
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Parallelization with Tree Skeletons

Kiminori Matsuzaki, Zhenjiang Hu,
Masato Takeichi

METR 2003–21 June 2003

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.i.u-tokyo.ac.jp/mi/mi-e.htm

The METR technical reports are published as a means to ensure timely dissemination of scholarly
and technical work on a non-commercial basis. Copyright and all rights therein are maintained by
the authors or by other copyright holders, notwithstanding that they have offered their works here
electronically. It is understood that all persons copying this information will adhere to the terms
and constraints invoked by each author’s copyright. These works may not be reposted without the
explicit permission of the copyright holder.

Parallelization with Tree Skeletons∗

Kiminori Matsuzaki1, Zhenjiang Hu1,2, Masato Takeichi1

1 Graduate School of Information Science and Technology,
University of Tokyo

kmatsu@ipl.t.u-tokyo.ac.jp
{hu,takeichi}@mist.i.u-tokyo.ac.jp

2 PRESTO21, Japan Science and Technology Corporation.

Abstract

Trees are useful data structures, but to design efficient parallel programs over trees is
known to be more difficult than to do over lists. Although several important tree skeletons
have been proposed to simplify parallel programming on trees, few studies have been re-
ported on how to systematically use them in solving practical problems; it is neither clear
how to make a good combination of skeletons to solve a given problem, nor obvious how to
find suitable operators used in a single skeleton. In this paper, we report our first attempt to
resolve these problems, proposing two important transformations, the tree diffusion transfor-
mation and the tree context preservation transformation. The tree diffusion transformation
allows one to use familiar recursive definitions to develop his parallel programs, while the
tree context preservation transformation shows how to derive associative operators that are
required when using tree skeletons. We illustrate our approach by deriving an efficient par-
allel program for solving a nontrivial problem called the party planning problem, the tree
version of the famous maximum-weight-sum problem.

Keywords: Parallel Skeletons, Tree Algorithms, Parallelization, Program Transforma-
tion, Algorithm Derivation.

1 Introduction

Trees are useful data types, widely used for representing hierarchical structures such as mathe-
matical expressions or structured documents like XML. Due to irregularity (imbalance) of tree
structures, developing efficient parallel programs manipulating trees is much more difficult than
developing efficient parallel programs manipulating lists. Although several important tree skele-
tons have been proposed to simplify parallel programming on trees [4, 5, 12], few studies have
been reported on how to systematically use them in solving practical problems.

Many researchers have devoted themselves to constructing systematic parallel programming
methodology using list skeletons [1, 2, 6, 8], but few have reported the methodology with tree
skeletons. Unlike lists, trees do not have a linear structure, and hence the recursive functions
over trees are not linear either (in the sense that there are more than one recursive calls in the
definition body.) It is this nonlinearity that makes the parallel programming on trees complex
and difficult.

In this paper, we aim at a systematic method for parallel programming using tree skeletons,
by proposing two important transformations, the tree diffusion transformation and the tree
context preservation transformation.

∗An Extended version of the paper presented at International Conference on Parallel and Distributed Com-
puting (Euro-Par 2003).

1

• The tree diffusion transformation is an extension of the list version [8]. It shows how
to decompose familiar recursive programs into equivalent parallel ones in terms of tree
skeletons.

• The tree context preservation transformation is an extension of the list version [1]. It
shows how to derive associative operators that are required when using tree skeletons.

In addition, to show the usefulness of these theorems, we demonstrate a derivation of an
efficient parallel program for solving the party planning problem, using tree skeletons defined
in Section 2. The party planning problem is an interesting tree version of the well-known
maximum-weight-sum problem [2], which appeared as an exercise in [3].

Professor Stewart is consulting for the president of a corporation that is planning
a company party. The company has a hierarchical tree structure; that is, the super-
visor relation forms a tree rooted at the president. The personnel office has ranked
each employee with a conviviality rating, which is a real number. In order to make
the party fun for all attendees, the president does not want both an employee and
his or her immediate supervisor to attend. The problem is to design an algorithm
making the guest list, and the goal is to maximize the sum of the conviviality rating
of the guest.

It is not easy to decide which tree skeletons to use and how to combine them properly so as
to solve this problem. Moreover, skeletons impose restriction (such as associativity) on the
functions and operations, and it is not straightforward to find such ones.

The rest of the paper is as follows. After reviewing the tree skeletons in Section 2, we explain
our two parallelization transformations for trees: the diffusion transformation in Section 3, and
the context preservation transformation in Section 4. We show the experimental results in
Section 5, and give conclusion in Section 6.

2 Parallel Skeletons on Trees

To simplify our presentation, we consider binary trees in this paper. The primitive parallel
skeletons on binary trees are map, zip, reduce, upwards accumulate and downwards accumulate
[12, 13], and their formal definitions using the notation of the Haskell language [9] are described
in Figure 1. We will use the Haskell notation for the rest of this paper.

The map skeleton map (fL, fN) applies function fL to each leaf and function fN to each
internal node. The zip skeleton accepts two trees of the same shape and returns a tree whose
nodes are pairs of corresponding two nodes of the original two trees. The reduce skeleton
reduce (fL, fN) reduces a tree into a value by applying fL to each leaf, and fN to each internal
node upwards. Similar to reduce, the upwards accumulate skeleton uAcc (fL, fN) applies fL to
each leaf and fN to each internal node in a bottom-up manner, and returns a tree of the same
shape as the original tree. The downwards accumulate skeleton dAcc (⊕) (fL, fR) c computes by
propagating accumulation parameter c downwards, and the accumulation parameter is updated
by ⊕ and fL when propagated to left child, or updated by ⊕ and fR when propagated to right
child.

To guarantee the existence of efficient implementation for the parallel skeletons, we have
requirement on the operators and functions used in the above skeletons.

Definition 1 (Semi-Associative) A binary operator ⊗ is said to be semi-associative if there
is an associative operator ⊕ such that for any a, b, c, (a⊗ b)⊗ c = a⊗ (b⊕ c). 2

Definition 2 (Quasi-Associative) A binary operator ⊕ is said to be quasi-associative if there
is a semi-associative operator ⊗ and a function f such that for any a, b, a⊕ b = a⊗ f b. 2

2

data BTree α β = Leaf α
| Node (BTree α β) β (BTree α β)

map :: (α → γ, β → δ) → BTree α β → BTree γ δ
map (fL, fN) (Leaf n) = Leaf (fL n)
map (fL, fN) (Node l n r) = Node (map (fL, fN) l) (fN n) (map (fL, fN) r)

zip :: BTree α β → BTree γ δ → BTree (α, γ) (β, δ)
zip (Leaf n) (Leaf n′) = Leaf (n, n′)
zip (Node l n r) (Node l′ n′ r′) = Node (zip l l′) (n, n′) (zip r r′)

reduce :: (α → γ, γ → β → γ → γ) → BTree α β → γ
reduce (fL, fN) (Leaf n) = fL n
reduce (fL, fN) (Node l n r) = fN (reduce (fL, fN) l) n (reduce (fL, fN) r)

uAcc :: (α → γ, γ → β → γ → γ) → BTree α β → BTree γ γ
uAcc (fL, fN) (Leaf n) = Leaf (fL n)
uAcc (fL, fN) (Node l n r) = let l′ = uAcc (fL, fN) l

r′ = uAcc (fL, fN) r
in Node l′ (fN (root l′) n (root r′)) r′

dAcc :: (γ → γ → γ) → (β → γ, β → γ) → BTree α β → γ → BTree γ γ
dAcc (⊕) (fL, fR) (Leaf n) c = Leaf c
dAcc (⊕) (fL, fR) (Node l n r) c = Node (dAcc (⊕) (fL, fR) l (c⊕ fL n)) c

(dAcc (⊕) (fL, fR) r (c⊕ fR n))

Figure 1: Definitions of five primitive skeletons

Definition 3 (Bi-Quasi-Associative) A ternary operator f is said to be bi-quasi-associative
if there is a semi-associative operator ⊗ and two functions f ′L, f ′R such that for any l, n, r,
f l n r = l ⊗ f ′L n r = r ⊗ f ′R n l. We can fix a bi-quasi-associative operator f by providing
⊗, ⊕ (associative operator for ⊗), f ′L and f ′R, therefore, we will write f with 4-tuple as f ≡
[[⊗,⊕, f ′L, f ′R]]. 2

Based on the tree contraction technique [11], we require the fN used in the reduce and upwards
accumulate be bi-quasi-associative, and ⊕ in downwards accumulate be associative. We omit
the detailed description of the cost for each skeleton. Informally, if all the operators used in the
skeletons use constant time, all skeletons can be implemented in at most O(log N) parallel time
with N processors, where N denotes the number of nodes in the tree.

Now, we will give an example to show how to write a parallel program in terms of skeletons.
The parallel program accepts two trees of the same shape and makes a triple for each node.
The triple consists of a node of the first tree and two immediate children of the second tree.
Such function gather ch can be defined sequentially as follows.

gather ch (Leaf n) (Leaf n′) = Leaf (, n,)
gather ch (Node l n r) (Node l′ n′ r′) =

Node (gather ch l l′) (root l′, n, root r′) (gather ch r r′)

In this function, the computation for each node needs the values of its immediate children in
the second tree, and this can be computed with upwards accumulate. Therefore, we compute
gather ch with three steps: we propagate each value in the second tree to its parent with
upwards accumulate, then we zip up the trees with zip, and finally we rearrange the values with
map.

3

gather ch xt yt = let zt = uAcc (pairL, pairN) yt
in map (rearrange, rearrange) (zip xt zt)

where pairL n = (, n ,)
pairN (, l ,) n (, r ,) = (l, n, r)
rearrange (n, (l′, n′, r′)) = (l′, n, r′)

Here, the function pairN used in uAcc must be bi-quasi-associative, and we can show the bi-
quasi-associativity of pairN as follows, by using the additional tags (None,Left ,Right).

pairN ≡ [[⊕,⊗, f l, f r]]
(, n ,)⊕ (Left , l′, n′, r′) = (n , n′, r′)
(, n ,)⊕ (Right , l′, n′, r′) = (l′ , n′, n)
(, n ,)⊕ (None , l′, n′, r′) = (l′ , n′, r′)
(, n ,)⊗ (Left , l′, n′, r′) = (None , n, n′, r′)
(, n ,)⊗ (Right , l′, n′, r′) = (None , l′, n′, n)
(, n ,)⊗ (None , l′, n′, r′) = (None , l′, n′, r′)
f l n r = (Left , , n, r)
f r n l = (Right , l, n,)

3 Tree Diffusion Theorem

Hu et al. proposed the diffusion theorem (on lists) [8], with which one can directly derive
efficient combinations of list skeletons from recursive programs. In this section, we start by
formalizing a very general tree diffusion theorem, then discuss three practical cases, and finally
derive a combination of skeletons for the party planning problem.

Theorem 1 (Tree Diffusion) Let f be defined in the following recursive way over binary
trees:

f (Leaf n) c = gL (n, c)
f (Node l n r) c = gN (f l (c⊗ hL n)) (n, c) (f r (c⊗ hR n))

where gN is a bi-quasi-associative operator, ⊗ an associative operator, and gL, hL, hR user-
defined functions. Then f can be equivalently defined in terms of the tree skeletons as follows.

f xt c = let ct = dAcc (⊗) (hL, hR) xt c
in reduce (gL, gN) (zip xt ct)

Proof : We prove that the newly defined f is equivalent to the original one by induction on the
structure of xt .

• Base case: xt = Leaf n

f (Leaf n) c
= { definition of diffused form }

let ct = dAcc (⊗) (hL, hR) (Leaf n) c
in reduce (gL, gN) (zip (Leaf n) ct)

= { definition of dAcc }
let ct = Leaf c
in reduce (gL, gN) (zip (Leaf n) ct)

= { substituion of ct }
reduce (gL, gN) (zip (Leaf n) (Leaf c))

= { definition of zip }
reduce (gL, gN) (Leaf (n, c))

= { definition of reduce }
gL (n, c)

4

• Inductive case: xt = Node l n r

f (Node l n r) c
= { definition of diffused form }

let ct = dAcc (⊗) (hL, hR) (Node l n r) c
in reduce (gL, gN) (zip (Node l n r) ct)

= { definition of dAcc }
let ct = Node cl cn cr = Node (dAcc (⊗) (hL, hR) l (c⊗ hL n)) c

(dAcc (⊗) (hL, hR) r (c⊗ hR n))
in reduce (gL, gN) (zip (Node l n r) ct)

= { substitution of ct}
let cl = dAcc (⊗) (hL, hR) l (c⊗ hL n)

cr = dAcc (⊗) (hL, hR) r (c⊗ hR n)
in reduce (gL, gN) (zip (Node l n r) (Node cl c cr))

= { definition of zip }
let cl = dAcc (⊗) (hL, hR) l (c⊗ hL n)

cr = dAcc (⊗) (hL, hR) r (c⊗ hR n)
in reduce (gL, gN) (Node (zip l cl) (n, c) (zip r cr))

= { definition of reduce }
let cl = dAcc (⊗) (hL, hR) l (c⊗ hL n)

cr = dAcc (⊗) (hL, hR) r (c⊗ hR n)
in gN (reduce (gL, gN) (zip l cl)) (n, c) (reduce (gL, gN) (zip r cr))

= { pick up to let-clause }
let cl = dAcc (⊗) (hL, hR) l (c⊗ hL n)

cr = dAcc (⊗) (hL, hR) r (c⊗ hR n)
l′ = reduce (gL, gN) (zip l cl)
r′ = reduce (gL, gN) (zip r cr)

in gN l′ (n, c) r′

= { rearrangement in let-cluase }
let l′ = let cl = dAcc (⊗) (hL, hR) l (c⊗ hL n)

in reduce (gL, gN) (zip l cl)
r′ = let cr = dAcc (⊗) (hL, hR) r (c⊗ hR n)

in reduce (gL, gN) (zip r cr)
in gN l′ (n, c) r′

= { inductive hypothesis }
let l′ = f l (c⊗ hL n)

r′ = f r (c⊗ hR n)
in gN l′ (n, c) r′

= { substitution of l′ and r′ }
gN (f l (c⊗ hL n)) (n, c) (f r (c⊗ hR n))

2

This theorem is very general. Practically, It is often the case that the function f returns a
tree with the same shape as the input. If we naively apply this diffusion theorem, we will have
a costly reduce skeleton for combining all sub-trees. To remedy this situation, we propose the
following two useful specializations, in which we use appropriate skeletons rather than reduce.

The first specialization deals with the function whose computation of the new values for
each node depends on the original value and the accumulation parameter. For each internal
node, such function f can be defined as

f (Node l n r) = Node (f l (c⊗ hL n)) (gN (n, c)) (f r (c⊗ hR n)),

and this function can be efficiently computed by map rather than reduce.

5

ppp xt = ppp′ xt True

ppp′ (Leaf n) c = Leaf c
ppp′ (Node l n r) c = let (lm , lu) = mis l

(rm, ru) = mis r
in Node (ppp′ l (if c then False else (lm > lu))) c

(ppp′ r (if c then False else (rm > ru)))
mis (Leaf n) = (n, 0)
mis (Node l n r) = let (lm , lu) = mis l

(rm, ru) = mis r
in (lu + n + ru, (lm ↑ lu) + (rm ↑ ru))

Figure 2: A sequential program for party planning program

The second specialization deals with the function whose computation of the new values for
each node depends on the original values, the accumulation parameter and the new values of
its children. For each internal node, such function f can be defined as follows.

f (Node l n r) c = Node l′ (gN (root l′) (n, c) (root r′)) r′

where l′ = f l (c⊗ hL n)
r′ = f r (c⊗ hR n)

This function can be efficiently computed by upwards accumulate rather than reduce.
Let us discuss another practical matter for the case where the function f calls an auxiliary

function k to compute over the sub-trees. It is defined as follows.

f (Leaf n) c = Leaf (gL ((, n,), c))
f (Node n l r) c = let n′ = (k l, n, k r)

in Node (f l (c⊗ hL n′)) (gN (n′, c)) (f r (c⊗ hR n′))

k (Leaf n) = kL n
k (Node l n r) = kN (k l) n (k r)

It is a little difficult to efficiently parallelize this recursive function into the combination of
primitive skeletons, because there are multiple traversals over the trees, and naive computation
of f will introduce redundant function calls of k. By making use of the tupling transformation
and the fusion transformation [7], we can parallelize the function efficiently.

The auxiliary function k computes only with the original sub-tree (without new values and
accumulative parameters), therefore, we can evaluate all function calls of k in advance by using
upwards accumulate to get rid of the redundant calls of k. Then, for each node we obtain a
tuple of original value and the auxiliary values of its children. We can implement this by using
the function gather ch in Section 2. Finally we apply the diffusion theorem to obtain an efficient
parallel program. We summarize these steps in the following corollary.

Corollary 1 (Paramorphic Diffusion) The function f defined above can be diffused into the
following combination of skeletons if kN is a bi-quasi-associative operator, and ⊗ is associative.

f xt c = let yt = gather ch xt (uAcc (kL, kN) xt)
in dAcc (⊗) (hL, hR) yt c

2

Having shown the diffusion theorem and its corollaries, we now try to derive a parallel
program for the party planning problem. By making use of dynamic programming technique,
we can obtain an efficient sequential program as shown in Figure 2. Here, the function mis
accepts a tree, and returns a pair of values which are the maximum independent sums when

6

the root of the input is marked or unmarked. The recursive function ppp′ is defined with
an accumulation parameter, which represents whether the present node is to be marked or
unmarked. The recursive function ppp′ is a paramorphic function because it calls an auxiliary
function mis on each sub-tree, therefore, we apply the paramorphic diffusion theorem, and
obtain the following skeletal program.

ppp xt = ppp′ xt True
ppp′ xt c = let yt = gather ch xt (uAcc (misL,misN) xt)

in dAcc (⊗) (hL, hR) yt c

Note that we have not yet parallelized the underlined parts successfully. First, from the defini-
tion of the sequential program, we can derive misL n = (n, 0) and misN (lm, lu) n (rm, uu) =
(lu +n+ ru, (lm ↑ lu)+ (rm ↑ ru)), however, we have to show the bi-quasi-associativity of misN .
Second, we have to derive an associative operator ⊗ and two functions hL and hR such that
c ⊗ hL ((lm, lu), n, (rm, ru)) = if c then False else (lm > lu) and almost the same equation for
hR holds. In the next section, we will see how to derive those operators.

4 Tree Context Preservation

The parallel skeletons require the operators used in them to be (bi-quasi)-associative, however,
it is not straightforward to find such ones for many practical problems. For linear self-recursive
programs, Chin et al. proposed the context preservation transformation [1], with which one
can systematically derive such operators based on the associativity of function composition.
In this section, we extend the transformation theorem for tree skeletons. Our main idea is to
resolve the non-linear functions over trees into two linear recursive functions, so that we can
consider the context preservation on these two linear functions. We start by introducing the
basic notations and concepts about contexts.

Definition 4 (Context Extraction [1]) Given an expression E and sub-terms 〈e1, . . . , en〉,
we shall express its extraction by: E =⇒ E′〈e1, . . . , en〉. The context E′ has a form of

λ〈––1, . . . , ––n〉.[ei 7→ ––i]ni=1E

where ––i denotes a new hole and [ei 7→ ––i]ni=1E denotes a substitution notation of ei in E to

––i. 2

Definition 5 (Skeletal Context [1]) A context E is said to be a skeletal context if every
sub-term in E contains at least one hole. Given a context E, we can make it into a skeletal
one ES by extracting all sub-terms that do not contain holes. This process shall be denoted by
E =⇒S ES〈ei〉i∈N 2

Definition 6 (Context Transformation [1]) A context may be transformed (or simplified)
by either applying laws or unfolding. We shall denote this process as E =⇒T E′. 2

Definition 7 (Context Preservation Modulo Replication [1]) A context E with one
hole is said to be preserved modulo replication if there is a skeletal context ES ,

E =⇒S ES〈ti〉, ES〈αi〉 ◦ ES〈βi〉 = ES〈γi〉

hold, where αi and βi are variables, and γi are sub-terms without holes. 2

7

4.1 Context Preservation for Reduce

Now, we will discuss about the functions which can be transformed into a program with reduce
or uAcc, showing to derive a bi-quasi-associative operator.

Definition 8 (Simple Upwards Recursive Function) A function is said to be a simple
upwards recursive function (SUR-function for short) if it has the following form.

f (Leaf n) = fL n
f (Node l n r) = fN (f l) n (f r) 2

The inductive case of an SUR-function has two recursive calls, f l and f r, therefore, we cannot
apply the Chin’s theorem. To resolve this non-linearity, we extract two linear recurring contexts
from an SUR-function, and extend context preservation for these two contexts as shown in the
following.

Definition 9 (Left(Right)-Recurring Context) For the inductive case of an SUR-function,
we can extract the left(right)-recurring context EL (ER) by abstracting either of the recurring
terms: f (Node l n r) = EL〈f l〉 = ER〈f r〉. 2

Definition 10 (Mutually Preserved Contexts) Two linear recurring contexts EL, ER are
said to be mutually preserved, if there exists a skeletal context ES such that

EL =⇒S ES〈gl n r〉, ER =⇒S ES〈gr n l〉, ES〈α〉 ◦ ES〈β〉 = ES〈γ〉
hold. Here, γ is a sub-terms computed only with variables α and β. 2

Based on the idea of tree contraction algorithm, we parallelize the SUR-function as in the
following theorem.

Theorem 2 (Context Preservation for SUR-function) The SUR-function function f can
be parallelized to

f = reduce (fL, fN)

if there exist a skeletal context ES such that

EL =⇒S ES〈gl n r〉, ER =⇒S ES〈gr n l〉, ES〈α〉 ◦ ES〈β〉 = ES〈γ〉
hold. Here, fN is a bi-quasi-associative operator such as fN ≡ [[⊕,⊗, gl, gr]] where ⊕ is a
semi-associative operator defined as x⊕ α = ES〈α〉〈x〉 and ⊗ is a associative operator defined
as β ⊗ α = γ.
Proof: To prove this theorem, we have to show the associativity of ⊗, the semi-associativity of
⊕, and the equivalence of f . First, based on the associativity of function composition, we prove
the associativity of ⊗.

ES〈a〉 ◦ (ES〈b〉 ◦ ES〈c〉) = (ES〈a〉 ◦ ES〈b〉) ◦ ES〈c〉
ES〈a〉 ◦ ES〈c⊗ b〉 = ES〈b⊗ a〉 ◦ ES〈c〉

ES〈(c⊗ b)⊗ a〉 = ES〈c⊗ (b⊗ a)〉
(c⊗ b)⊗ a = c⊗ (b⊗ a)

Second, we prove the semi-associativity of ⊕ as follows.

(x⊕ a)⊕ b = { definition of ⊕ }
(ES〈a〉〈x〉)⊕ b

= { definition of ⊕ }
ES〈b〉〈ES〈a〉〈x〉〉

= { ES〈a〉 is a linear context }
(ES〈b〉 ◦ ES〈a〉)〈x〉

= { context composition }
ES〈a⊗ b〉〈x〉

= { definition of ⊕ }
x⊕ (a⊗ b)

8

Finally, we prove the equivalence of f as follows.

fN l n r = { definition of left-context }
EL〈l〉

= { definition of skeletal context }
ES〈gl n r〉〈l〉

= { definition of ⊕ }
l ⊕ gl n r

fN l n r = { definition of right-context }
ER〈r〉

= { definition of skeletal context }
ES〈gr n l〉〈r〉

= { definition of ⊕ }
r ⊕ gr n l

2

4.2 Context Preservation for Upwards Accumulate

We may derive a bi-quasi-associative operator for upwards accumulate in the same way. We
introduce a function form for upwards accumulate.

Definition 11 (Tree-shape Upwards Recursive Function) A function is said to be a
Tree-shape upwards recursive function (TUR-function for short), if it is in the following form.

f (Leaf n) = Leaf fL n
f (Node l n r) = Node (f l) (fN (root (f l)) n (root (f r))) (f r)

2

As is the case of SUR-function, the inductive case of an TUR-function also has two recursive
calls, f l and f r, therefore, we extract of two linear recurring contexts from an TUR-function.
Here, all we have to do is to derive a bi-quasi-associative operator for fN .

Definition 12 (Left(Right)-Recurring Context for TUR-function) For the inductive
case of an TUR-function, we can extract the left(right)-recurring context EL (ER) by abstracting
either of the recurring terms from the function call of fN :

f (Node l n r) = Node (f l) EL〈root (f l)〉 (f r)
= Node (f l) ER〈root (f r)〉 (f r).

2

Based on the idea of tree contraction algorithm, we parallelize the TUR-function with the same
way as SUR-function.

Corollary 2 (Context Preservation for TUR-function) The TUR-function function f
can be parallelized to

f = uAcc (fL, fN)

if there exist a skeletal context ES such that

EL =⇒S ES〈gl n r〉, ER =⇒S ES〈gr n l〉, ES〈α〉 ◦ ES〈β〉 = ES〈γ〉

hold. Here, fN is a bi-quasi-associative operator such as fN ≡ [[⊕,⊗, gl, gr]] where ⊕ is a
semi-associative operator defined as x⊕ α = ES〈α〉〈x〉 and ⊗ is a associative operator defined
as β ⊗ α = γ.

9

Having shown the context preservation for the TUR-function, we now derive a bi-quasi-
associative operator misN in the diffused form in Section 3. The sequential definition of misN

was obtained as follows.

misN (lm, lu) n (rm, ru) = (lu + n + ru, (lm ↑ lu) + (rm ↑ ru))

By abstracting either (lm, lu) or (rm, ru), we can obtain following left-context and right-context.

EL = λ〈(xm, xu)〉.(xu + n + ru, (xm ↑ xu) + (rm ↑ ru))
ER = λ〈(xm, xu)〉.(lu + n + xu, (lm ↑ lu) + (xm ↑ xu))

By using the associativity and commutativity of +, we transform the context ER into the same
form as EL, and then we can obtain a skeletal context ES :

ES = λ〈(––1, ––2)〉.λ〈(xm, xu)〉.(xu + ––1, (xm ↑ xu) + ––2).

However, ES is not sufficient to show that EL and ER are mutually preserved. Gradually
expanding ES , we may find the following skeletal context E′

S , which is sufficient for our require-
ment.

E′
S = λ〈(––1, ––2, ––3, ––4)〉. λ〈(xm, xu)〉. ((xm + ––1) ↑ (xu + ––2), (xm + ––3) ↑ (xu + ––4))

With this skeletal context E′
S , we can show the mutual context preservation as follows.

EL = E′
S〈gl n (rm, ru)〉, ER = E′

S〈gr n (lm, lu)〉
gl n (rm, ru) = (−∞, n + ru, rm ↑ ru, rm ↑ ru)
gr n (lm, lu) = (−∞, n + lu, lm ↑ lu, lm ↑ lu)

E′
S〈(α1, α2, α3, α4)〉 ◦ E′

S〈(β1, β2, β3, β4)〉
= λ〈(xm, xu)〉. ((xm + (β1 + α1) ↑ (β3 + α2)) ↑ (xu + (β2 + α1) ↑ (β4 + α2)),

(xm + (β1 + α3) ↑ (β3 + α4)) ↑ (xu + (β2 + α3) ↑ (β4 + α4)))
= E′

S〈((β1 + α1) ↑ (β3 + α2), (β2 + α1) ↑ (β4 + α2),
(β1 + α3) ↑ (β3 + α4), (β2 + α3) ↑ (β4 + α4))〉

Now, we are able to apply the context preservation theorem to obtain following bi-quasi-
associative operator misN .

misN ≡ [[⊕,⊗, gl, gr]]

(xm, xu)⊕ (α1, α2, α3, α4) = ((xm + α1) ↑ (xu + α2), (xm + α3) ↑ (xu + α4))
(β1, β2, β3, β4)⊗ (α1, α2, α3, α4) = ((β1 + α1) ↑ (β3 + α2), (β2 + α1) ↑ (β4 + α2),

(β1 + α3) ↑ (β3 + α4), (β2 + α3) ↑ (β4 + α4))
gl n (rm, ru) = (−∞, n + ru, rm ↑ ru, rm ↑ ru)
gr n (lm, lu) = (−∞, n + lu, lm ↑ lu, lm ↑ lu)

4.3 Context Preservation for Downwards Accumulate

Next, we discuss about the functions which can be transformed into a program with dAcc. As
is the case of reduce, based on the tree contraction algorithm, we can parallelize a non-linear
function by extracting two linear contexts and showing these contexts to be mutually preserved.

Definition 13 (Simple Downwards Recursive Function) A function is said to be a sim-
ple downwards recursive function (SDR-function for short), if it has the following form.

f (Leaf n) c = Leaf c
f (Node l n r) c = Node (f l (fL c n)) c (f r (fR c n))

2

10

Definition 14 (Recurring Contexts for SDR-function) For the inductive case of an
SDR-function f , we can obtain two recurring contexts DL, DR by abstracting the recursive
calls on the accumulative parameter respectively:

f (Node l n r) c = Node (f l DL〈c〉) c (f r DR〈c〉).
2

Theorem 3 (Context Preservation for SDR-function) The SDR-function f can be par-
allelized to

f xt c = map ((c⊗), (c⊗)) (dAcc (⊕) (gl, gr) ι⊕)

if there exist a skeletal context ES such that

DL =⇒S DS〈gl n〉, DR =⇒S DS〈gr n〉, DS〈α〉 ◦DS〈β〉 = DS〈γ〉

hold. Here, the operators are defined as β ⊕ α = γ and c⊗ α = DS〈α〉〈c〉, and ι⊕ is the unit of
⊕.
Proof : To prove this theorem, we have to show the associativity of ⊕ and the equivalence of
f . First, based on the associativity of function composition, we prove the associativity of ⊕ as
follows.

DS〈a〉 ◦ (DS〈b〉 ◦DS〈c〉) = (DS〈a〉 ◦DS〈b〉) ◦DS〈c〉
DS〈a〉 ◦DS〈c⊕ b〉 = DS〈b⊕ a〉 ◦DS〈c〉

DS〈(c⊕ b)⊕ a〉 = DS〈c⊕ (b⊕ a)〉
(c⊕ b)⊕ a = c⊕ (b⊕ a)

Next, we prove the equivalence of f . From the definition of downwards accumulate, we only
have to show that for each node the accumulative parameter corg in the original f is the same
as that of new f . To show this, we prove corg = c⊗ c′, where c′ is the accumulative parameter
of dAcc in the new definition, by induction on the structure of xt downwards.

• Base case (root). Here, the accumulative parameter in the original definition is c, therefore,
we have to show that c = c⊗ ι⊕. For any a,

(c⊗ ι⊕)⊗ a = DS〈ι⊕〉〈c〉 ⊗ a
= DS〈a〉〈DS〈ι⊕〉〈c〉〉
= (DS〈a〉 ◦DS〈ι⊕〉)〈c〉
= DS〈ι⊕ ⊕ a〉〈c〉
= DS〈a〉〈c〉
= c⊗ a

holds, so c = c⊗ ι⊕ holds.

• Inductive case. There is no recursive call for the case of Leaf n, and we only have to prove
for the case of Node l n r. Here, we only show the recursive call for left sub-tree.

(c⊗ (c′ ⊕ gl n)) = DS〈c′ ⊕ gl n〉〈c〉
= (DS〈gl n〉 ◦DS〈c′〉)〈c〉
= DS〈gl n〉〈DS〈c′〉〈c〉〉
= DS〈gl n〉〈c⊗ c′〉
= DS〈gl n〉〈corg〉
= fL corg n

It follows that corg = c⊗ c′ are preserved over the recursive call.
2

11

Having shown the context preservation theorems for trees, we now demonstrate how these
theorems work by deriving an associative operator and functions for dAcc in the diffused program
in Section 3. The corresponding part is defined recursively as follows.

ppp′′ (Node l ((lm, lu), n, (rm, ru)) r) c
= Node (ppp′′ l (if c then False else (lm > lu))) c

(ppp′′ r (if c then False else (rm > ru)))

From this definition, we obtain the following two linear recurring contexts by abstracting recur-
sive calls.

DL = λ〈c〉.if c then False else (lm > lu)
DR = λ〈c〉.if c then False else (rm > ru)

We show that these two contexts are mutually recursive because the skeletal context

DS = λ〈(––1, ––2)〉.λ〈c〉.if c then ––1 else ––2

satisfies our requirement.

DL = DS〈hL ((lm, lu), n, (rm, ru))〉, DR = DS〈hR ((lm, lu), n, (rm, ru))〉
where hL ((lm, lu), n, (rm, ru)) = (false, (lm > lu))

hR ((lm, lu), n, (rm, ru)) = (false, (rm > ru))

DS〈(α1, α2)〉 ◦DS〈(β1, β2)〉
= λ〈c〉.if c then (if β1 then α1 else α2) else (if β2 then α1 else α2)
= DS〈(if β1 then α1 else α2, if β2 then α1 else α2)〉

Applying theorem 3 yields an efficient parallel program with map and downwards accumulate
as shown in the following.

ppp′′ xt c = map ((True®), (True®)) (dAcc (¯) (hL, hR) xt ι¯)
where (β1, β2)¯ (α1, α2) = (if β1 then α1 else α2, if β2 then α1 else α2)

ι¯ = (True, False)
c® (α1, α2) = if c then α1 else α2

Here, we know the variable c used with ® is always True, so we may partially evaluate ®.

True ® (α1, α2) = if (True) then α1 else α2

= α1

= fst (α1, α2)

The whole parallel program for the party planning problem is given in Figure 3.

5 An Experiment

We have conducted an experiment on the party planning problem. We have coded our algorithm
using C++, the MPI library, and our implementation of the tree skeletons [10]. We have used
a tree of 999,999 nodes for our experiment.

Figure 4 shows the result of the program executed on our PC-Cluster using 1 to 12 processors.
The result is shown in the speedup (= {running time with 1 processor}/{paralle running time})
excluding the cost of partitioning and flattening of the tree. The almost linear speedup shows
the effectiveness of the program derived by our theorems.

12

ppp xt = let yt = gather ch xt (uAcc (misL,misN) xt)
in map (fst , fst) (dAcc (¯) (hL, hR) yt ι¯)

where
misL = (n, 0)
misN ≡ [[⊕,⊗, fL, fR]]
(β1, β2, β3, β4)⊕ (α1, α2, α3, α4) = ((β1 + α1) ↑ (β3 + α2),

(β2 + α1) ↑ (β4 + α2), (β1 + α3) ↑ (β3 + α4), (β2 + α3) ↑ (β4 + α4))
(xm, xu)⊗ (α1, α2, α3, α4) = ((xm + α1) ↑ (xu + α2), (xm + α3) ↑ (xu + α4))
fL n (rm, ru) = (−∞, n + ru, rm ↑ ru, rm ↑ ru)
fR n (lm , lu) = (−∞, n + lu , lm ↑ lu , lm ↑ lu)

(β1, β2)¯ (α1, α2) = (if β1 then α1 else α2, if β2 then α1 else α2)
ι¯ = (True, False)
hL ((lm, lu), n, (rm, ru)) = (False, (lm > lu))
hR ((lm, lu), n, (rm, ru)) = (False, (rm > ru))

Figure 3: Parallel program for party planning problem

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 2 4 6 8 10 12

S
pe

ed
up

Number of Processors

result

Figure 4: Experiment result

6 Conclusion

In this paper, we have proposed two parallelization transformations, the tree diffusion transfor-
mation and the context preservation transformation, for helping programmers to systematically
derive efficient parallel programs in terms of tree skeletons from the recursive programs. The
list versions of these two theorems have been proposed and shown important in skeletal parallel
programming, which once in fact motivated us to see if we could generalize them for trees. Due
to the non-linearity of the tree structures, it turns out to be more difficult than we had expected.
Although the usefulness of our theorems await more evidence, our successful derivation of the
first skeletal parallel program for solving the party planning problem and the good experiment
result have indicated that this is a good start and is worth further investigation.

We are currently working on generalizing the context preservation theorem so that we can
relax conditions of the skeletons. In addition, we are figuring out whether we can automatically
parallelize the recursive programs on trees.

13

References

[1] W.N. Chin, A. Takano, and Z. Hu. Parallelization via context preservation. IEEE Computer
Society International Conference on Computer Languages (ICCL’98), pages 153–162, May
1998.

[2] M. Cole. Parallel programming, list homomorphisms and the maximum segment sum prob-
lems. Report CSR-25-93, Department of Computing Science, The University of Edinburgh,
May 1993.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, second edition, 2001.

[4] J. Gibbons. Algebras for Tree Algorithms. PhD thesis, Programming Research Group,
Oxford University, 1991. Available as Technical Monograph PRG-94.

[5] J. Gibbons. Computing downwards accumulations on trees quickly. In G. Gupta, G. Mo-
hay, and R. Topor, editors, Proceedings of 16th Australian Computer Science Conference,
volume 15 (1), pages 685–691. Australian Computer Science Communications, February
1993.

[6] S. Gorlatch. Systematic efficient parallelization of scan and other list homomorphisms.
In Annual European Conference on Parallel Processing, LNCS 1124, pages 401–408, LIP,
ENS Lyon, France, August 1996. Springer-Verlag.

[7] Z. Hu, H. Iwasaki, and M. Takeichi. Construction of list homomorphisms by tupling and
fusion. In 21st International Symposium on Mathematical Foundation of Computer Science,
LNCS 1113, pages 407–418, Cracow, September 1996. Springer-Verlag.

[8] Z. Hu, M. Takeichi, and H. Iwasaki. Diffusion: Calculating efficient parallel programs.
In 1999 ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program
Manipulation (PEPM ’99), pages 85–94, San Antonio, Texas, January 1999. BRICS Notes
Series NS-99-1.

[9] S. Peyton Jones and J. Hughes, editors. Haskell 98: A Non-strict, Purely Functional
Language. Available online: http://www.haskell.org, February 1999.

[10] K. Matsuzaki, Z. Hu, and M. Takeichi. Implementation of parallel tree skeletons on dis-
tributed systems. In Proceedings of The Third Asian Workshop on Programming Languages
And Systems, pages 258–271, Shanghai, China, 2002.

[11] M. Reid-Miller, G. L. Miller, and F. Modugno. List ranking and parallel tree contraction.
In John H. Reif, editor, Synthesis of Parallel Algorithms, chapter 3, pages 115–194. Morgan
Kaufmann Publishers, 1996.

[12] D. B. Skillicorn. Foundations of Parallel Programming. Cambridge University Press, 1994.

[13] D. B. Skillicorn. Parallel implementation of tree skeletons. Journal of Parallel and Dis-
tributed Computing, 39(2):115–125, 1996.

14

