it does not seems effective way for small parameters. Another
approach is a descretization of the domain and adoption of Metropolis-Hastings
algorithm. Recently, Matsui, Motoki and Kamatani proposed a Markov chain
for sampling from discretized Dirichlet distribution [6]. The mixing rate of their
chain is bounded by (1/2)n(n − 1)(1 + ln(∆ − n)) and so their algorithm is a
polynomial time approximate sampler.

Propp and Wilson devised a surprising algorithm, called (monotone) CFTP
algoritm (or backward coupling), which produces exact samples from the limit
distribution [9, 10]. Monotone CFTP algorithm simulates infinite time transitions
of a monotone Markov chain in a (probabilistically) finite time. To employ their
result, we propose a new monotone Markov chain whose stationary distribution
is a discretized Dirichlet distribution. We also show that the mixing rate of our
chain is bounded by n(n − 1)2(1 + ln n(∆ − n)/2).

This paper is deeply related to authors’ recent paper [5] which proposes a
polynomial time perfect sampling algorithm for two-rowed contingency tables.
The idea of the algorithm and outline of the proof described in this paper is
similar to those in our paper [5]. The main difference of these two papers is that
when we deal with the uniform distribution on two-rowed contingency tables,
the transition probabilities of the Markov chain are predetermined. However, in
case of discretized Dirichlet distribution, the transition probabilities vary with
respect to the magnitude of paprameters. Thus, to show the monotonicity and
polynomiality of the algorithm proposed in this paper, we need a detailed dis-
cussions which appear in Appendix section. Showing two lemmas in Appendix
section is easier in case of the uniform distribution on two-rowed contingency
tables.

2

2 Review of Coupling From the Past Algorithm

When we simulate an ergodic Markov chain for infinite time, we can gain a
sample exactly according to the stationary distribution. Suppose that there exists
a chain from infinite past, then a possible state at the present time of the chain
for which we can have an evidence of the uniqueness without respect to an initial
state of the chain, is a realization of a random sample exactly from the stationary
distribution. This is the key idea of CFTP.

Suppose that we have an ergodic Markov chain MC with finite state space
Ω and transition matrix P . The transition rule of the Markov chain X 7→ X ′

can be described by a deterministic function φ : Ω × [0, 1) → Ω, called update
function, as follows. Given a random number Λ uniformly distributed over [0, 1),
update function φ satisfies that Pr(φ(x, Λ) = y) = P (x, y) for any x, y ∈ Ω. We
can realize the Markov chain by setting X ′ = φ(X,Λ). Clearly, update function
corresponding to the given transition matrix P is not unique. The result of
transitions of the chain from the time t1 to t2 (t1 < t2) with a sequence of
random numbers λ = (λ[t1], λ[t1 + 1], . . . , λ[t2 − 1]) ∈ [0, 1)t2−t1 is denoted by

Φt2
t1

(x,λ) : Ω×[0, 1)t2−t1 → Ω where Φt2
t1

(x,λ)
def .
= φ(φ(· · · (φ(x, λ[t1]), . . . , λ[t2−

2]), λ[t2 − 1]). We say that a sequence λ ∈ [0, 1)|T | satisfies the coalescence
condition, when ∃y ∈ Ω, ∀x ∈ Ω, y = Φ0

T (x,λ).

With these preparation, standard Coupling From The Past algorithm is ex-
pressed as follows.

CFTP Algorithm [9]

Step 1. Set the starting time period T := −1 to go back, and set λ be the
empty sequence.

Step 2. Generate random real numbers λ[T], λ[T +1], . . . , λ[dT/2e− 1] ∈ [0, 1),
and insert them to the head of λ in order, i.e., put λ := (λ[T], λ[T +
1], . . . , λ[−1]).

Step 3. Start a chain from each element x ∈ Ω at time period T , and run each
chain to time period 0 according to the update function φ with the sequence
of numbers in λ. (Note that every chain uses the common sequence λ.)

Step 4. [Coalescence check]
If ∃y ∈ Ω, ∀x ∈ Ω, y = Φ0

T (x,λ), then return y and stop.
Else, update the starting time period T := 2T , and go to Step 2.

Theorem 1. (CFTP Theorem [9]) Let MC be an ergodic finite Markov chain
with state space Ω, defined by an update function φ : Ω×[0, 1) → Ω. If the CFTP
algorithm terminates with probability 1, then the obtained value is a realization
of a random variable exactly distributed according to the stationary distribution.

Theorem 1 gives a (probabilistically) finite time algorithm for infinite time sim-
ulation. However, simulations from all states executed in Step 3 is a hard re-
quirement.

3

Suppose that there exists a partial order “�” on the set of states Ω. A
transition rule expressed by a deterministic update function φ is called monotone
(with respect to “�”) if ∀λ ∈ [0, 1), ∀x,∀y ∈ Ω, x � y ⇒ φ(x, λ) � φ(y, λ). For
ease, we also say that a chain is monotone if the chain has a monotone transition
rule.

Theorem 2. (monotone CFTP [9, 3]) Suppose that a Markov chain defined by
an update function φ is monotone with respect to a partially ordered set of states
(Ω,�), and ∃xmax, ∃xmin ∈ Ω, ∀x ∈ Ω, xmax � x � xmin. Then the CFTP
algorithm terminates with probability 1, and a sequence λ ∈ [0, 1)|T | satisfies
the coalescence condition, i.e., ∃y ∈ Ω, ∀x ∈ Ω, y = Φ0

T (x,λ), if and only if
Φ0

T (xmax,λ) = Φ0
T (xmin,λ).

When the given Markov chain satisfies the conditions of Theorem 2, we can
modify CFTP algorithm by substituting Step 4 (a) by

Step 4. (a)′ If ∃y ∈ Ω, y = Φ0
T (xmax,λ) = Φ0

T (xmin,λ), then return y and stop.

The algorithm obtained by the above modification is called a monotone CFTP
algorithm.

3 Perfect Sampling Algorithm

In this paper, we denote the set of integers (non-negative or positive integers) by
Z (Z+, Z++). Dirichlet random vector P = (P1, P2, . . . , Pn) with non-negative
parameters u1, . . . , un is a vector of random variables that admits the probability
density function

Γ (
∑n

i=1 ui)
∏n

i=1 Γ (ui)

n
∏

i=1

pui−1
i

defined on the set {(p1, p2, . . . , pn) ∈ Rn | p1 + · · · + pn = 1, p1, p2, . . . , pn > 0}
where Γ (u) is the gamma function. Throughout this paper, we assume that
n ≥ 2.

For any integer ∆ ≥ n, we discretize the domain with grid size 1/∆ and
obtain a discrete set of integer vectors Ω defined by

Ω
def .
= {(x1, x2, . . . , xn) ∈ Zn

++ | xi > 0 (∀i), x1 + · · · + xn = ∆}.

A discretized Dirichlet random vector with non-negative parameters u1, . . . , un

is a random vector X = (X1, . . . , Xn) ∈ Ω with the distribution

Pr[X = (x1, . . . , xn)]
def .
= C∆

n
∏

i=1

(xi/∆)ui−1

where C∆ is the partition function (normarizing constant) defined by (C∆)−1 def .
=

∑

x∈Ω

∏n
i=1(xi/∆)ui−1.

4

For any integer b ≥ 2, we introduce a set of 2-dimensional integer vectors

Ω(b)
def .
= {(Y1, Y2) ∈ Z2 | Y1, Y2 > 0, Y1 + Y2 = b} and a distribution function

fb(Y1, Y2 | ui, uj) : Ω(b) → [0, 1] with non-negative parameters ui, uj defined by

fb(Y1, Y2 | ui, uj)
def .
= C(ui, uj , b)Y

ui−1
1 Y

uj−1
2

where (C(ui, uj, b))
−1 def .

=
∑

(Y1,Y2)∈Ω(b) Y ui−1
1 Y

uj−1
2 is the partition function.

We also introduce a vector (gb(0|ui, uj), gb(1|ui, uj), . . . , gb(b− 1|ui, uj)) defined
by

gb(k|ui, uj)
def .
=

{

0 (k = 0)
∑k

l=1 C(ui, uj , b)l
ui−1(b − l)uj−1 (k ∈ {1, 2, . . . , b − 1})

It is clear that 0 = gb(0|ui, uj) < gb(1|ui, uj) < · · · < gb(b − 1|ui, uj) = 1.
We describe our Markov chain M with state space Ω. Given a current state

X ∈ Ω, we generate a random number λ ∈ [1, n). Then transition X 7→ X ′ with
respect to λ takes place as follows.

Markov chain M
Input: A random number λ ∈ [1, n).
Step 1: Put i := bλc and b := Xi + Xi+1.
Step 2: Let k ∈ {1, 2, . . . , b − 1} be a unique value satisfying

gb(k − 1|ui, ui+1) ≤ (λ − bλc) < gb(k|ui, ui+1).

Step 3: Put X ′
j :=

k (j = i),
b − k (j = i + 1),
Xj (otherwise).

The update function φ : Ω× [1, n) → Ω of our chain is defined by φ(X,λ)
def .
= X ′

where X ′ is determined by the above procedure. Clearly, this chain is irreducible
and aperiodic. Since the detailed balance equations hold, the stationary distri-
bution of the above Markov chain M is the discretized Dirichlet distribution.

We define two special states XU, XL ∈ Ω by

XU
def .
= (∆ − n + 1, 1, 1, . . . , 1), XL

def .
= (1, 1, . . . , 1, ∆ − n + 1).

Now we describe our algorithm.

Algorithm 1

Step 1. Set the starting time period T := −1 to go back, and λ be the empty
sequence.

Step 2. Generate random real numbers λ[T], λ[T + 1], . . . , λ[dT/2e− 1] ∈ [1, n)
and put λ = (λ[T], λ[T − 1], . . . , λ[−1]).

Step 3. Start two chains from XU and XL, respectively at time period T , and
run them to time period 0 according to the update function φ with the
sequence of numbers in λ.

5

Step 4. [Coalescence check]
If ∃Y ∈ Ω, Y = Φ0

T (XU,λ) = Φ0
T (XL,λ), then return Y and stop.

Else, update the starting time period T := 2T , and go to Step 2.

Theorem 3. With probability 1, Algorithm 2 terminates and returns a state.
The state obtained by Algorithm 2 is a realization of a sample exactly according
to the discretized Dirichlet distribution.

The above theorem guarantees that Algorithm 2 is a perfect sampling algorithm.
We prove the above theorem by showing the monotonicity in the next section.

4 Monotonicity of the Chain

In Section 2, we described two theorems. Thus we only need to show the mono-
tonicity of our chain. First, we introduce a partial order on the state space Ω.

For any vector X ∈ Ω, we define the cumulative sum vector cX ∈ Zn+1
+ by

cX(i)
def .
=

{

0 (i = 0),
X1 + X2 + · · · + Xi (i ∈ {1, 2, . . . , n}),

where cX = (cX(0), cX(1), . . . , cX(n)). Clearly, there exists a bijection between
Ω and the set {cX | X ∈ Ω}. For any pair of states X, Y ∈ Ω, we say X � Y
if and only if cX ≥ cY . It is clear that the relation “�” is a partial order on Ω.
We can see easily that ∀X ∈ Ω, XU � X � XL.

We say that a state X ∈ Ω covers Y ∈ Ω (at j), denoted by X ·� Y (or
X ·�j Y), when

cX(i) − cY (i) =

{

1 (i = j),
0 (otherwise).

Note that X ·�j Y if and only if

Xi − Yi =

+1 (i = j),
−1 (i = j + 1),
0 (otherwise).

Next, we show a key lemma for proving monotonicity.

Lemma 1. ∀X, ∀Y ∈ Ω, ∀λ ∈ [1, n), X ·�j Y ⇒ φ(X,λ) � φ(Y, λ).

Proof: We denote φ(X,λ) by X ′ and φ(Y, λ) by Y ′ for simplicity. For any
index i 6= bλc, it is easy to see that cX(i) = cX′(i) and cY (i) = cY ′(i), and so
cX′(i)− cY ′(i) = cX(i)− cY (i) ≥ 0 since X � Y . In the following, we show that
cX′(bλc) ≥ cY ′(bλc).

Clearly from the definition of our Markov chain, X ′
bλc is a unique value k′

satisfying

gb′(k
′ − 1|ubλc, ubλc+1) ≤ (λ − bλc) < gb′(k

′|ubλc, ubλc+1)

6

where b′
def .
= Xbλc + Xbλc+1. Similarly, Y ′

bλc is a unique value k′′ satisfying

gb′′(k
′′ − 1|ubλc, ubλc+1) ≤ (λ − bλc) < gb′′(k

′′|ubλc, ubλc+1)

where b′′
def .
= Ybλc + Ybλc+1. We need to consider following three cases.

Case 1: If bλc 6= j − 1 and bλc 6= j + 1, then b′ = b′′ and so we have X ′
bλc =

k′ = k′′ = Y ′
bλc.

Case 2: Consider the case that bλc = j − 1. Since X ·�j Y , we have b′ = b′′ + 1.
From the definition of cumulative sum vector,

cX′(j − 1) − cY ′(j − 1) = cX′(j − 2) + X ′
j−1 − cY ′(j − 2) − Y ′

j−1

= cX(j − 2) + X ′
j−1 − cY (j − 2) − Y ′

j−1 = X ′
j−1 − Y ′

j−1.

Thus, it is enough to show that X ′
j−1 ≥ Y ′

j−1.
Lemma 5 in Appendix section implies the following inequalities,

0 = gb′′+1(0|uj−1, uj) = gb′′(0|uj−1, uj) ≤ gb′′+1(1|uj−1, uj) ≤ gb′′(1|uj−1, uj) ≤ · · ·

≤ gb′′+1(k − 1|uj−1, uj) ≤ gb′′(k − 1|uj−1, uj) ≤ gb′′+1(k|uj−1, uj) ≤ · · ·

≤ gb′′+1(b
′′ − 1|uj−1, uj) ≤ gb′′(b

′′ − 1|uj−1, uj) = gb′′+1(b
′′|uj−1, uj) = 1,

which we will call alternating inequalities. For example, if inequalities

gb′′+1(k − 1|uj−1, uj) ≤ (λ − bλc) < gb′′(k − 1|uj−1, uj) ≤ gb′′+1(k|uj−1, uj)

hold, then X ′
bλc = k > k − 1 = Y ′

bλc. And if

gb′′+1(k − 1|uj−1, uj) ≤ gb′′(k − 1|uj−1, uj) ≤ (λ − bλc) < gb′′+1(k|uj−1, uj)

hold, then X ′
bλc = k = Y ′

bλc. Thus we have

(

X ′
j−1

Y ′
j−1

)

∈

{(

1
1

)

,

(

2
1

)

,

(

2
2

)

,

(

3
2

)

, . . . ,

(

b′′ − 1
b′′ − 1

)

,

(

b′′

b′′ − 1

)}

(see Figure 1). From the above we have that X ′
j−1 ≥ Y ′

j−1.

gb′′+1(0) gb′′+1(1) gb′′+1(2) gb′′+1(b
′′ − 1) gb′′+1(b

′′)

0 |

(

1
1

)

|

(

2
1

)

|

(

2
2

)

|

(

3
2

)

| · · · |

(

b′′

b′′ − 1

)

| 1

gb′′ (0) gb′′ (1) gb′′ (2) gb′′ (b
′′ − 1)

Fig. 1. A figure of alternating inequalities. In the above, we denote gb′′(k|uj−1, uj) and
gb′′+1(k|uj−1, uj) by gb′′(k), gb′′+1(k), respectively.

Case 3: Consider the case that bλc = j + 1. Since X ·�j Y , we have b′ + 1 = b′′.
From the definition of cumulative sum vector,

cX′(j + 1) − cY ′(j + 1) = cX′(j) + X ′
j+1 − cY ′(j) − Y ′

j+1

= cX(j) + X ′
j+1 − cY (j) − Y ′

j+1 = 1 + X ′
j+1 − Y ′

j+1.

7

Thus, it is enough to show that 1 + X ′
j+1 ≥ Y ′

j+1.
Then Lemma 5 also implies the following alternating inequalities

0 = gb′+1(0|uj+1, uj+2) = gb′(0|uj+1, uj+2)

≤ gb′+1(1|uj+1, uj+2) ≤ gb′(1|uj+1, uj+2) ≤ · · ·

≤ gb′+1(k − 1|uj+1, uj+2) ≤ gb′(k − 1|uj+1, uj+2) ≤ gb′+1(k|uj+1, uj+2) ≤ · · ·

≤ gb′+1(b
′ − 1|uj+1, uj+2) ≤ gb′(b

′ − 1|uj+1, uj+2) = gb′+1(b
′|uj+1, uj+2) = 1.

Then it is easy to see that

(

X ′
j+1

Y ′
j+1

)

∈

{(

1
1

)

,

(

1
2

)

,

(

2
2

)

,

(

2
3

)

, . . . ,

(

b′ − 1
b′ − 1

)

,

(

b′ − 1
b′

)}

(see Figure 2). From the above, we obtain the inequality 1 + X ′
j+1 ≥ Y ′

j+1.

gb′ (0) gb′ (1) gb′ (2) gb′ (b
′ − 1)

0 |

(

1
1

)

|

(

1
2

)

|

(

2
2

)

|

(

2
3

)

| · · · |

(

b′ − 1
b′

)

| 1

gb′+1(0) gb′+1(1) gb′+1(2) gb′+1(b
′ − 1) gb′+1(b

′)

Fig. 2. A figure of alternating inequalities. In the above, we denote gb′(k|uj+1, uj+2)
and gb′+1(k|uj+1, uj+2) by gb′(k), gb′+1(k), respectively.

Lemma 2. The Markov chain M defined by the update function φ is monotone
with respect to “ �”, i.e., ∀λ ∈ [1, n), ∀X, ∀Y ∈ Ω, X � Y ⇒ φ(X,λ) � φ(Y, λ).

Proof: It is easy to see that there exists a sequence of states Z1, Z2, . . . , Zr with
appropreate length satisfying X = Z1·� Z2·� · · · ·� Zr = Y . Then applying
Lemma 1 repeatedly, we can show that φ(X,λ) = φ(Z1, λ) � φ(Z2, λ) � · · · �
φ(Zr, λ) = φ(Y, λ).

Lastly, we show the correctness of our algorithm.
Proof of Theorem 3: From Lemma 2, the Markov chain is monotone, and it
is clear that (XU, XL) is a unique pair of maximum and minimum states. Thus
Algorithm 2 is a monotone CFTP algorithm and Theorems 1 and 2 implies
Theorem 3.

5 Expected Running Time

Here, we discuss the running time of our algorithm. In this section, we assume
the following.

Condition 1 Parameters are arranged in non-increasing order, i.e., u1 ≥ u2 ≥
· · · ≥ un.

8

The following is a main result of this paper.

Theorem 4. Under Condition 1, the expected number of tansitions executed
in Algorithm 1 is bounded by O(n3 ln ∆) where n is the dimension (number of
parameters) and 1/∆ is the grid size for discretization.

In the rest of this section, we prove Theorem 4 by estimating the expectation

of coalescence time T∗ ∈ Z++ defined by T∗
def .
= min{t > 0 | ∃y ∈ Ω, ∀x ∈

Ω, y = Φ0
−t(x,Λ)}. Note that T∗ is a random variable.

Given a pair of probabilistic distributions ν1 and ν2 on the finite state space

Ω, the total variation distance between ν1 and ν2 is defined by DTV(ν1, ν2)
def .
=

1
2

∑

x∈Ω |ν1(x) − ν2(x)|. The mixing rate of an ergodic Markov chain is defined

by τ
def .
= maxx∈Ω{min{t | ∀s ≥ t, DTV(π, P s

x) ≤ 1/e}} where π is the stationary
distribution and P s

x is the probabilistic distribution of the chain at time s with
initial state x. Path Coupling Theorem is a useful technique for bounding the
mixing rate.

Theorem 5. (Path Coupling [1, 2]) Let MC be a finite ergodic Markov chain
with state space Ω. Let G = (Ω, E) be a connected undirected graph with vertex

set Ω and edge set E ⊆

(

Ω
2

)

. Let l : E → R be a positive length defined on

the edge set. For any pair of vertices {x, y} of G, the distance between x and
y, denoted by d(x, y) and/or d(y, x), is the length of a shortest path between x
and y, where the length of a path is the sum of the lengths of edges in the path.
Suppose that there exists a joint process (X, Y) 7→ (X ′, Y ′) with respect to MC
satisfying that whose marginals are a faithful copy of MC and

0 < ∃β < 1, ∀{X, Y } ∈ E , E[d(X ′, Y ′)] ≤ βd(X, Y).

Then the mixing rate τ of Markov chain MC satisfies τ ≤ (1−β)−1(1+ln(D/d)),

where d
def .
= min(x,y)∈Ω2 d(x, y) and D

def .
= max(x,y)∈Ω2 d(x, y).

The above theorem differs from the original theorem in [1] since the integral-
ity of the edge length is not assumed. We drop the integrality and introduced
the minimum distance d. This modification is not essential and we can show
Theorem 5 similarly.

Now, we show the polynomiality of our algorithm. First, we estimate the
mixing rate of our chain M by employing Path Coupling Theorem. In the proof
of the following lemma, Condition 1 plays an important role.

Lemma 3. Under Condition 1, the mixing rate τ of our Markov chain M sat-
isfies τ ≤ n(n − 1)2(1 + ln n(∆ − n)/2).

Proof. Let G = (Ω, E) be an undirected simple graph with vertex set Ω and
edge set E defined as follows. A pair of vertices {X, Y } is an edge if and only
if (1/2)

∑n
i=1 |Xi − Yi| = 1. Clearly, the graph G is connected. For each edge

9

e = {X, Y } ∈ E , there exists a unique pair of indices j1, j2 ∈ {1, . . . , n}, called
the supporting pair of e, satisfying

|Xi − Yi| =

{

1 (i = j1, j2),
0 (otherwise).

We define the length l(e) of an edge e by l(e)
def .
= (1/(n − 1))

∑j∗−1
i=1 (n − i)

where j∗ = max{j1, j2} ≥ 2 and {j1, j2} is the supporting pair of e. Note that
1 ≤ mine∈E l(e) ≤ maxe∈E l(e) ≤ n/2. For each pair X, Y ∈ Ω, we define the
distance d(X, Y) be the length of the shortest path between X and Y on G.
Clearly, the diameter of G, i.e., max(X,Y)∈Ω2 d(X, Y), is bounded by n(∆−n)/2,
since d(X, Y) ≤ (n/2)

∑n

i=1(1/2)|Xi − Yi| ≤ (n/2)(∆ − n) for any (X, Y) ∈ Ω2.
The definition of edge length implies that for any edge {X, Y } ∈ E , d(X, Y) =
l({X, Y }).

We define a joint process (X, Y) 7→ (X ′, Y ′) by (X, Y) 7→ (φ(X,Λ), φ(Y, Λ))
with uniform real random number Λ ∈ [1, n) where φ is the update function
defined in Section 3. Now we show that

E[d(X ′, Y ′)] ≤ βd(X, Y), β = 1 − 1/(n(n − 1)2), (1)

for any pair {X, Y } ∈ E . In the following, we denote the supporting pair of
{X, Y } by {j1, j2}. Without loss of generality, we can assume that j1 < j2, and
Xj2 + 1 = Yj2 .

Case 1: When bΛc = j2 − 1, we will show that

E[d(X ′, Y ′)|bΛc = j2 − 1] ≤ d(X, Y) − (1/2)(n − j2 + 1)/(n − 1).

In case j1 = j2 − 1, X ′ = Y ′ with conditional probabilty 1. Hence d(X ′, Y ′) = 0.
In the following, we consider the case j1 < j2 − 1. Put b′ = Xj2−1 + Xj2 and
b′′ = Yj2−1 + Yj2 . Since Xj2 + 1 = Yj2 , b′ + 1 = b′′ holds. From the definition of
the update function of our Marokov chain, we have followings,

X ′
j2−1 = k ⇔ [gb′(k − 1|uj2−1, uj2) ≤ Λ − bΛc < gb′(k|uj2−1, uj2)]

Y ′
j2−1 = k ⇔ [gb′+1(k − 1|uj2−1, uj2) ≤ Λ − bΛc < gb′+1(k|uj2−1, uj2)].

As described in the proof of Lemma 1, the alternating inequalities

0 = gb′+1(0|uj2−1, uj2) = gb′(0|uj2−1, uj2)

≤ gb′+1(1|uj2−1, uj2) ≤ gb′(1|uj2−1, uj2) ≤ · · ·

≤ gb′+1(b
′ − 1|uj2−1, uj2) ≤ gb′(b

′ − 1|uj2−1, uj2) = gb′+1(b
′|uj2−1, uj2) = 1,

hold. Thus we have
(

X ′
j2−1

Y ′
j2−1

)

∈

{(

1
1

)

,

(

1
2

)

,

(

2
2

)

,

(

2
3

)

, . . . ,

(

b′ − 1
b′ − 1

)

,

(

b′ − 1
b′

)}

.

If X ′
j2−1 = Y ′

j2−1, the supporting pair of {X ′, Y ′} is {j1, j2} and so d(X ′, Y ′) =
d(X, Y). If X ′

j2−1 6= Y ′
j2−1, the supporting pair of {X ′, Y ′} is {j1, j2 − 1} and so

d(X ′, Y ′) = d(X, Y) − (n − j2 + 1)/(n − 1).

10

Lemma 6 in Appendix section implies that if uj2−1 ≥ uj2 , then

Pr[X ′
j2−1 = Y ′

j2−1|bΛc = j2 − 1] ≤ (1/2),

Pr[X ′
j2−1 6= Y ′

j2−1|bΛc = j2 − 1] ≥ (1/2),

by showing that the following inequality

Pr[X ′
j2−1 6= Y ′

j2−1|bΛc = j2 − 1] − Pr[X ′
j2−1 = Y ′

j2−1|bΛc = j2 − 1]

=
∑b′−1

k=1 [gb′(k|uj2−1, uj2) − gb′+1(k|uj2−1, uj2)]

−
∑b′−1

k=1 [gb′+1(k|uj2−1, uj2) − gb′(k − 1|uj2−1, uj2)] ≥ 0

hold when uj2−1 ≥ uj2 (see Figure 3).

gb′ (0) gb′ (1) gb′ (2) gb′ (b
′ − 1)

0 |

(

1
1

)

|

(

1
2

)

|

(

2
2

)

|

(

2
3

)

| · · · |

(

b′ − 1
b′

)

| 1

gb′+1(0) gb′+1(1) gb′+1(2) gb′+1(b
′ − 1) gb′+1(b

′)

Fig. 3. A figure of alternating inequalities. In the above, we denote gb′(k|uj2−1, uj2)
and gb′+1(k|uj2−1, uj2) by gb′(k), gb′+1(k), respectively.

Condition 1 is necessary to show Lemma 6. Thus we obtain that

E[d(X ′, Y ′)|bΛc = j2 − 1] ≤ (1/2)d(X, Y) + (1/2)(d(X, Y) − (n − j2 + 1)/(n − 1))

= d(X, Y) − (1/2)(n − j2 + 1)/(n − 1).

Case 2: When bΛc = j2, we can show that E[d(X ′, Y ′)|bΛc = j2] ≤ d(X, Y) +
(1/2)(n − j2)/(n − 1) in a similar way with Case 1.

Case 3: When bΛc 6= j2 − 1 and bΛc 6= j2, it is easy to see that the supporting
pair {j′1, j

′
2} of {X ′, Y ′} satisfies j2 = max{j ′1, j

′
2}. Thus d(X, Y) = d(X ′, Y ′).

The probability of appearance of Case 1 is equal to 1/(n − 1), and that of
Case 2 is less than or equal to 1/(n − 1). From the above,

E[d(X ′, Y ′)] ≤ d(X, Y) −
1

n − 1

1

2

n − j2 + 1

n − 1
+

1

n − 1

1

2

n − j2
n − 1

= d(X, Y) −
1

2(n − 1)2

≤

(

1 −
1

2(n − 1)2
1

max{X,Y }∈E{d(X, Y)}

)

d(X, Y) =

(

1 −
1

n(n − 1)2

)

d(X, Y).

Since the diameter of G is bounded by n(∆− n)/2, Theorem 5 implies that the
mixing rate τ satisfies τ ≤ n(n − 1)2(1 + ln n(∆ − n)/2).

Next, we estimate the coalescence time. When we apply Propp and Wilson’s
result in [9] straightforwardly, the obtained coalescence time is not tight. In the
following, we use their technique carefully and derive a better bound.

11

Lemma 4. Under Condition 1, the coalescence time T∗ of M satisfies E[T∗] =
O(n3 ln ∆).

Proof. Let G = (Ω, E) be the undirected graph and d(X, Y), ∀X, ∀Y ∈ Ω, be
the metric on G, both of which are defined in the proof of Lemma 3. We define

D
def .
= d(XU, XL) and τ0

def .
= n(n − 1)2(1 + ln D). By using the inequality (1)

obtained in the proof of Lemma 3, we have

Pr[T∗ > τ0] = Pr
[

Φ0
−τ0

(XU, Λ) 6= Φ0
−τ0

(XL, Λ)
]

= Pr [Φτ0

0 (XU, Λ) 6= Φτ0

0 (XL, Λ)]

≤
∑

(X,Y)∈Ω2 d(X, Y)Pr [X = Φτ0

0 (XU, Λ), Y = Φτ0

0 (XL, Λ)]

= E [d (Φτ0

0 (XU, Λ), Φτ0

0 (XL, Λ))] ≤

(

1 −
1

n(n − 1)2

)τ0

d(XU, XL)

=

(

1 −
1

n(n − 1)2

)n(n−1)2(1+ln D)

D ≤ e−1e− ln DD ≤
1

e
.

By submultiplicativity of coalescence time ([9]), for any k ∈ Z+, Pr[T∗ > kτ0] ≤

(Pr[T∗ > τ0])
k
≤ (1/e)k. Thus

E[T∗] =
∑∞

t=0 tPr[T∗ = t] ≤ τ0 + τ0Pr[T∗ > τ0] + τ0Pr[T∗ > 2τ0] + · · ·

≤ τ0 + τ0/e + τ0/e2 + · · · = τ0/(1 − 1/e) ≤ 2τ0.

Clearly, D ≤ n(∆ − n)/2 ≤ ∆2 because n ≤ ∆. Then we obtain the result that
E[T∗] = O(n3 ln ∆).

Lastly, we bound the expected number of transitions executed in Algorithm 1.

Proof of Theorem 4: We denote T∗ be the coalescence time of our chain.
Clearly T∗ is a random variable. Put K = dlog2 T∗e. Algorithm 1 terminates
when we set the starting time period T = −2K at (K + 1)st iteration. Then
the total number of simulated transitions is bounded by 2(20 + 21 + 22 + · · · +
2K) < 2 · 2 · 2K ≤ 8T∗, since we need to execute two chains from both XU and
XL. Thus the expectation of total number of transitions of M is bounded by
O(E[8T∗]) = O(n3 ln N).

We can assume Condition 1 by sorting parameters in O(n ln n) time.

6 Conclusion

In this paper, we proposed a monotone Markov chain whose stationary distri-
bution is a discretized Dirichlet distribution. By employing Propp and Wilson’s
result, on monotone CFTP algorithm, we can construct a perfect sampling al-
gorithm. We showed that our Markov chain is rapidly mixing by using path
coupling method. Thus the rapidity implies that our perfect sampling algorithm
is a polynomial time algorithm. The obtained time complexity does not depend
on the magnitudes of parameters.

We can reduce the memory requirement by employing Wilson’s read-once
algorithm in [12].

12

Appendix

Lemma 5 is essentialy equivalent to the lemma appearing in Appendix section of
the paper [6] by Matsui, Motoki and Kamatani which deals with an approximate
sampler for discretized Dirichlet distribution.

Lemma 6 is a new result obtained in this paper.

Lemma 5.

∀b ∈ {2, 3, . . .}, ∀ui, ∀uj ≥ 0, ∀k ∈ {1, 2, . . . , b},

gb+1(k − 1|ui, uj) ≤ gb(k − 1|ui, uj) ≤ gb+1(k|ui, uj).

Proof: In the following, we show the second inequality. We can show the first
inequality in a similar way.

We denote C(ui, uj, b + 1) = Cb+1 and C(ui, uj, b) = Cb for simplicity. From
the definirion of gb(k|ui, uj), we obtain that

H(k)
def .
= gb+1(k|ui, uj) − gb(k − 1|ui, uj)

=
∑k

l=1 Cb+1l
ui−1(b − l + 1)uj−1 −

∑k−1
l=1 Cbl

ui−1(b − l)uj−1

= (1 − Cb+1

∑b

l=k+1 lui−1(b − l + 1)uj−1) − (1 − Cb

∑b−1
l=k lui−1(b − l)uj−1)

= Cb

∑b

l=k+1(l − 1)ui−1(b − l + 1)uj−1 − Cb+1

∑b

l=k+1 lui−1(b − l + 1)uj−1

=
∑b

l=k+1(Cb(l − 1)ui−1(b − l + 1)uj−1 − Cb+1l
ui−1(b − l + 1)uj−1)

=
∑b

l=k+1 Cbl
ui−1(b − l + 1)uj−1

(

(

1 − 1
l

)ui−1
−

Cb+1

Cb

)

.

Similarly, we can also show that

H(k) = Cb+1

∑k
l=1 lui−1(b − l + 1)uj−1 − Cb

∑k−1
l=1 lui−1(b − l)uj−1

≥ Cb+1

∑k

l=2 lui−1(b − l + 1)uj−1 − Cb

∑k

l=2(l − 1)ui−1(b − l + 1)uj−1

=
∑k

l=2(Cb+1l
ui−1(b − l + 1)uj−1 − Cb(l − 1)ui−1(b − l + 1)uj−1)

=
∑k

l=2 Cbl
ui−1(b − l + 1)uj−1

(

Cb+1

Cb
−

(

1 − 1
l

)ui−1
)

.

By introducing the function h : {2, 3, . . . , b} → R defined by h(l)
def .
=

(

1 − 1
l

)ui−1
−

Cb+1

Cb
, we have the following equality and inequality

H(k) =
∑b

l=k+1 Cbl
ui−1(b − l + 1)uj−1h(l) (2)

≥ −
∑k

l=2 Cbl
ui−1(b − l + 1)uj−1h(l). (3)

(a) Consider the case that ui ≥ 1.
Since ui−1 ≥ 0, the function h(l) is monotone non-decreasing. When h(k) ≥

0 holds, we have 0 ≤ h(k) ≤ h(k + 1) ≤ · · · ≤ h(b), and so (2) implies the non-
negativity H(k) ≥ 0. If h(k) < 0, then inequalities h(2) ≤ h(3) ≤ · · · ≤ h(k) < 0

hold, and so (3) implies that H(k) ≥ −
∑k

l=2 Cbl
ui−1(b − l + 1)uj−1h(l) ≥ 0.

13

(b) Consider the case that 0 ≤ ui ≤ 1.
Since ui − 1 ≤ 0, the function h(l) is monotone non-increasing. If the in-

equality h(b) ≥ 0 hold, we have h(2) ≥ h(3) ≥ · · · ≥ h(b) ≥ 0 and inequality
(2) implies the non-negativity H(k) ≥ 0. Thus, we only need to show that

h(b) = (b−1
b

)ui−1 − Cb+1

Cb
≥ 0.

In the rest of this proof, we substitute ui′ − 1 by αi′ for all i′. We define a

function H0(b, αi, αj) by H0(b, αi, αj)
def .
= (b−1)αiC−1

b+1−bαiC−1
b . It is clear that

if the condition [−1 ≤ ∀αi ≤ 0, −1 ≤ ∀αj , ∀b ∈ {2, 3, 4, . . .}, H0(b, αi, αj) ≥ 0]
holds, we obatin the required result that h(b) ≥ 0 for each b ∈ {2, 3, 4, . . .}. Now
we transform the function H0(b, αi, αj) and obtain another expression as follows;

H0(b, αi, αj) = (b − 1)αi

b
∑

k=1

kαi(b − k + 1)αj − bαi

b−1
∑

k=1

kαi(b − k)αj

=
∑b

k=1(b − 1)αikαi(b − k + 1)αj (b−k)+(k−1)
b−1 − bαi

∑b−1
k=1 kαi(b − k)αj

=
∑b−1

k=1

[

(b − 1)αikαi(b − k + 1)αj

(

b−k
b−1

)

+ (b − 1)αi(k + 1)αi(b − k)αj

(

k
b−1

)

−bαikαi(b − k)αj]

=
∑b−1

k=1
(b−1)αi kαi (b−k)αj

b−1

[(

1 + 1
b−k

)αj

(b − k) +
(

1 + 1
k

)αi
k −

(

b
b−1

)αi

(b − 1)
]

.

Then it is enough to show that the function

H1(b, αi, αj , k)
def .
=

(

1 + 1
b−k

)αj

(b − k) +
(

1 + 1
k

)αi
k −

(

b
b−1

)αi

(b − 1)

is nonnegative for any k ∈ {1, 2, . . . , b−1}. Since 1+1/(b−k) > 1 and αj ≥ −1,
we have

H1(b, αi, αj , k) ≥ H1(b, αi,−1, k) = (b−k)2

b−k+1 +
(

1 + 1
k

)αi
k −

(

b
b−1

)αi

(b − 1).

We differentiate the function H1 by αi, and obtain the following

∂

∂αi

H1(b, αi,−1, k) =
(

1 + 1
k

)αi
k log

(

1 + 1
k

)

−
(

b
b−1

)αi

(b − 1) log
(

b
b−1

)

=
(

1 + 1
k

)αi
log

(

1 + 1
k

)k
−

(

1 + 1
b−1

)αi

log
(

1 + 1
b−1

)(b−1)

.

Since k, b is a pair of positive integers satisfying 1 ≤ k ≤ b−1, the non-positivity
of αi implies 0 ≤ (1+1/k)αi ≤ (1+1/(b−1))αi and 0 ≤ log(1+1/k)k ≤ log(1+
1/(b−1))b−1. Thus the function H1(b, αi,−1, k) is monotone non-decreasing with
respect to αi ≤ 0. Thus we have

H1(b, αi,−1, k) ≥ H1(b, 0,−1, k) = (b−k)2

b−k+1 +
(

1 + 1
k

)0
k −

(

b
b−1

)0

(b − 1)

= (b−k)2

b−k+1 + k − b + 1 = (b−k)2+12−(b−k)2

b−k+1 = 1
b−k+1 ≥ 0.

14

Lemma 6. ∀b ∈ {2, 3, . . .}, ∀ui ≥ ∀uj,

b−1
∑

k=1

[gb(k|ui, uj) − gb+1(k|ui, uj)] −

b−1
∑

k=1

[gb+1(k|ui, uj) − gb(k − 1|ui, uj)] ≥ 0.

Proof: We denote C(ui, uj, b + 1) = Cb+1 and C(ui, uj, b) = Cb for simplicity.
It is not difficult to show the following equalities,

G
def .
=

∑b−1
k=1[gb(k|ui, uj) − gb+1(k|ui, uj)] −

∑b−1
k=1[gb+1(k|ui, uj) − gb(k − 1|ui, uj)]

=
∑b−1

k=1 gb(k|ui, uj) −
∑b−1

k=1 gb+1(k|ui, uj)

−
∑b−1

k=1 gb+1(k|ui, uj) +
∑b−1

k=1 gb(k − 1|ui, uj)

=
∑b−1

k=1 gb(k|ui, uj) −
∑b−1

k=1 gb+1(k|ui, uj)

−
∑b−1

k=1 gb+1(k|ui, uj) +
∑b−1

k=2 gb(k − 1|ui, uj)

=
∑b−1

k=1 Cb

∑k

l=1 lui−1(b − l)uj−1 −
∑b−1

k=1 Cb+1

∑k

l=1 lui−1(b − l + 1)uj−1

−
∑b−1

k=1 Cb+1

∑k

l=1 lui−1(b − l + 1)uj−1 +
∑b−1

k=2 Cb

∑k−1
l=1 lui−1(b − l)uj−1

= Cb

∑b−1
l=1 (b − l)lui−1(b − l)uj−1 − Cb+1

∑b−1
l=1 (b − l)lui−1(b − l + 1)uj−1

−Cb+1

∑b−1
l=1 (b − l)lui−1(b − l + 1)uj−1 + Cb

∑b−1
l=1 (b − l − 1)lui−1(b − l)uj−1

= Cb

∑b−1
l=1 (2b − 2l − 1)lui−1(b − l)uj−1 − Cb+1

∑b−1
l=1 (2b − 2l)lui−1(b − l + 1)uj−1

= CbCb+1

(

C−1
b+1

∑b−1
l=1 (2b − 2l − 1)lui−1(b − l)uj−1

−C−1
b

∑b

l=1(2b − 2l)lui−1(b − l + 1)uj−1
)

= CbCb+1

(

∑b
k=1 kui−1(b − k + 1)uj−1

∑b−1
l=1 (2b − 2l − 1)lui−1(b − l)uj−1

−
∑b−1

k=1 kui−1(b − k)uj−1
∑b

l=1(2b − 2l)lui−1(b − l + 1)uj−1
)

= CbCb+1

(

∑b
k=1

∑b−1
l=1 (2b − 2l − 1)(kl)ui−1((b − k + 1)(b − l))uj−1

−
∑b−1

k=1

∑b

l=1(2b − 2l)(kl)ui−1((b − k)(b − l + 1))uj−1
)

= CbCb+1

(

∑b
k=1

∑b−1
l=1 (2b − 2l − 1)(kl)ui−1((b − k + 1)(b − l))uj−1

−
∑b

k=1

∑b−1
l=1 (2b − 2k)(kl)ui−1((b − l)(b − k + 1))uj−1

)

= CbCb+1

∑b

k=1

∑b−1
l=1

(

(2k − 2l − 1)(kl)ui−1((b − k + 1)(b − l))uj−1
)

=
CbCb+1

2

(

∑b

k=1

∑b−1
l=1 (2k − 2l − 1)(kl)ui−1((b − k + 1)(b − l))uj−1

+
∑b

k=1

∑b−1
l=1 (2k − 2l − 1)(kl)ui−1((b − k + 1)(b − l))uj−1

)

= CbCb+1

2

(

∑b

k=1

∑b−1
l=1 (2k − 2l − 1)(kl)ui−1((b − k + 1)(b − l))uj−1

+
∑b

k=1

∑b−1
l=1 (2(b − k + 1) − 2(b − l) − 1)

((b − k + 1)(b − l))ui−1((b − (b − k + 1) + 1)(b − (b − l)))uj−1
)

15

=
CbCb+1

2

(

∑b

k=1

∑b−1
l=1 (2k − 2l − 1)(kl)ui−1((b − k + 1)(b − l))uj−1

−
∑b

k=1

∑b−1
l=1 (2k − 2l − 1)((b − k + 1)(b − l))ui−1(kl)uj−1

)

(k)
1 2 3 · · · b−1 b

1

2
∑b−1

l=1

∑b
k=l+1

(l) 3

:
∑b−1

k=1

∑b−1
l=k

b − 1

= CbCb+1

2

(

∑b−1
l=1

∑b

k=l+1(2k − 2l − 1)(kl)ui−1((b − k + 1)(b − l))uj−1

+
∑b−1

k=1

∑b−1
l=k (2k − 2l − 1)(kl)ui−1((b − k + 1)(b − l))uj−1

−
∑b−1

l=1

∑b

k=l+1(2k − 2l − 1)((b − k + 1)(b − l))ui−1(kl)uj−1

−
∑b−1

k=1

∑b−1
l=k (2k − 2l − 1)((b − k + 1)(b − l))ui−1(kl)uj−1

)

= CbCb+1

2

(

∑b−1
l=1

∑b

k=l+1(2k − 2l − 1)(kl)ui−1((b − k + 1)(b − l))uj−1

−
∑b−1

l=1

∑b

k=l+1(2k − 2l − 1)(l(k − 1))ui−1((b − l + 1)(b − k + 1))uj−1

−
∑b−1

l=1

∑b

k=l+1(2k − 2l − 1)((b − k + 1)(b − l))ui−1(kl)uj−1

+
∑b−1

l=1

∑b
k=l+1(2k − 2l − 1)((b − l + 1)(b − k + 1))ui−1(l(k − 1))uj−1

)

=
CbCb+1

2

b−1
∑

l=1

b
∑

k=l+1

(2k − 2l − 1)
(

(kl)ui−1((b − k + 1)(b − l))uj−1

−(l(k − 1))ui−1((b − l + 1)(b − k + 1))uj−1

−((b − k + 1)(b − l))ui−1(kl)uj−1

+((b − l + 1)(b − k + 1))ui−1(l(k − 1))uj−1
)

.

We define a function G0(k, l, ui, uj) by

G0(k, l, ui, uj)
def .
=

(kl)ui−1((b − k + 1)(b − l))uj−1

−(l(k − 1))ui−1((b − l + 1)(b − k + 1))uj−1

−((b − k + 1)(b − l))ui−1(kl)uj−1

+((b − l + 1)(b − k + 1))ui−1(l(k − 1))uj−1

.

Since 1 ≤ l < l+1 ≤ k ≤ b, it is clear that (2k−2l−1) > 0. Thus, we only need to
show that ∀l ∈ {1, 2, . . . , b−1}, ∀k ∈ {2, 3, . . . , b}, ∀ui ≥ ∀uj, G0(l, k, ui, uj) ≥ 0.
It is easy to see that

G0(k, l, ui, uj)

=

(l(k − 1))ui−1(b − k + 1)uj−1
(

(1 + 1
k−1)ui−1(b − l)uj−1 − (b − l + 1)uj−1

)

+((b − k + 1)(b − l))ui−1luj−1
(

−kuj−1 + (1 + 1
b−l

)ui−1(k − 1)uj−1
)

 .

Then it is clear that G0(k, l, ui, uj) is non-decreasing with respect to ui and
so G0(k, l, ui, uj) ≥ G0(k, l, uj, uj). By substituting ui by uj in the definition

16

of G0(k, l, ui, uj), it is easy to see that G0(k, l, uj, uj) = 0. Thus we have the
desired result.

References

1. Bubley, R., M. Dyer, M.: Path coupling: A technique for proving rapid mixing
in Markov chains, 38th Annual Symposium on Foundations of Computer Science,
IEEE, San Alimitos, 1997, 223–231.

2. Bubley, R.: Randomized Algorithms : Approximation, Generation, and Counting,
Springer-Verlag, New York, 2001.

3. Dimakos, X. K.: A guide to exact simulation, International Statistical Review, 69
(2001), pp. 27–48.

4. Durbin, R., Eddy, R., Krogh, A., Mitchison, G.: Biological sequence analysis: prob-
abilistic models of proteins and nucleic acids, Cambridge Univ. Press, 1998.

5. Kijima, S. and Matsui, T.,: Polynomial Time Perfect Sampling Algorithm for
Two-rowed Contingency Tables, METR 2003-15, Mathematical Engineering Tech-
nical Reports, University of Tokyo, 2003. (available from http://www.keisu.t.u-
tokyo.ac.jp/Research/techrep.0.html)

6. Matsui, T., Motoki, M., and Kamatani, N.,: Polynomial Time Approximate
Sampler for Discretized Dirichlet Distribution, METR 2003-10, Mathemati-
cal Engineering Technical Reports, University of Tokyo, 2003. (available from
http://www.keisu.t.u-tokyo.ac.jp/Research/techrep.0.html)

7. Niu, T., Qin, Z. S., Xu, X., Liu, J. S.: Bayesian haplotype inference for multiple
linked single-nucleotide polymorphisms, Am. J. Hum. Genet., 70 (2002) 157–169.

8. Pritchard, J. K., Stephens, M., Donnely, P.: Inference of population structure using
multilocus genotype data, Genetics, 155 (2000) 945–959.

9. Propp, J. and Wilson, D.: Exact sampling with coupled Markov chains and appli-
cations to statistical mechanics, Random Structures and Algorithms, 9 (1996), pp.
232–252.

10. Propp, J. and Wilson, D.: How to get a perfectly random sample from a generic
Markov chain and generate a random spanning tree of a directed graph, J. Algo-
rithms, 27 (1998), pp. 170–217.

11. Robert, C. P.: The Bayesian Choice, Springer-Verlag, New York, 2001.
12. Wilson, D.: How to couple from the past using a read-once source of randomness,

Random Structures and Algorithms, 16 (2000), pp. 85–113.

17

