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Abstract

We consider maximum likelihood estimation of finite mixture of uniform distri-
butions. We prove that the maximum likelihood estimator is strongly consistent,
if the scale parameters of the component uniform distributions are restricted from
below by exp(−nd), 0 < d < 1, where n is the sample size.

1 Introduction

Consider a mixture of two uniform distributions

(1− α)f1(x; a1, b1) + αf2(x; a2, b2),

where fm(x; am, bm), m = 1, 2, are uniform densities with parameter (am, bm) on the half-
open intervals [am − bm, am + bm) and 0 ≤ α ≤ 1. For definiteness and convenience we
use the half-open intervals in this paper, although obviously the intervals can be open
or closed. For simplicity suppose that a1 = 1/2, b1 = 1/2, α = α0 are known and the
parameter space is

{(a2, b2) | 0 ≤ a2 − b2 , a2 + b2 ≤ 1}
so that the support of the density is [0, 1). Let x1, . . . , xn denote a random sample of size
n ≥ 2 from the true density (1− α0)f1(x; 1/2, 1/2) + α0f2(x; a2,0, b2,0). If we set a2 = x1,
then likelihood tends to infinity as b2 → 0. (Figure 1)

When we restrict that b2 ≥ c, where c is a positive real constant, then we can avoid the
divergence of the likelihood and the maximum likelihood estimator is strongly consistent
provided that b2,0 ≥ c. But there is a problem of how small we have to choose c to ensure
b2,0 ≥ c. An interesting question here is whether we can decrease the bound c = cn to
zero with the sample size n and yet guarantee the strong consistency of the maximum
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Figure 1: The likelihood tends to infinity as b2 → 0 at a2 = x1.

likelihood estimator. If this is possible, the further question is how fast cn can decrease
to zero. This question is similar to the (so far open) problem stated in Hathaway(1985),
which treats mixtures of normal distributions with constraints imposed on the ratios of
variances. See also a discussion in section 3.8 of McLachlan and Peel(2000).

Figure 2 depicts an example of likelihood function. Random sample of size n = 40 is
generated from 0.6 · f(x; 0.5, 0.5) + 0.4 · f(x; 0.6, 0.2) and the model is 0.6 · f(x; 0.5, 0.5) +
0.4 · f(x; a, b). We see that although the likelihood function diverges to infinity as b2 ↓ 0,
the peaks of the likelihood function are very narrow. This suggests that the bound cn

can decrease to zero fairly quickly. In fact we prove that cn can decrease exponentially
fast to zero for the mixture of M uniform distributions. More precisely we prove that the
maximum likelihood estimator is strongly consistent if cn = exp(−nd), 0 < d < 1.

The organization of the paper is as follows. In section 2 we summarize some prelim-
inary results. In section 3 we state our main result in theorem 3.2. Section 4 is devoted
to the proof of theorem 3.2. Finally in section 5 we give some discussions.

2 Preliminaries on identifiability of mixture distribu-

tions and strong consistency

In this section, we consider the identifiability and strong consistency of finite mixtures.
The properties of finite mixtures treated in this section concerns general finite mixture
distributions.

A mixture of M densities with parameter θ = (α1, η1, . . . , αM , ηM) is defined by

f(x; θ) ≡
M∑

m=1

αmfm(x; ηm),

where αm, m = 1, . . . , M , called the mixing weights, are nonnegative real numbers that
sum to one and fm(x; ηm) are densities with parameter ηm. fm(x; ηm) are called the
components of the mixture. Let Θ denote the parameter space.
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Figure 2: An example of log likelihood function for n = 40

In general, a parametric family of distributions is identifiable if different values of
parameter designate different distributions. In mixtures of distributions, different param-
eters may designate the same distribution. For example, if α1 = 0, then for all parameters
which differ only in θ1, we have the same distribution. In unidentifiable case, true model
may consist of two or more points in the parameter space. Therefore we have to carefully
define strong consistency of estimator. The following definition is essentially the same as
Redner’s(1981). We suppose that the parameter space Θ is a subset of Euclidean space
and dist(θ, θ′) denotes the Euclidean distance between θ, θ′ ∈ Θ.

Definition 2.1. (strongly consistent estimator)
Let Θ0 denote the set of true parameters

Θ0 ≡ {θ ∈ Θ | f(x; θ) = f(x; θ0) a.e. x},

where θ0 is one of parameters designating the true distribution. An estimator θ̂n is strongly
consistent if

Prob
(

lim
n→∞

dist(θ̂n, Θ0) = 0
)

= 1

for all Θ0.

In this paper two notations Prob(A) = 1 and A, a.e., will be used interchangeably.
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In finite mixture case, regularity conditions for strong consistency of maximum likeli-
hood estimator are given in Redner(1981). When the components of the mixture are the
densities of continuous distributions and the parameter space is Euclidean, the conditions
become as follows. Let Γ denote a subset of the parameter space.

Condition 1. Γ is a compact subset of Euclidean space.

For θ ∈ Γ and any positive real number r, let

f(x; θ, r) = sup
dist(θ′,θ)≤r

f(x; θ′),

f ∗(x; θ, r) = max(1, f(x; θ, r)) .

Condition 2. For each θ ∈ Γ and sufficiently small r, f(x; θ, r) is measurable and
∫

log(f ∗(x; θ, r))f(x; θ0)dx < ∞ . (2.1)

Condition 3. If limn→∞ θn = θ, then limn→∞ f(x; θn) = f(x; θ) except on a set which is a
null set and does not depend on the sequence {θn}∞n=1.

Condition 4. ∫
|log f(x; θ0)| f(x; θ0)dx < ∞. (2.2)

The following two theorems have been proved by Wald(1949), Redner(1981).

Theorem 2.2. (Wald(1949), Redner(1981)) Suppose that Conditions 1, 2, 3 and 4 are
satisfied. Let S be any closed subset of Γ not intersecting Θ0. Then

Prob

(
lim

n→∞
supθ∈S f(x1; θ)× · · · × f(xn; θ)

f(x1; θ0)× · · · × f(xn; θ0)
= 0

)
= 1 .

Theorem 2.3. (Wald(1949)) Let θ̃n be any function of the observations x1, . . . , xn such
that

∀n,

n∏
i=1

f(xi; θ̃n)

f(xi; θ0)
≥ δ > 0,

then Prob(limn→∞ θ̃n = θ0) = 1.

If Conditions 1, 2, 3 and 4 are satisfied, then it is readily verified by theorems 2.2 and
2.3 that the maximum likelihood estimator restricted to Γ is strongly consistent.

We also state Okamoto’s inequality, which will be used in our proof in section 4.

Theorem 2.4. (Okamoto(1958)) Let Z be a random variable following a binomial distri-
bution Bin(n, p). Then for δ > 0

Prob

(
Z

n
− p ≥ δ

)
< exp (−2nδ2). (2.3)
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3 Main result

Here, we generalize the problem stated in introduction to the problem of mixture of M
uniform distributions and then state our main theorem.

A mixture of M uniform densities with parameter θ is defined by

f(x; θ) ≡
M∑

m=1

αmfm(x; ηm),

where fm(x; ηm) ≡ fm(x; am, bm), m = 1, . . . ,M , are uniform densities with parameter
ηm = (am, bm) on half-open intervals [am − bm, am + bm) and αm are mixing weights. The
parameter space Θ ⊂ R3M is defined by

Θ ≡ {(α1, a1, b1, . . . , αM , aM , bM) | 0 ≤ α1, . . . , αM ≤ 1 ,

M∑
m=1

αm = 1 , b1, . . . , bM > 0} .

Let θ0 ≡ (α0,1, a0,1, b0,1, . . . , α0,M , a0,M , b0,M) be the true parameter and let

f(x; θ0) =
M∑

m=1

α0,m fm(x; a0,m, b0,m)

be the true density. Denote the minimum and the maximum of the support of f(x; θ0) by

Lmin = min(a0,1 − b0,1, . . . , a0,M − b0,M),

Lmax = max(a0,1 + b0,1, . . . , a0,M + b0,M),

and let
L = Lmax − Lmin.

Let Θc be a constrained parameter space

Θc ≡ {θ ∈ Θ | bm ≥ c > 0 , m = 1, . . . , M},
where c is a positive real constant. We can easily see that Conditions 1, 2, 3 and 4 are
satisfied with Θc. Therefore if θ0 ∈ Θc, then the maximum likelihood estimator restricted
to Θc is strongly consistent (Redner(1981)). But there is a problem of how small c must
be to ensure θ0 ∈ Θc as discussed in section 1.

Since the support of uniform density is compact, the following lemma holds.

Lemma 3.1. For any parameter θ = (α1, a1, b1, . . . , αM , aM , bM) ∈ Θ, there exist a pa-
rameter θ′ = (α1, a

′
1, b

′
1, . . . , αM , a′M , b′M) ∈ Θ satisfying

Lmin ≤ a′1, . . . , a
′
M ≤ Lmax, 0 < b′1, . . . , b

′
M ≤ L

such that

M∑
m=1

αmfm(x; a′m, b′m) ≥
M∑

m=1

αmfm(x; am, bm), ∀x ∈ [Lmin, Lmax).
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By lemma 3.1, the maximum likelihood estimator is restricted to a bounded set in
Θ ⊂ R3M . Let {cn}∞n=0 be a monotone decreasing sequence of positive real numbers
converging to zero and define Θn by

Θn ≡ {θ ∈ Θ | Lmin ≤ am ≤ Lmax, 0 < cn ≤ bm ≤ L, m = 1, . . . ,M} .

We are now ready to state our main theorem.

Theorem 3.2. Suppose that true model f(x; θ0) can be represented only by the model
which consists of M components. Let c0 > 0 and 0 < d < 1. If cn = c0 exp (−nd), then
the maximum likelihood estimator restricted to Θn is strongly consistent.

Because in theorem 3.2 we are thinking of d close to 1, we assume d > 1/4 hereafter.
The next section is devoted to a proof of this theorem.

4 Proof of the strong consistency

Here we present a proof of theorem 3.2. The whole proof is long and we divide it into
smaller steps. Intermediate results will be given in a series of lemmas.

Define

Θ′
n ≡ {θ ∈ Θ | ∃m s.t. cn ≤ bm ≤ c0}

and

Γ0 ≡ {θ ∈ Θ | c0 ≤ bm ≤ L , m = 1, . . . , M} .

Because {cn} is decreasing to zero, by replacing c0 by some cn if necessary, we can assume
without loss of generality that Θ0 ⊂ Γ0.

In view of theorems 2.2, 2.3, for the strong consistency of MLE on Θn, it suffices to
prove that

lim
n→∞

supθ∈S∪Θ′n

∏n
i=1 f(xi; θ)∏n

i=1 f(xi; θ0)
= 0, a.e.

for all closed S ⊂ Γ0 not intersecting Θ0. Note that for all S and {xi}n
i=1,

sup
θ∈S∪Θ′n

n∏
i=1

f(xi; θ) = max

{
sup
θ∈S

n∏
i=1

f(xi; θ) , sup
θ∈Θ′n

n∏
i=1

f(xi; θ)

}
.

Furthermore

lim
n→∞

supθ∈S

∏n
i=1 f(xi; θ)∏n

i=1 f(xi; θ0)
= 0, a.e.

holds by theorem 2.2. Therefore it suffices to prove

lim
n→∞

supθ∈Θ′n

∏n
i=1 f(xi; θ)∏n

i=1 f(xi; θ0)
= 0, a.e. (4.1)
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Note that in the argument above the supremum of the likelihood function over S ∪Θ′
n

is considered separately for S and Θ′
n. S and Θ′

n form a covering of S ∪Θ′
n. In our proof,

we consider finer and finer finite coverings of Θ′
n. As above, it suffices to prove that the

ratio of the supremum of the likelihood over each member of the covering to the likelihood
at θ0 converges to zero almost everywhere.

Let θ ∈ Θ′
n. Let K ≡ K(θ) ≥ 1 be the number of components which satisfy bm ≤ c0.

Without loss of generality, we can set b1 ≤ b2 ≤ · · · ≤ bK ≤ c0 < bK+1 ≤ · · · ≤ bM . Let
Θ′

n,K be

Θ′
n,K ≡ {θ ∈ Θ′

n | b1 ≤ b2 ≤ · · · ≤ bK ≤ c0 < bK+1 ≤ · · · ≤ bM} .

Our first covering of Θ′
n is given by

Θ′
n =

M⋃
K=1

Θ′
n,K .

As above, it suffices to prove that for each K, 1 ≤ K ≤ M ,

lim
n→∞

supθ∈Θ′n,K

∏n
i=1 f(xi; θ)∏n

i=1 f(xi; θ0)
= 0, a.e. (4.2)

We fix K from now on. Define Θ̄K by

Θ̄K ≡ {(αK+1, aK+1, bK+1, . . . , αM , aM , bM) ∈ R3(M−K)

|
M∑

m=K+1

αm ≤ 1 , αm ≥ 0 , c0 ≤ bm ≤ L , m = K + 1, . . . ,M}

and for θ̄ ∈ Θ̄K , define

f̄(x; θ̄) ≡
M∑

m=K+1

αmfm(x; ηm) ,

f̄(x; θ̄, ρ) ≡ sup
dist(θ̄,θ̄′)≤ρ

f̄(x; θ̄′) .

Note that f̄(x; θ̄) is a subprobability measure.

Lemma 4.1. Let B(θ̄, ρ(θ̄)) denote the open ball with center θ̄ and radius ρ(θ̄). Then Θ̄K

can be covered by a finite number of balls B(θ̄(1), ρ(θ̄(1))), . . . , B(θ̄(S), ρ(θ̄(S))) such that

E0[log f̄(x; θ̄(s), ρ(θ̄(s)))] < E0[log f(x; θ0)] , s = 1, . . . , S, (4.3)

where E0[·] denotes the expectation under θ0.
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Proof: The proof is the same as in Wald (1949). For all θ̄ ∈ Θ̄K , there exists a positive
real number ρ(θ̄) which satisfies

E0[log f̄(x; θ̄, ρ(θ̄))] < E0[log f(x; θ0)].

Since Θ̄K ⊂ ⋃
θ̄ B(θ̄, ρ(θ̄)) and Θ̄K is compact, there exists a finite number of balls

B(θ̄(1), ρ(θ̄(1))), . . . , B(θ̄(S), ρ(θ̄(S))) which cover Θ̄K .

Define

Θ′
n,K,s ≡ {θ ∈ Θ′

n,K | (αK+1, aK+1, bK+1, . . . , αM , aM , bM) ∈ B(θ̄(s), ρ(θ̄(s)))}
We now cover Θ′

n,K by Θ′
n,K,1, . . . , Θ

′
n,K,S :

Θ′
n,K =

S⋃
s=1

Θ′
n,K,s .

Again it suffices to prove that for each s, s = 1, . . . , S,

lim
n→∞

supθ∈Θ′n,K,s

∏n
i=1 f(xi; θ)∏n

i=1 f(xi; θ0)
= 0, a.e. (4.4)

We fix s in addition to K from now on.
Because

lim
n→∞

1

n

n∑
i=1

log f(xi; θ0) = E0[log f(x; θ0)], a.e.

(4.4) is implied by

lim sup
n→∞

1

n
sup

θ∈Θ′n,K,s

n∑
i=1

log f(xi; θ) < E0[log f(x; θ0)], a.e. (4.5)

Therefore it suffices to prove (4.5), which is a new intermediate goal of our proof hereafter.
Choose G, 0 < G < 1, such that

λ ≡ E0[log f(x; θ0)]− E0[log {f̄(x; θ̄(s), ρ(θ̄(s))) + G}] > 0 . (4.6)

Let u ≡ maxx f(x; θ0). Because {cn} is decreasing to zero, by replacing c0 by some cn

if necessary, we can again assume without loss of generality that c0 is small enough to
satisfy

2c0 < e−1,

3M · u · 2c0 · (− log G) <
λ

4
, (4.7)

2M · u · 2c0 · log
1

2c0

<
λ

12
. (4.8)

We now prove the following lemma.
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Lemma 4.2. Let J(θ) denote the support of
∑K

m=1 αmfm(x; ηm) and let Rn(V ) denote
the number of observations which belong to a set V ⊂ R. Then for θ ∈ Θ′

n,K,s

1

n

n∑
i=1

log f(xi; θ) ≤ 1

n

n∑
i=1

log
{
f̄(xi; θ̄

(s), ρ(θ̄(s))) + G
}

+
1

n

∑

xi∈J(θ)

log f(xi; θ) +
1

n
Rn(J(θ)) · (− log G) . (4.9)

Proof: For x 6∈ J(θ), f(x; θ) =
∑M

m=K+1 αmfm(x; ηm). Therefore

1

n

n∑
i=1

log f(xi; θ) =
1

n

∑

xi∈J(θ)

log f(xi; θ) +
1

n

∑

xi 6∈J(θ)

log

{
M∑

m=K+1

αmfm(xi; ηm)

}

≤ 1

n

n∑
i=1

log

{
M∑

m=K+1

αmfm(xi; ηm) + G

}

+
1

n

∑

xi∈J(θ)

[
log f(xi; θ)− log

{
M∑

m=K+1

αmfm(xi; ηm) + G

}]

≤ 1

n

n∑
i=1

log
{
f̄(xi; θ̄

(s), ρ(θ̄(s))) + G
}

+
1

n

∑

xi∈J(θ)

log f(xi; θ)− 1

n
Rn(J(θ)) log G .

We want to bound the terms on the right hand side of (4.9) from above. The first
term is easy. In fact by (4.6) and the strong law of large numbers we have

lim
n→∞

1

n

n∑
i=1

log
{
f̄(xi; θ̄

(s), ρ(θ̄(s))) + G
}

= E0[log f(x; θ0)]− λ, a.e. (4.10)

Next we consider the third term. We prove the following lemma.

Lemma 4.3.

lim sup
n→∞

sup
θ∈Θ′n,K,s

1

n
Rn(J(θ)) ≤ 3M · u · 2c0, a.e.

Proof: Let ε > 0 be arbitrarily fixed and let J0 be the support of the true density. J0

consists of some intervals. We divide J0 from Lmin to Lmax by short intervals of length
2c0. In each right end of the intervals of J0, overlap of two short intervals of length 2c0 is
allowed and the right end of a short interval coincides with the right end of an interval of
J0. See Figure 3. Let k(c0) be the number of short intervals and let I1(c0), . . . , Ik(c0)(c0)

9
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2c0 2c0 2c0· · · · · ·

x
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· · · · · ·· · · · · ·

Figure 3: Division of J0 by short intervals of length 2c0.

be the divided short intervals. Because J0 consists of at most M intervals, we have

k(c0) ≤ L

2c0

+ M .

Note that any interval in J0 of length 2c0 is covered by at most 3 small intervals from
{I1(c0), . . . , Ik(c0)(c0)}. Now consider J(θ), the support of

∑K
m=1 αmfm(x; ηm). The sup-

port of each fm(x; ηm), 1 ≤ m ≤ K, is an interval of length less than or equal to 2c0.
Therefore J(θ) is covered by at most 3M short intervals. Then

sup
θ∈Θ′n,K,s

1

n
Rn(J(θ))− 3M · u · 2c0 > ε

⇒ 1 ≤ ∃k ≤ k(c0) ,
1

n
Rn(Ik(c0))− u · 2c0 >

ε

3M
. (4.11)

From (4.11), we have

Prob

(
sup

θ∈Θ′n,K,s

1

n
Rn(J(θ))− 3M · u · 2c0 > ε

)

≤
k(c0)∑

k=1

Prob

(
1

n
Rn(Ik(c0))− u · 2c0 >

ε

3M

)
.

For any set V ⊂ R, let P0(V ) denote the probability of V under the true density

P0(V ) ≡
∫

V

f(x; θ0)dx .

Then

P0(Ik(c0)) ≤ u · 2c0, k = 1, . . . , k(θ) . (4.12)

10



Since Rn(V ) ∼ Bin(n, P0(V )) and from (2.3), we obtain

Prob

(
1

n
Rn(Ik(c0))− u · 2c0 >

ε

3M

)

≤ Prob

(
1

n
Rn(Ik(c0))− P0(Ik(c0)) >

ε

3M

)

≤ exp

(
−2nε2

9M2

)
.

Therefore

Prob

(
sup

θ∈Θ′n,K,s

1

n
Rn(J(θ))− 3M · u · 2c0 > ε

)
≤

(
L

2c0

+ M

)
exp

(
−2nε2

9M2

)
.

When we sum this over n, the resulting series on the right converges. Hence by Borel-
Cantelli, we have

Prob

(
sup

θ∈Θ′n,K,s

1

n
Rn(J(θ))− 3M · u · 2c0 > ε i.o.

)
= 0.

Because ε > 0 was arbitrary, we obtain

lim sup
n→∞

sup
θ∈Θ′n,K,s

1

n
Rn(J(θ)) ≤ 3M · u · 2c0, a.e.

By this lemma and (4.7) we have

lim sup
n→∞

sup
θ∈Θ′n,K,s

1

n
Rn(J(θ)) · (− log G) ≤ 3M · u · 2c0 · (− log G) <

λ

4
. (4.13)

This bounds the third term on the right hand side of (4.9) from above.
Finally we bound the second term on the right hand side of (4.9) from above. This is

the most difficult part of our proof. For x ∈ J(θ) write f(x; θ) =
∑M

m=1 αmfm(x; ηm) as

f(x; θ) =
1

n

T (θ)∑
t=1

H(Jt(θ))1Jt(θ)(x), (4.14)

where Jt ≡ Jt(θ) are disjoint half-open intervals, 1Jt(θ)(x) is the indicator function,

H(Jt(θ)) = f(x; θ), x ∈ Jt(θ),

is the height of f(x; θ) on Jt(θ) and T (θ) is the number of the intervals Jt(θ). Note that
T (θ) ≤ 2M , because f(x; θ) changes its height only at am− bm or am + bm, m = 1, . . . , M .
For convenience we determine the order of t such that

H(J1(θ)) ≤ H(J2(θ)) ≤ · · · ≤ H(JT (θ)(θ)) .

11



We now classify the intervals Jt(θ), t = 1, . . . , T (θ), by the height H(Jt(θ)). Define c′n by

c′n = c0 · exp (−n1/4)

and define τn(θ)

τn(θ) ≡ max{t ∈ {1, . . . , T} | H(Jt(θ)) ≤ M

2c′n
}. (4.15)

Then the second term on the right hand side of (4.9) is written as

1

n

∑

xi∈J(θ)

log f(xi; θ) =

T (θ)∑
t=1

1

n

∑

xi∈Jt(θ)

log H(Jt(θ)) (4.16)

=
1

n

T (θ)∑
t=1

Rn(Jt(θ)) · log H(Jt(θ))

=
1

n

τn(θ)∑
t=1

Rn(Jt(θ)) · log H(Jt(θ))

+
1

n

T (θ)∑

t=τn(θ)+1

Rn(Jt(θ)) · log H(Jt(θ)).

From (4.7), (4.8), and noting that log x/x is decreasing in x ≥ e, we have

3

τn(θ)∑
t=1

u

H(Jt(θ))
log H(Jt(θ)) ≤ 3 · 2M · u · 2c0 · log

1

2c0

<
λ

4
,

T (θ)∑

t=τn(θ)+1

3 · 2

n
log H(Jt(θ)) ≤ 3 · 2M · 2

n
· (nd − log

M

2c0

) → 0. (4.17)

Suppose that the following inequality holds.

lim sup
n→∞

sup
θ∈Θ′n,K,s




T (θ)∑
t=1

1

n
Rn(Jt(θ)) log H(Jt(θ))

− 3





τn(θ)∑
t=1

u

H(Jt(θ))
log H(Jt(θ)) +

T (θ)∑

t=τn(θ)+1

2

n
log H(Jt(θ))






 ≤ 0, a.e.

(4.18)

Then from (4.16) and (4.17), the second term on the right hand side of (4.9) is bounded
from above as

lim sup
n→∞

1

n
sup

θ∈Θ′n,K,s

∑

xi∈J(θ)

log f(xi; θ) ≤ 4

λ
. (4.19)

12



Combining (4.10), (4.13) and (4.19) we obtain

lim sup
n→∞

sup
θ∈Θ′n,K,s

1

n

n∑
i=1

log f(xi; θ) ≤ (E0[log f(x; θ0)]− λ) +
λ

4
+

λ

4

≤ E0[log f(x; θ0)]− λ

2
, a.e.

and (4.5) is satisfied. Therefore it suffices to prove (4.18), which is a new goal of our
proof.

We now consider further finite covering of Θ′
n,K,s. Define

Θ′
n,K,s,T,τ ≡ {θ ∈ Θ′

n,K,s | T (θ) = T , τn(Θ) = τ} .

Then

sup
θ∈Θ′n,K,s




T (θ)∑
t=1

1

n
Rn(Jt(θ)) log H(Jt(θ))

− 3





τn(θ)∑
t=1

u

H(Jt(θ))
log H(Jt(θ)) +

T (θ)∑

t=τn(θ)+1

2

n
log H(Jt(θ))








≤ max
T=1,...,2M

max
τ=1,...,T

[

sup
θ∈Θ′n,K,s,T,τ

{
τ∑

t=1

1

n
Rn(Jt(θ)) log H(Jt(θ))− 3

τ∑
t=1

u

H(Jt(θ))
log H(Jt(θ))

}

+ sup
θ∈Θ′n,K,s,T,τ

{
T∑

t=τ+1

1

n
Rn(Jt(θ)) log H(Jt(θ))− 3

T∑
t=τ+1

2

n
log H(Jt(θ))

}]
.

(4.20)

Suppose that the following inequalities hold for all T and τ .

lim sup
n→∞

sup
θ∈Θ′n,K,s,T,τ

[
τ∑

t=1

1

n
Rn(Jt(θ)) log H(Jt(θ))

−3
τ∑

t=1

u

H(Jt(θ))
log H(Jt(θ))

]
≤ 0, a.e. (4.21)

lim sup
n→∞

sup
θ∈Θ′n,K,s,T,τ

[
T∑

t=τ+1

1

n
Rn(Jt(θ)) log H(Jt(θ))− 3

T∑
t=τ+1

2

n
log H(Jt(θ))

]
≤ 0, a.e.

(4.22)

13



Then (4.18) is derived from (4.20), (4.21), (4.22). Therefore it suffices to prove (4.21) and
(4.22), which are the final goals of our proof. We state (4.21) and (4.22) as two lemmas
and give their proofs.

Lemma 4.4.

lim sup
n→∞

sup
θ∈Θ′n,K,s,T,τ

[
T∑

t=τ+1

1

n
Rn(Jt(θ)) log H(Jt(θ))− 3

T∑
t=τ+1

2

n
log H(Jt(θ))

]
≤ 0 a.e.

Proof: Let δ > 0 be any fixed positive real constant and let a′t(θ) denote the middle
point of Jt(θ). Here, we consider the probability of the event that

sup
θ∈Θ′n,K,s,T,τ

[
T∑

t=τ+1

1

n
Rn(Jt(θ)) log H(Jt(θ))− 3

T∑
t=τ+1

2

n
log H(Jt(θ))

]
> 2Mδ. (4.23)

Noting that for t > τ , the length of Jt(θ) is less than or equal to 2c′n, the following relation
holds for this event.

The event (4.23) occurs.

⇒ sup
θ∈Θ′n,K,s,T,τ

[
T∑

t=τ+1

max

{
0,

(
1

n
Rn([a′t(θ)− c′n, a

′
t(θ) + c′n])

−3 · 2

n

)}
log

M

2cn

]
> 2Mδ

⇒ ∃θ ∈ Θ′
n,K,s,T,τ ,∃t > τ

max

{
0,

(
1

n
Rn([a′t(θ)− c′n, a′t(θ) + c′n])− 3 · 2

n

)}
log

M

2cn

> δ

⇒ ∃θ ∈ Θ′
n,K,s,T,τ ,∃t > τ

Rn([a′t(θ)− c′n, a
′
t(θ) + c′n]) ≥ 6

⇒ sup
Lmin≤a′≤Lmax

Rn([a′ − c′n, a
′ + c′n]) ≥ 6 . (4.24)

Below, we consider the probability of the event that (4.24) occurs. We divide J0 from
Lmin to Lmax by short intervals of length 2c′n as in the proof of lemma 4.3. Let k(c′n) be
the number of short intervals and let I1(c

′
n), . . . , Ik(c′n)(c

′
n) be the divided short intervals.

Then we have

k(c′n) ≤ L

2c′n
+ M . (4.25)

Since any interval in J0 of length 2c′n is covered by at most 3 small intervals from
{I1(c

′
n), . . . , Ik(c′n)(c

′
n)}

sup
Lmin≤a′≤Lmax

Rn([a′ − c′n, a
′ + c′n]) ≥ 6 ⇒ 1 ≤ ∃k ≤ k(c′n) , Rn(Ik(c

′
n)) ≥ 2 .

14



Note that Rn(Ik(c
′
n)) ∼ Bin(n, P0(Ik(c

′
n))) and P0(Ik(c

′
n)) ≤ 2c′nu Therefore from (4.24)

and (4.25) we have

Prob

(
sup

θ∈Θ′n,K,s,T,τ

{
T∑

t=τ+1

1

n
Rn(Jt(θ)) log H(Jt(θ))− 3

T∑
t=τ+1

2

n
log H(Jt(θ))

}
> 2Mδ

)

≤
(

L

2c′n
+ M

) n∑

k=2

(
n
k

)
(2c′nu)k(1− 2c′nu)n−k

≤
(

L

2c′n
+ M

) n∑

k=2

nk

k!
(2c′nu)k

≤
(

L

2c′n
+ M

)
(2nc′nu)2

n∑

k=0

1

k!
(2nc′nu)k

≤
(

L

2c′n
+ M

)
(2nc′nu)2 exp (2nc′nu) .

When we sum this over n, resulting series on the right converges. Hence by Borel-Cantelli
and the fact that δ > 0 was arbitrary, we obtain

lim sup
n→∞

sup
θ∈Θ′n,K,s,T,τ

[
T∑

t=τ+1

1

n
Rn(Jt(θ)) log H(Jt(θ))− 3

T∑
t=τ+1

2

n
log H(Jt(θ))

]
≤ 0 a.e.

Finally we prove (4.21).

Lemma 4.5.

lim sup
n→∞

sup
θ∈Θ′n,K,s,T,τ

[
τ∑

t=1

1

n
Rn(Jt(θ)) log H(Jt(θ))− 3

τ∑
t=1

u

H(Jt(θ))
log H(Jt(θ))

]
≤ 0 a.e.

Proof: Let δ > 0 be any fixed positive real constant and let hn be

hn ≡ δ

12

{
u log

(
M

c′n

)}−1

. (4.26)

We divide [c′n/M, c0] from c0 to c′n/M by short intervals of length hn. In the left end c′n/M
of the interval [c′n/M, c0], overlap of two short intervals of length hn is allowed and the
left end of a short interval is equal to c′n/M . Let ln be the number of short intervals of

length hn and define b
(n)
l by

b
(n)
l ≡

{
c0 − (l − 1)hn, 1 ≤ l ≤ ln,

c′n/M, l = ln + 1.

15



Then we have

ln ≤ c0

hn

+ 1 . (4.27)

Next, we consider the probability of the event that

sup
θ∈Θ′n,K,s,T,τ

[
τ∑

t=1

1

n
Rn(Jt(θ)) log H(Jt(θ))− 3

τ∑
t=1

u

H(Jt(θ))
log H(Jt(θ))

]
> 2Mδ. (4.28)

For this event the following relation holds.

The event (4.28) occurs.

⇒ ∃θ ∈ Θ′
n,K,s,T,τ

1 ≤ ∃l(1), · · · ,∃l(τ) ≤ ln s.t.

2b
(n)
l(1)+1 ≤

1

H(J1(θ))
≤ 2b

(n)
l(1), · · · , 2b

(n)
l(τ)+1 ≤

1

H(Jτ (θ))
≤ 2b

(n)
l(τ),

τ∑
t=1

max

{
0,

(
1

n
Rn([a′t(θ)− b

(n)
l(t), a

′
t(θ) + b

(n)
l(t)])− 3u · 2b(n)

l(t)+1

)}
log

1

2b
(n)
l(t)+1

> 2Mδ

⇒ ∃θ ∈ Θ′
n,K,s,T,τ , 1 ≤ ∃t ≤ τ

1 ≤ ∃l(t) ≤ ln s.t.

2b
(n)
l(t)+1 ≤

1

H(Jt(θ))
≤ 2b

(n)
l(t),

max

{
0,

(
1

n
Rn([a′t(θ)− b

(n)
l(t), a

′
t(θ) + b

(n)
l(t)])− 3u · 2b(n)

l(t)+1

)}
log

1

2b
(n)
l(t)+1

> δ

⇒ 1 ≤ ∃l ≤ ln s.t.

max

{
0, sup

Lmin≤a′≤Lmax

(
1

n
Rn([a′ − b

(n)
l , a′ + b

(n)
l ])− 3u · 2b(n)

l+1

)}
log

1

2b
(n)
l+1

> δ

⇒ 1 ≤ ∃l ≤ ln s.t.

sup
Lmin≤a′≤Lmax

{(
1

n
Rn([a′ − b

(n)
l , a′ + b

(n)
l ])− 3u · 2b(n)

l

)
log

1

2b
(n)
l+1

+ 3u(2b
(n)
l − 2b

(n)
l+1) log

1

2b
(n)
l+1

}
> δ

(4.29)

Then from (4.26) the following relation holds.

The event (4.29) occurs.

⇒ 1 ≤ ∃l ≤ ln , sup
Lmin≤a′≤Lmax

1

n

(
Rn([a′ − b

(n)
l , a′ + b

(n)
l ])− 3u · 2b(n)

l

)
log

1

2b
(n)
l+1

>
δ

2

(4.30)
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Below, we consider the probability of the event that (4.30) occurs. We divide J0 from

Lmin to Lmax by short intervals of length 2b
(n)
l as in the proof of lemma 4.3. Let k(b

(n)
l )

be the number of short intervals and let I1(b
(n)
l ), . . . , I

k(b
(n)
l )

(b
(n)
l ) be the divided short

intervals. Then we have

k(b
(n)
l ) ≤ L

2b
(n)
l

+ M . (4.31)

Since any interval in J0 of length 2b
(n)
l is covered by at most 3 small intervals from

{I1(b
(n)
l ), . . . , I

k(b
(n)
l )

(b
(n)
l )}, we have

sup
Lmin≤a′≤Lmax

(
1

n
Rn([a′ − b

(n)
l , a′ + b

(n)
l ])− 3u · 2b(n)

l

)
>

δ

2

(
log

1

2b
(n)
l+1

)−1

⇒ max
k=1,...,k(b

(n)
l )

(
1

n
Rn(Ik(b

(n)
l ))− u · 2b(n)

l

)
>

1

3
· δ

2

(
log

1

2b
(n)
l+1

)−1

. (4.32)

Note that Rn(Ik(b
(n)
l )) ∼ Bin(n, P0(Ik(b

(n)
l ))) and P0(Ik(b

(n)
l )) ≤ u · 2b(n)

l . Therefore from
(2.3) and (4.31) we have

Prob


 max

k=1,...,k(b
(n)
l )

1

n

(
Rn(Ik(b

(n)
l ))− u · 2b(n)

l

)
>

1

3
· δ

2

(
log

1

2b
(n)
l+1

)−1



≤
(

L

2b
(n)
l

+ M

)
exp



−2n · δ2

36

(
log

1

2b
(n)
l+1

)−2




≤
(

L

2c′n
+ M

)
exp

{
−2n · δ2

36

(
log

1

2c′n

)−2
}

. (4.33)

From (4.27), (4.29), (4.30), (4.32), (4.33), we obtain

Prob

(
sup

θ∈Θ′n,K,s,T,τ

[
τ∑

t=1

1

n
Rn(Jt(θ)) log H(Jt(θ))− 3

τ∑
t=1

u

H(Jt(θ))
log H(Jt(θ))

]
> 2Mδ

)

≤
(

c0

hn

+ 1

)(
L

2c′n
+ M

)
exp

{
−2n · δ2

36

(
log

1

2c′n

)−2
}

.

When we sum this over n, the resulting series on the right converges. Hence by Borel-
Cantelli and the fact that δ > 0 is arbitrary, we have

lim sup
n→∞

sup
θ∈Θ′n,K,s,T,τ

[
τ∑

t=1

1

n
Rn(Jt(θ)) log H(Jt(θ))− 3

τ∑
t=1

u

H(Jt(θ))
log H(Jt(θ))

]
≤ 0 a.e.

This completes the proof of theorem 3.2.
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5 Some discussions

It is readily verified that if cn decreases to zero faster than exp(−n), then the consistency
of the maximum likelihood estimator fails. Therefore the rate of cn = exp(−nd), d < 1,
obtained in this paper is almost the lower bound of the order of cn which maintains the
consistency.

We expect that our result can be extended to other finite mixture cases, especially for
densities which are Lipschitz continuous when the scale parameters are fixed. The problem
studied in this paper is similar to the question stated in Hathaway(1985) which treats the
normal mixtures and the constraint is imposed on the ratios of variances. Methods used
in this paper may be useful to solve the question.
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