NUMERICAL INDEFINITE INTEGRATION BY DOUBLE
EXPONENTIAL SINC METHOD

KEN’ICHIRO TANAKA, MASAAKI SUGIHARA, AND KAZUO MUROTA

ABSTRACT. We present a numerical method for approximating an indefinite
integral by the double exponential sinc method. The approximation error of
the proposed method with N integrand function evaluations is

O(exp(—c1N/log(c2N)))

for a reasonably wide class of integrands, including those with end-point singu-
larities. The proposed method compares favorably with the existing formulas
based on the ordinary sinc method. Computational results show the accor-
dance of the actual convergence rates with the theoretical estimate.

1. INTRODUCTION

A variety of numerical methods based on sinc approximations has been studied
during the last three decades [5, 6, 7, 8]. The methods cover function approxima-
tion, approximation of derivatives, approximate definite and indefinite integration,
approximate solution of initial and boundary value ODE problems, and so on. In
particular, the sinc interpolation formula is given by

(1.1) f@)~ Y f(kh)S(k,h)(z),

where

sin [7(z — kh)/h]
m(x —kh)/h

(1.2) Sk, h)(z) =

The methods are collectively referred to as sinc numerical methods.

In this paper, we present a method and experimental results for approximating an
indefinite integral F'(z) = [, f(t)dt. In the literature [2, 3, 5], formulas for numeri-
cal indefinite integration based on the sinc approximation have been proposed, often
based on a single exponential (“SE”) transformation' such as 11 (¢) = tanh((/2).
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n contrast to the term “double exponential”, we use “single exponential” when referring to
the ordinary sinc method.
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To be specific, Stenger’s formula [5] with this transformation is

(1.3) /_ 1 Ft)at

__exp(4yy '(z))
~ 2cosh(Ay;t(z))

N

h Y f@(kR))y (kh)

k=—N

N
+h Z lz Ok— l(f Y1(Lh))eby (1h)

—N LiI=—N

" 2cosh? (Alh) =\
+0 (VNexp (=\/erN)),

where o_; is defined in (2.14) and ¢; is a constant that depends on the integrand f.
The constant A is determined appropriately according to the property of f. Such
a formula has also been considered by Haber [2].

In place of the single exponential transformation, we employ in this paper a
double exponential (“DE”) transformation. Double exponential transformations
are proposed by H. Takahasi and M. Mori [9] in designing a definite integration
formula. Recently, it is known that the double exponential transformations are
useful for various kinds of the sinc numerical methods [4]. We employ one of the
double exponential transformations such as 12(¢) = tanh((m/2) sinh {) to propose
a more efficient formula:

14/f

=5 [tanh (Bsinh(Cyp3 ' () +1] b Y f@ba(kh))h(kh)

z ok ( (62 1R) 4 (11)

____BCcosh(Clh)
2 cosh? (B sinh(CIh))

—c'fN
+ O | exp 710g(cglN) ,

where c} and c’f’ are constants that depend on the integrand f. The constants B
and C are determined appropriately according to the property of f. The error term

0 —cN
P log(c;N)

in this formula is smaller in order of magnitude than the error term

o (Ve (i)

N
L h Y f(«pl(kh))wi(kh))] Sk ) (W7 (@)

+h2

—-N

N

hy f(wz(kh))wé(kh)ﬂ Sk, h)(v3 ' (x))

k=—N
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in the formula (1.3). Thus the proposed formula (1.4) is often more efficient than
the formula (1.3), although there exist some functions (see Example 6 in Section 4)
for which this is not the case.

The organization of this paper is as follows. In Section 2, we present our nu-
merical indefinite integration formula on the entire real line R together with the
main error estimate theorem. With the use of a double exponential transformation,
the formula is adapted to the numerical indefinite integration formula on a finite
interval in Section 3. In Section 4, we present some numerical results to confirm
our theoretical error estimates. In Section 5, the proofs of the theorem and lemmas
are provided. Concluding remarks are made in Section 6.

2. INDEFINITE INTEGRATION ON THE ENTIRE REAL LINE

In this section, we consider an indefinite integration on the entire real line R as
the fundamental case of theoretical treatments. This case is essential in that the
general case in Section 3 is a direct consequence of the results of this section in
combination with the double exponential transformation.

Proofs of theorems are given in Section 5, unless otherwise indicated.
2.1. Notation. We introduce a function space as follows.
Definition 2.1. For a positive number d, a strip region D, in C is defined as:

(2.1) Da={2€C | |Ilmz| <d}.

Then, a function space H!(Dy) is defined as:

(2.2) HY (D) = {g | g is analytic in Dg, Ni(g,D4) < 00},
where
(2.3) Ni(g,Dq) = lim |f(2)[|dz],
e—0 8Dd(6)
(2.4) Da(e) = {z € C| |Rez| < 1/e,|Imz| < d(1 —¢€)}.

In addition, we use operators J, Cn,x, and C}, for an indefinite integration and
the sinc interpolation.

Definition 2.2. For a function f defined on a complex region containing the real
line R, we define operators J, Cn,n, and C} by

(2.5) e = [ T fwdt,
(2.6) Cnpf)e) = S F(kR)S(k,B)(2),
(2.7) CNE) = Jim Cnaf)(2),

where N is a positive integer and h is a positive real number.
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2.2. Sinc interpolation. The sinc interpolation is a basic tool in the derivation
of our formula. The interpolation error for a function of double exponential decay
type is estimated as follows.

Theorem 2.1 ([8]). Assume that f satisfies
(28) f S Hl(Dd),
(2.9) Vz € R, |f(z)] < aexp(—Bexp(vlz]))

for some positive numbers o, 3, v, and d. Then, there exists a positive number c,
independent of N, such that

—mdyN
(2.10) _oos3£)<oo |f(z) — (Cnnf)(z)| < cexp [W] )
where
_log(mdyN/p)
(2.11) h=—"8

2.3. Derivation of the indefinite integration formula on R. We describe the
derivation of the proposed formula on R and explaln the basic idea behind it.

First, we apply the sinc interpolation to (7 f)(x f f(t)dt to obtain
(2.12) (T f)(@) = (CnnJ f)(z)
N
= Y (TH)(kh)S(k,h)(x)
k=—N
N kh
=Y ( f(t)dt) S(k,h)(z).
k=—N \’~

Next, we apply the sinc interpolation to f in the above expression to obtain

(2.13) (T f)(z) = (CN nJCN hf)(x)

l/ S famsimd ] S(k, h)(@)

®—_N
=h Z lz ak_lf(lh)] S(k, h)(z),

—N LI=—N

where
k=l .

(2.14) el = %+/0 Su;tﬂdt.

If f and Jf satisfy the assumptions of Theorem 2.1, then the approximations
n (2.12) and (2.13), denoted “~”, should work. We can apply Theorem 2.1 to
obtain the following theorem. Its proof is omitted.

Theorem 2.2. Assume that f and J f satisfy

(2.15) f e H'(Dy),

(2.16) Jf € H'(Dy),

(2.17) Vz € R, |f(z)| < aexp(—Bexp(y|z|)),
(2.18) Vo € R, [(Jf)(@)| < aexp(—Bexp(ye))
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for some positive numbers «, 3, v, and d. Then, there exists a positive number c,
independent of N, such that

(2.19) s (T F)(x) = (CNpICNwf)(z)| < cexp [%]
where

_ log(ndyN/f)
(2.20) T AN

The assumptions in the above theorem are stated in terms of both f and Jf.
It is, however, more natural to state the assumptions in terms of the given in-
tegrand f. We present the following theorem that imposes an additional condi-
tion lim, o0 (J f)(2) = 0. The general case free from this additional condition is
presented in Theorem 2.4.

Theorem 2.3. Assume that f satisfies

(2.21) f e H'(Dy),
(2:22) Vz €R, |f(z)] < aexp(—Bexp(y|z]),
(2.23) / T fdt =

for some positive numbers «, 3, v, and d. Then, for any € with 0 < € < d, there
exists a positive number c., independent of N, such that

—m(d —e)yN

2.24 —(C C <ece

20) s [(TNE) ~ OnaTOnaf)a)| < cooxp | 2=
where

log(m(d — €)YN/B)
2.2 = .
(2:25) h ~
We next treat the general case in which (2.23) is not assumed. We consider

(2.26) g9(z) = — k(z / f@®)
with a function & such that [*_k(t)dt = 1. Then we have
(2.27) / g(8)dt = 0.

To apply Theorem 2.3 to g we must choose & so that (2.21) and (2.22) are satisfied
for some «, 3, v, and d. We consider

BC cosh(Cz) _dJ1 0 h(C 1
2 cosh? (B sinh(Cz)) (_ dz [2ta b (B sinh(Cz)) + 2]) ’

parameterized by B and C. We also introduce notation

(2.29) r(2) = K(2) / 7wt

The following proposition provides the decay rate of k and the function space
that contains k. The proof is straightforward and omitted.

(2.28) K(z) =
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Proposition 2.1. Let By, ., and d,. be determined as

ﬂn:B_6ﬁ77n=C: dnz%_gda if0<B<%,
(2.30) 26— *° .
Bx=B—¢p, 7w =C, do = Farcsin (J5) —ea, if 5 <B,

where €g and €4 are any positive numbers such that 8, > 0 and d, > 0. Then we
have

(2.31) k€ HY(Dy,),
(2.32) Vo € R, [4(2)] < n exp(—Beexp(elz])).

To apply Theorem 2.3 to g, we need to determine the decay rate of g and the
function space to which g belongs. The following lemma provides them. Its proof
is easy and omitted.

Lemma 2.1. Let B¢, ¢, and dy be constants such that

(2.33) feH (Dg,),
(2.34) Ve €R, |f(2)] < ay exp(—PB5 exp(yslz])),

and let By, v, and d,, be constants in (2.30). Then, for

ﬂf: 7’f Yf < Yk
(235) ﬂg = ﬁlﬁ lf ’Yf > ’YKJ
min{ﬁf:ﬁn}a 7’f Y= Ve»
(2.36) v = min{vys,vs},
(2.37) dy = min{dy,d.},
we have
(2.38) g € H'(Dy,),
(2.39) Vz € R, |9(z)| < agexp(—B, exp(v,]2])).

Applying Theorem 2.3 to g, we immediately obtain the following theorem only
with the assumptions (2.21) and (2.22) for f.

Theorem 2.4. Assume that f satisfies

(2.40) feH (Dg,),
(2.41) Vz € R, |f(z)| < ayexp(—PB; exp(vy|z]))
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for some positive numbers ap, B¢, v5, and dg. Then, for any € with 0 < € < d,
there exists a positive number c., independent of N, such that

L

_ l;[tanh(Bsthm / F#)dt +h Z lz o ,( (ih)

—N Li=

BC cosh(Clh)
t)dt
~ 2cosh?(Bsinh(Clh)) / 1® )] )@ )H

= sup |[(Jf)(z)—[(Tr)(z)+ (CnnrTCnrY) (2)]|

(2.42) sup

—oo<Lz<oo

—oo<Lz< oo
. —m(dg —€)yyN ]
S oo [log(W(dg =€) N/By)
where
(2.43) = 1o8(m(ds =)y N/By)

Y9V
and By, g, and d, are taken as in (2.35)—(2.37).
In Theorem 2.4, the formula (2.42) contains the constant [ f(¢)d¢, that should
be replaced by h E v—_n f(kh) in actual computation.

Theorem 2.5. Under the same assumptions as in Theorem 2.4, the following es-
timate holds for some c. :

(2.44)

700S2:£)<oo /700 f(t)dt

- St @annica) 108 3 g0 n 3 | 3 o1

_N Li=—N
BC cosh(Clh)
2005h2(B sinh(ClIh)) kz f(kh) )] h)(z )]

! ox _W(d_q — 6)’ygN :|

< C. €xXp |:10g(71'(dg - E)VQN/,BQ)

2.4. Optimal parameters. Given an integrand f, we are free to choose parame-
ters B and C in (2.30). We want to minimize the error (2.44) with respect to the
parameters B and C for a given integrand f satisfying (2.40) and (2.41). Hence,
we are to determine the set of the parameter values (B, C) that give the maximum
value of v,dy, and then to choose a (B,C), from among these maximizers, that
makes 3, as large as possible. Recall that 8,4, v,, and d, are determined from B
and C by Proposition 2.1 and Lemma 2.1. Here we note the following key fact.

Proposition 2.2 ([7]). Assume that f satisfies
(2.45) feHY (D)),
(2.46) Ve € R, |f(2)] < ay exp(—fs exp(yslal))
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for some positive numbers ay, By, v¢, and dy. If f #0, then vpdy < /2.

Thus we may focus on the case y¢dy < m/2. Then we determine B and C as
follows. When ~;dy < 7/2,

(2.47) T

B=—— __
2sin('7fdf) £B;
(2.48) C =y

are desired parameters, where g is any positive number such that 7/2 < B. Then
we have

— mi T
(2.49) By = min {ﬂf, 2sin(r;d;) EB sﬂ} ,
(2.50) Yo = Vs>
(2.51) dy = dy,

where Elﬂ is any positive number such that 3, > 0.
When y¢dy = 7/2,

(2.52) B =m/2,
(2.53) C =~y
are desired parameters. Then we have
. T
(2.54) B, = min {,Bf, 5~ 5'[,} ,
(2.55) Yo =Vf5
T
2. B
( 56) dg 2’Yf €d>

where €j; and £; are any positive numbers such that 8, >0 and dy > 0.
The explanation of the above argument is shown in Subsection 5.3.

2.5. Discussion. We discuss a technical difference between our setting and
Stenger’s [5]. Recall (2.40) and (2.41), our assumptions about the integrand f,
in which the double exponential decay of f is assumed only on the real line R. On
the other hand, the assumption in [5] is that

(2.57) f € La(Da)

for some positive numbers a and d, where L, (D,) is a function space of analytic
functions f on Dy satisfying

le**|
T+ e )
for some positive number ¢. Thus the single exponential decay is assumed not only
on the real line but also on the strip region D,.

In parallel with L,(Dy4), we could have imposed the double exponential decay
in a strip region and considered a function space Kz (Dg4) of analytic functions f
on D, satisfying

(2.59) Vz € Da, |f(2)| < cexp(—Bexp(v]z]))

for some positive number ¢. This function space, however, is less appropriate for the
following reason. Consider & in (2.28) as a typical function with double exponential
decay. We compare the tuple (8., Y., d,) in (2.30) and a possible tuple (8.,~L%,d.)

(2.58) Vz € Dq, |f(2)| <L c
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such that Kp: ,/ (Dg ) contains & in (2.28). First, since d;, depends only on the

]
K

strip region where « is analytic, we have

(2.60) d;:{%_‘sd; ] if0<B<T,

Garcsin (55) —eq, if 3 <B

for some positive number £4. On the other hand, we can show
(2.61) Bl < Bsin(gqC),

(2.62) v = C.

Thus we cannot take as large 3., and d, as 8. and d, simultaneously. This implies
that the alternative setting using Kp: .,/ (D, ) would lead to a poorer theoretical
error bound than the present setting. In addition, the present setting, imposing a
decay rate only on the real line, seems to be more natural, although this is certainly
a matter of taste.

3. INDEFINITE INTEGRATION ON A FINITE INTERVAL

Without loss of generality, we may use [—1,1] as a finite interval. For the ap-
proximation of F(z) = [* f(t)dt, we take a double exponential transformation

z = 12((), where
(3.1) ¥s(C) = tanh [g sinh g] ,

which maps (—00,00) to (—1,1). The following theorem gives an error estimate
in the case of an indefinite integration on [—1,1]. Its proof is immediate from
Theorem 2.5.

Theorem 3.1. Assume that, for a variable transformation z = ¥2((), the trans-

formed function f(¢) = f(2(C))¥5(C) satisfies
(3.2) f e H'(Dy)),
(3.3) Vo € R, |f()] < ajexp(—B;exp(yylal)

for some positive numbers ag, ﬂf, Vi and df. Then, for any € with 0 < € < d;
there exists a positive number c., independent of N, such that

(3.4)
o | wa
N
— |5 [tamh (Bsinh(Cv; (@) + 15 3" F(a (ki) (1)
k=—N
N N
s or (f(zpz(lh))w;(lh)
k=—N LI=—N
BC cosh(Clh) ol , .
~ oot (5 it i) hkzz_‘,waz(kh))wQ(kh))]S(k,h)% <:v))H
" _W(dé - E)’Y@N
< ceexp [mg(w(dg — emN/ﬁg)] ‘
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where
(3.5) g=1f-r,
(3.6) = log(m(d; —€)v3N/B;)

7N ’

and B, C, B;, v;, and d; are taken as in (2.47)~(2.51), or (2.52)—(2.56), with f
and g replaced by f and g, respectively.

The formula (3.4) has been presented in Introduction as (1.4).

For the comparison between “SE” formula (1.3) and “DE” formula (1.4) in Sec-
tion 4, we describe here the error estimate of (1.3) based on Stenger [5]. Recall the
definition of L, (Dy) in Subsection 2.5.

Theorem 3.2. Assume that, for a variable transformation z = 1¥1((), the trans-

formed function f(¢) = fr (O (C) satisfies f € Laf(Ddf) for some positive
numbers ay and df. Then, there exists a positive number c, independent of N,

such that
3.7 —1s3£<1 /_1f(t)dt
eXp(Az/)l :L') N
™ | Zeosh(av (@) " 2 Z £ (k) (kD)
+h Z [Z Ok l<fw1lh Yoy (Lh)
—-N L=
A -1
™ Scost? (Alh) k;%fwkhwﬂmﬂlﬂmmwlwﬂ‘

1/2 _ r
< cN**exp ( A /wafdi) ,

where
. . . wd',
(3.8) a}:mm (a;,QA), d}:mln (df,ﬂ—sd), h= a’%’
f

and 4 is any positive number such that d;; > 0.

Since

(3.9) ~d < min (afd T — 2A6d)
by (3.8), the parameter A as

(3.10) A= O;f

maximizes a'yd';, i.e., minimizes the error estimate in (3.7). Thus, setting A as
n (3.10), we obtain the best “SE” formula.
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TABLE 1. Parameter values (¢ = 0.01)

“SE” formula (1.3) “DE” formula (1.4)
A ] h B [C] h
Example 1 | 1/2 \/MN_E) n/2—¢| 1 10g(2(WJ\745)N)
Example 2 | 1 (Wl(fa—)i\)] m/2—e|1 1og[W(W/2—26)JJ\(/(W/2—(7f/2)5)]
m\T— log((m—4e)N
Example 3 | 1 (r—e) w/2—¢| 1 w

N
Example 4 | 3/2 \/72”(2;1/\,3_5) m/2—¢ | 1 71%((”;,25)1\[)

Example 5 | 1 = T—e |1 w
Example 6 | 1 K2 Irj2—e 1 log((x/2)V)

4. NUMERICAL RESULTS

In this section, we show numerical results of the formulas (1.3) and (1.4) to com-
pare the actual errors of the two. We adopt the single exponential transformation

(4.1) $1(¢) = tanh(¢/2)

in the formula (1.3). The integrands used for numerical experiments are as follows:

1 Z 1 ) T
Example 1. fi(z) = T /_1 fit)dt = - (arcsmm + 5) ,

1 1+z

* 1 1+ 1—
= — * +log(1l — * —2log?2
[ R0 = o llog(1 + )" + log(1 - 2)1™ — 2log 2],

Example 3. fa(x) = % L Fo(H)dt = %(m +1),
2

z 1
Example 4. fy(z) = =1 — 22, / fa(t)dt = 1 (arcsin:c +zv1-— 372) + 2
™ 1 71'
2 e 1 2
m, ‘/_1 f5(t)dt— §+;arcta.nm,
Example 6. fs(z) = —2[z cn(2tanh™" 2,1/0.5)

+ dn(2tanh ™! 2,+/0.5) sn(2 tanh ! z,/0.5)],

Example 5. f5(z) =

/z fe(t)dt = (1 — 2?) en(2tanh™' 2,/0.5).

The functions f1,... , fa are taken from [2]. We take N =1,4,9,16,...,100, and
take the necessary parameters according to Table 1, where

(4.2) = 1.85407- - .

/2
K :/ @B
0 V1—0.5sin%6
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Let us explain how the parameter values for “DE” formula (1.4) are determined
with reference to the result of Subsection 2.4. For f; in Example 1, we have

(4.3) fil@) = O(|1 — 2%|71/2), (z — +1),
= | fi(2(2))Y5 ()| = O(exp(—(n/4) exp |z])), (z = £oo in R),

which implies 8; = /4 and 74, = 1. Moreover, by (4.10) we have ds = T2 — €4,
where 0 < g4 < 7/2. Then, by (2.47)—(2.51), we have

™

(44) B= 2sin(m/2 — &4)

7r T
_EBaC:]-aﬂ‘@:z;’ygzladgzi_eda
where £p is any positive number such that B > 0. Since B in (4.4) may be
arbitrarily close to 7/2, we can set B = w/2 —¢ for any € with 0 < € < w/2. Finally
we have

_ log(n(dy — €)% N/B;) _ log(2(m — 4)N)

(4.5) h — ~ ,

when g4 = €.

The parameters for the other integrands are determined similarly. We note that
Theorem 3.1 cannot be applied to the integrand fg. More precisely, there exists no d
such that fg € H (D4) for the transformed integrand fs with double exponential
decay. Thus the parameter values for fg have no theoretical justification.

The parameter values for “SE” formula (1.3) are based on Stenger [5]. To be
more precise, for f; in Example 1, we have

(46) 1@ = Olexp(=(1/2)[2]) (J2] = £oo0 in Da, )

by (4.9), which implies .y, = 1/2. Moreover, by (4.9) we have d; = 7 — 4, where
0 < g4 < w. Then, by (3.8) and (3.10) we have

1
(47) alf1 = 5, d.l);l =T — &4,
and
wd',
_ F _ [2n(m—e)
(4.8) h = a’fN = N ,

where €4 = €. The parameters for the other integrands are determined in a similar
manner.

The values of the functions are evaluated at 379 points from [—1,1] chosen as
follows:

z =0.00, £0.01k (k =1,2,...,90), £(1 — 0.001k) (k=1,2,...,99).

The points are denser near the endpoints of the interval. We perform double pre-
cision floating-point computation. We compute the absolute errors at the above
points and show the maximum values of them in Figures 1-6. “SE” and “DE”
indicate the results of the examples by (1.3) and (1.4), respectively.

The integrands f; and fo tend to infinity near the endpoints of [—1,1]. To
avoid cancellation of significant digits near x = +1, we change the expressions
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B0 Dyg10|
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FIGURE 1. Example 1 FIGURE 2. Example 2
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105} 3 105+
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3 8
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FIGURE 5. Example 5

of fi(¢1(2))¥1(2) and fi(¢h2(2))5(2). For example,

1 1

FIGURE 6. Example 6

1

(4.9) filthr (2 (2) =

(4.10)  fi(v2(2)¢(2)

1

/1 — tanh? (z/2) 2080 (2/2)  2mcosh(z/2)

7 cosh z

cosh z

2 cosh((m/2) sinh z)~

/1 — tanh? ((r/2) sinh z) 2 €0sh"((7/2) sinh 2)
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The integrand fo tends to infinity more mildly than fi, and the approximations
of fs is better than the one of f;. It is natural that the integrand fs is approximated
very well because it has no singularities. Although the integrand f4 has singularities
at ¢ = £1, it is also approximated very well. It is well known that the double
exponential formula is also effective for such an integrand.

From Examples 1-4, we can observe that the approximation errors hardly de-
pend on the non-analyticity of the integrands at the endpoints of the interval.

Here, we note that v}, dfi is arbitrarily near w/2 for i = 1,... ,4, whereas 'yfsdfs
is properly less than 7/2 as a consequence of the singularities of f5 at z = +i. We
can observe that the location of singularities in C affects the approximation error
of the formula in R.

From Examples 1-5, we can observe that our formula provides the results ex-
pected from the estimation (3.4) and is more accurate than the single exponential
formula.

Finally, we emphasize that the estimate (1.4) is not applicable to fg but the
estimate (1.3) is valid for fs.

5. PROOFS
In this section, we prove the theorems stated in Sections 2 and 3.

5.1. Proof of Theorem 2.3.

Lemma 5.1 ([5]). For the operator norm of Cn 1 defined as

(5.1) ICNalloe = f(kh)S(k,h)(z)|,
SUP_ o0 <z < 00 |f(w)|<1 k_z_

we have

(5.2) ICNhlleo < sup Z |S(k, h)(z)] < {3+10gN}

7oo<z<oo

Lemma 5.2 ([5]). Let f satisfy that f € H'(Dg). Then,

6.3 (THE) ~ TN < groshies.
Lemma 5.3 ([5]). For

(5.4) Tk, B)(z) = / " Sk, ) (t)dt

we have

(5.5) Tk, B)(@)| < 1.1h.

Let £ be an arbitrary positive number and put d' =d —¢/2.

Lemma 5.4. Under the conditions (2.21) and (2.22), there exists a positive num-
ber M(d'), depending on d', such that

(5.6) Vz € Da, |£(2)] < M(d).
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Proof. For a fixed z € Dy, by Cauchy’s integral formula we obtain the inequality

2
O S a5 Tzl Jop NN

where § is sufficiently small positive number and D4(d) is defined in (2.4). Then
we have

. 2
E R e e M GI
2
= le(f: Dd)
4
S le(fa Dd);
which proves (5.6). O

Lemma 5.5. Assume that f is analytic in Dy . Moreover, assume (2.22) and (5.6),
and set

(5.7) B(y,d',y) = [cos(v|y|) — cot(yd') sin(y|y])]B.
Then we have
(5.8) |f(z +yi)| < M'exp(=B(y,d',y) exp(7|z]))

for all y such that |y| < d'.
Putd’" =d —¢/2.

Lemma 5.6. Assume that f is analytic in Dy . Under the conditions (2.23)
and (5.8), there exists a positive number o' such that
(5.9) Jf e H (Dy),
(5.10) vz € R, [(7£)(@)] < o exp(—Bexp(y]z])).

For the proof of Lemmas 5.5 and 5.6, we need Propositions 5.1 and 5.2 below.

Let a be a real number such that 0 < a < /2 and define the fan-shaped domain
Fa as

faZ{ZEC‘ g—a<argz<g}.

Proposition 5.1 (Phragmén-Lindeldf [1]). Assume that f is analytic in F, and
continuous in Fq. In addition, assume
(5.11) Vz € Fa, |f(2)] < M,

(5.12) de <0, f(rexp(igs)) = O(exp(cr)), (r — o),
where ¢q = g —a. Then,

AM' > 0,¥z € Fa, |£(2)] < M exp (%dd) .

Proposition 5.2 (Montel [1]). Assume that f is analytic and bounded in {z €
C | Rez > zo,y0 <Imz <y }. If
lim f(z)=¢

Rez— oo
Imz=ys
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\ Iz_ F,ydl IC_

di (=w(2)

arg( = 2 — 7

0] 0O

Fi1cURE 7. Correspondence of the domains by w

for a fixed yo such that yo < y2 < y1, then f(z) converges to ¢ as Rez — oo
uniformly with respect to Imz such that yo < Imz < y;.

Proof of Lemma 5.5. We consider the case where (z,y) is in the first quadrant of
Da. The proofs of the other cases are similar.
We define the conformal mapping w as

(=w(z) =exp (72+i(g —vd’)) ;

and we set f(¢) = f(w'(¢)). Let z = z +yi and F, & be the domain shown in the
right of Figure 7.

We will apply Proposition 5.1 to f.

First, it is obvious that f is analytic in F,4 and continuous in ?wd’ — {0}.
Further, the fact that f(z) tends to zero as x — oo, the boundedness of f in
Dy (that is, (5.6)) and Proposition 5.2 guarantee the continuity of f at the origin.
Thus the analyticity of f in F.,a and the continuity of fin F.a are established.

Secondly, by (5.6) and the continuity of f in F.,s we have

(5.13) Ve Fra QI =1f(2)| < M(d).
Lastly, it follows from

{1 =2 1= [¢] = exp(yz) = exp(vlz])

and (2.22) that
(5.14) F(¢) = Olexp(~Bexp(v|z]))) = O(exp(=BICN), (¢ = o0)
holds for ¢ with arg({ = g —~d'.

Now all the assumptions of Proposition 5.1 for f are established. Hence we have

(5.15) VCE Fuan 1F(Q] < M'exp (—%mco :

cos (3
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iR
T+ yi
> * R
s O]

FIGURE 8. Integration path for computing [*__ f(¢)d¢

Transforming this result to the z-plane, we finally have that

_cos (2 —~(d —y))
cos (5 —d')

o sin (y(d' - y))
= M'exp (—WﬂeXP(7|x|)>

= M'exp (—B(v,d',y) exp(v|z|))

|f(2)] < M'exp ( 5exp(7|$|)>

for all zin Dy N {z +yi € C | z > 0,y > 0}, which is the desired inequality.

Proof of Lemma 5.6.

Step 1. We estimate the value of ffoo f(€)d¢ when z =z + yi € Dgn.
First, we consider the case where x < 0 and y > 0. We have

‘/_; f(C)dC‘ = ‘/_; f(s)ds + /Oy f(@ + 1) idt‘ (See Fig.8.)

< / If(e)lds + / \f(x + £ dt

<M [/z exp(—Bexp(—vs))ds + /Oy exp {—ﬂw sin(y(d — t))} dt] i

sin(yd")

— 00

The first term of [ ] on the extreme right-hand side is estimated as follows:

x

(5.16) (first term) < / exp(—~s) exp(—Bexp(—~s))ds

— 00

1 xT

By / By exp(—7s) exp(—p exp(—7s))ds
1

= — exp(—fBexp(—vyz)),
B p(—Bexp(—z))
1

= ——exp(—pex x|)).
5 p(—Bexp(v|z]))

For the second term, we note that

7S5 0St<d <d <d= sin(y(d 1) >

L

(v(d' —1)),

17



18 KEN'ICHIRO TANAKA, MASAAKI SUGIHARA, AND KAZUO MUROTA

175 0 /5% R
—i(d"(1 - 9))

Y

FIGURE 9. Contour for computing Ny (J f, Dar)

and obtain

(5.17) (second term)
Y exp(—yz) 2,
< [Ten {522 20 - o) far

sin(yd) 7
<[ oo {-am0 200 )
= %(zdl) exp(yx)
: :exp {—mfnizid,) exp(—’y;v)} —exp {—% exp(—'yw)}]
= T exp(—aa)
e {22 s emntriah - e { - 2 expirfab }

Next, we consider the case where z > 0 and y > 0. It follows from (2.23) that
z z Y
(5.18) ‘/ f(C)dC‘ = ‘/ f(s)ds +/ f(x+ti)idt‘
—oo —oo 0
oo y
- ‘—/ F(s)ds +/ fla+ ti)idt‘
T 0
oo y
5/ |f(s)|ds+/ |f (2 + ti)|dt.
T 0

By applying (5.8) to the terms in the extreme right-hand side, we obtain the same
bounds given in (5.16) and (5.17).

Lastly, we consider the case where y < 0. Since the bound for | [7__ f(¢)d(|
should be symmetric with respect to the real axis, we have the same bounds given
in (5.16) and (5.17).

Step 2. First, we prove (5.10). It follows from the results in the case where y = 0
in Step 1 that (J f)(z) = O(exp(—Bexp(v|z|))), i-e., (5.10).

Next, we prove (5.9). We take the contour shown in Fig. 9 for computing
N1 (T f,Dar), where ¢ is a sufficiently small positive number. The integral consid-
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ered here is

d" (1-6) d'"(1-9)
(5.19) ‘/ Kjfx—u6+ynMy+/' (TH(A/6+ yi)|dy

—d(1-6) —d'"(1-8)
1.(5) 1,(6)
1/8 1/8
+ / (T )z —d"(1- 6)i)|dw+/ (T )@ +d"(1—8)i)|dz.
—1/6 —1/6
15(5) 1,(5)
We set
M (z) = (the extreme right-hand side of (5.16)),
My (z) = (the extreme right-hand side of (5.17)).

Note that |[(Jf)(2)| < Mi(z) + M2(z) holds for all z € Dg» as shown in Step 1.
Then we have

(5.20) L (0) + I (6) + I3(5) + I4(9)
z=1/¢8

< 4d" (M (1/8) + Ms(1/8)) + 2 / o (Mi(z) + Ms(z)) dz.

Since
My (z) = O(exp(—Bexp(vzl))),
M;(z) = o(exp(—~lz])),
the right-hand side of (5.20) is bounded as § approaches zero. Thus we have
Jf € H! (Ddu), i.e., (59) ([l
Proof of Theorem 2.3. Note that d’ = d —e. We have
(T f)(@) = (CnpTCn o f)(2)]
< (TN @) = (CnnT £ @) + [(CnpT F)(2) — (CNp T Cuf)()]
+(CN T Cnf)(2) = (CN T CN o f)(2)]-
We define €1, €2, and €3 as follows:
e1(z) = (T f)(x) = (CnnT f)(®),
e2(z) = (CnpT f)(x) — (CNp T Crf) (),
g3(x) = (CnpICnf)(x) = (Cnp T CNnf) ().

To complete the proof, we estimate €1, €2, and €3 in turn.

Estimation of ey By Lemma 5.6, we have
Jf € H' (D),
Ve € R, |(Tf)(z)| < o exp(—Bexp(v|z])).
Therefore it follows from Theorem 2.1 that
—7d"yN
21 < SN —
21 0l < e o)
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Estimation of e2 By Lemma 5.2 we have

hN1(f,Da)

i, Hd) _
< 4dsinh(wd/h) — czhexp(=nd/h),

(T (@) = (TCnf) (=)

where ¢y is a constant which is independent of h (assuming, of course, that h is
uniformly bounded). With h in (2.25), it follows from Lemma 5.1 that

(622)  lea@)] = (CxpT N = (CrpTCuD@)
<lCxalle__swp |(TH)(@) = (TCuf) (@)

2
< =(3+1ogN) - cohexp(—md/h)
™

log(wd"vN/B) exp [ —mdyN ]
TN log(wd"yN/p)
(log N)? —ndyN

e [log(wd”vN/ﬁ)]

where c¢3 is a constant which is independent of N.

2
= ;(3+logN) - Co

Estimation of e3 By Lemma 5.3, we have

(TCLE)(x) = (TCNuf) ()

/ > F(kRh)S(k, h)(

k| >N

= | > f(kh)J(k,h)(z)

|[k|>N

< sup 2)| Y |f(kh)| < L1h Y aexp(—Bexp(y|kh])

_°°<"’<°° k>N k>N

=2.2ah Z exp(—p exp(vkh)) < 2. 2ah/ exp(—p0 exp(yht))dt
k=N+1

2.2ah
= Byhexp(vhN) / Byh exp(yht) exp(— 3 exp(vht))dt

_ 22 exp(—fBexp(vhN))

By exp(yhN)
22a 1
= rdry § SR N),

where h is taken as (2.25). Then, analogously to (5.22), we have

(5.23) les(@)| = (Cnn TChf)(x) = (Cn T CNwf)(2)]
< ICnlloe sup (TChf) (@) = (TCNwf)(2)]
<cy lova exp(—md'yN),

where ¢4 is a constant which is independent of N.
Combining (5.21), (5.22), and (5.23), we get (2.24). Thus the proof of Theo-
rem 2.3 is completed. O
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5.2. Proof of Theorem 2.5. We need the following proposition and lemma. The
proof of the proposition is similar to that of Theorem 3.2 in [7], and hence omitted.

Proposition 5.3. Assume that a function f satisfies (2.40) and (2.41) for some
oy, By, v5, and dg. Then we have
—27rdf’ygN

oo N
f)dt —h f(kh
IR PIRILY log(n(dy — €)1,/ )
for a constant c, independent of N, where we take h as (2.43), i.e.,

h= log(m(dy — €)v4N/By)
YoV .

(5.24) < cexp [

(5.25)

Lemma 5.7. Let
_ IOg(W(dg - 5)'79N/5g) )

h
YN

Then
(Tk)(x) = (CnpTICnpk)(x) =0(1) (N — 00).
Proof. We have
(5.26)  |(TR)(@) — (CnpT Crn)(@)
< (TK)(@) = (CnnTK)(@)| + [(CnpT k) (@) — (CNpT Chi) ()]
+ |(CnpTICrhE)(x) — (CNp T Cn k) ()]

First, the second and third terms on the right-hand side of (5.26) are bounded.
This is because we can apply the estimates like (5.22) and (5.23) in the proof of
Theorem 2.3, respectively. Next, it follows from sup_ ., [(Jk)(2)| < 0o and
the arguments similar to those used in (5.23) that the first term of the right-hand
side of (5.26) is bounded. O

Let iy = (h chV:fN f(kh))k and gy = f — 7. Then the quadrature formula
in Theorem 2.5 can be written as

(5.27) (Jrn)(x) + (CNp T Cnpdn) (),

and the difference between it and the quadrature formula in Theorem 2.4 can be
written as

(5.28) (J(Fn —1))(x) + (CNp T Cnp(gn — 9)) () -

Hence, to prove (2.44), it suffices to show

—m(dy — &)y N ]) )
log(m(dy — )7y N/ By)
However it can easily be derived from Proposition 5.3 and Lemma 5.7 as follows:

(T =)@ + (CxnT Ol — 9))(2)]
o N

| fwa-n Y fan)
—o0 k=—N

< o exp log(w@jﬂ—d Qijvzv/ﬂg)] =° (e"p [log@?c(tjg—_s%vj\/fﬂg)]) ‘

(T (Fx = 1)) + (CunT Cnn (G — 9))(@) = 0 (exp [

=|(Tk)(z) = (CNp I CN,pE) ()|
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5.3. Explanation of the argument in Subsection 2.4. Some details of the
argument in Subsection 2.4 are provided here. First note that (2.36) and (2.37)
imply

(5.29) Yodg < vrdy,

where y5dy < m/2 by Proposition 2.2. We divide into two cases according to the
value of ysdy.

Case 1 (ysdy < w/2). We take B and C as (2.47) and (2.48), respectively. Then,
we have

Yy =min{vys, C} =y,

. 1 [T
dy = min {df, C aresin [ﬁ] - sd}
. 1 . sin(vyrdy) ] }
= min < ds, — arcsin : —eqp =dy,
{ P [1 — (2ep/m)sin(ysdp)] ) T

because eg > 0 and g4 is sufficiently small. Hence we have 7,d, attains the upper
bound vsdy in (5.29). Note that this upper bound is attained only when v, = ¢
and d, = dy, and this, in turn, implies

(5.30) 0<B< g
or
o ™
5.31 T<B<-—1
( ) 2~ < 2sin(’yfdf)’

where the latter follows from
/2 < B, 75 < C, df < (1/C)arcsin(n/(2B)).

Thus 8, = min{g;, B — ep} is nearly optimal.
Case 2 (yydy = w/2). Since

™
2 ?
the upper bound 7sdy in (5.29) cannot be attained in the case of yrdy = w/2.

However, v4,d, can be made arbitrarily close to 7/2 with the choice of B = 7/2 and
C = v given in (2.52) and (2.53), for which we have

Ygdy = min{vs, C} min {df, “ Ed}

Yodg < Vrde <

20
. T
=7 mln{d ,——sd}
! " 2y
T
= — —E47f-
2 Vs

To maximize 3, = min{8s, B — g} we are to choose B as large as possible, while
keeping v,d, invariant. Our choice of B = /2 is also optimal in this respect, since,
for B > /2, we have

™

(5.32) Yrdy — vgdg > D)

— arcsin <%) > 0.
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6. CONCLUDING REMARKS

The error bound of our formula depends on individual integrands. Theoretically
it is more desirable to have a formula that is valid for functions in a certain function
space and has a uniform error bound that depends only on the function space. A
possible deeper theoretical problem is concerned with the optimality of the formula
in the function space. Here, the optimality means the superiority of the formula in
its accuracy over any other formula applicable to the elements of the function space.
For example, such a problem has been addressed for a trapezoidal formula [7] and
a sinc interpolation [8].
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