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Abstract

Takemura and Sheena (2002) derived the asymptotic joint distribution of the eigenvalues and the
eigenvectors of Wishart matrix when the population eigenvalues become infinitely dispersed. They
also showed necessary conditions for an estimator of the population covariance matrix to be min-
imax for typical loss functions by calculating the asymptotic risk of the estimator. In this paper,
we further examine those distributions and risks by means of an asymptotic expansion. We focus
on a limiting process where the population eigenvalues become linearly dispersed, which can be
parametrized by one parameter. We obtain the asymptotic expansion of the distribution function
of relevant elements of the sample eigenvalues and eigenvectors with respect to the parameter. We
also derive the asymptotic expansion of the risk function of a scale and orthogonally equivariant
estimator. As an application, we prove non-minimaxity of Stein’s and Haff’s estimators, which
has been an open problem so far.

Keywords and phrases
asymptotic distribution, covariance matrix, minimax estimator, orthogonally equivariant, scale
equivariant, Stein’s loss, tail minimaxity:.



1 Introduction and summary of results

Let W = (w;;) be distributed according to Wishart distribution W, (n,3), where p is the
dimension, n is the degrees of freedom and X is the covariance matrix. In this paper we consider
asymptotics where the population eigenvalues become infinitely dispersed. Denote the spectral
decompositions of W and X by

W =GLG, ¥ =TATI, (1)

where
G, T cO(p) ={G | G:px p orthogonal matrix}

and
L = diag(ly,...,l,), A =diag(A1,...,\,)

are diagonal matrices with the eigenvalues l; > --- > 1, > 0, \y > --- > A, > 0 of W and
3, respectively. We use the notations I = (Iy,...,l,) and A = (Ay,...,\,) hereafter. For the
uniqueness of the spectral decomposition of W, having chosen one decomposition of 3, we decide
the sign of the columns of G so that I'G (say G = (§;;)) has nonnegative diagonal elements.
Then the uniqueness of G is guaranteed almost surely and Ge O*(p), where

O (p)={G €O |(G)y>0,i=1,....p}

Let
Aj+1
PV

We say that the population eigenvalues become infinitely dispersed when

y:(ylv"'uypfl% yJ: j:177p_1

lyll — . (2)

Takemura and Sheena (2002) investigated the asymptotic distribution of the sample eigenvalues
(l1,...,1,) and the sample eigenvectors G under the limiting process (2). They proved that G
converges to I, in probability, i.e.; for any neighborhood N (I,,) of I,,

P(GeN(L))—1, asly|—o0
They also proved that f = (f;)1<i<p and q = (¢;;)1<j<i<p defined by
11 1 1
Gj = Gili N ? =G [T AN 2 I<j<i<p.
have the following asymptotic distributions;

fiNXi—i—i-l? 1§2§p7 qZJNN(071)> 1§]<Z§p7 (3>



and f; (1 <i<p), ¢; (1 <j<i<p)are asymptotically mutually independently distributed.
Notice that the asymptotic distributions do not depend on the specific form of the limiting process
(2).

In this paper, we investigate these asymptotic distributions in more detail. For this purpose,
we need to specify the form of the limiting process (2). We consider linear convergence of y defined
by

yj:)\ifl:ajz, a; >0, z2>0, 1<j<p-—1, (4)

j

where a;’s are fixed and z — 0. This linear convergence is basic and would be useful in investigating
the behavior of f and q for other types of limiting processes. We derive asymptotic expansions of
distribution functions and risk functions to the order O(z). We say that a term of order O(z) in
our expansions is the first order term in z, although in usual large sample asymptotic expansions
with respect to n, the terms of order O(n~*/%) (or O(n™') depending on contexts) are referred to
as the second order terms. In Section 3, we derive the asymptotic expansion of P(G € N(1,)) in
Theorem 1 and the asymptotic expansion of the joint distribution function of f and q in Theorem
2 up to the first order in z. In particular in Theorem 1 we prove that O(z) term vanishes and
P(G € N(I,)) =1+ o(z). This guarantees that as far as the terms of order O(z) are concerned
we can concentrate on an arbitrary small neighborhood N (I,,) of I,.

A recurring idea of the proof is that under (4) only the pairs of adjacent eigenvalues (A;, Aj41)
contribute to the term of order O(z) and the terms involving (A;, ;), 7 > i + 2, are of the higher
order.

In Section 4, we consider the estimation problem of 3 from decision theoretic point of view.
Takemura and Sheena (2002) examined the asymptotic risk of estimators with respect to Stein’s
loss function

Li(Z,%) =tr(ZZ7Y) —log |ZX 7Y —p

and the quadratic loss function

Ly(Z, %) = tr(ZX7! — )2

~

They derived a necessary condition for an estimator to be tail minimaz. We call an estimator
tail minimax with respect to L; if it satisfies the condition

36 >0, V|yl<d  EIL(Z %) <R,

where R; is the minimax risk for L;, i = 1,2. See Berger (1976) for the notion of tail minimaxity in
the estimation of a location vector in a general multivariate location family. Obviously a minimax
estimator is tail minimax.

Let 3 = 3(W) = (G, 1) be an estimator of ¥ and let

%(G,1) = H(G,1)D(G,)H'(G,1) (5)
be the spectral decomposition of (G, 1), where H(G,1) € O(p) and

D(G,1) = diag(dy(G,1), . ... dy)(G,1)).
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In accordance with the definition of G, the sign of H(G,1) is determined by (IH); > 0, 1 <
Vi < p. Hence H € O (p). Let

An estimator of the form

3= GU(L)G', W(L)=diag(y(1),...,¥(1)). (6)

is called orthogonally equivariant. For orthogonally equivariant estimators we have

H(G,) = G,

GGl = l)="22,  1<i<p

Let 375 and 395 denote the best triangularly equivariant estimators for L, and Lo, respec-
tively. They are constant risk minimax estimators with respect to the corresponding loss functions.

Simple but important orthogonally equivariant estimators are those which have certain con-
stant ¢;’s; 2505 defined by ¢; = 6/° and £XC defined by ¢; = 695, where 675 and 095 are
coefficients which respectively appear in £/5 and 305, Actually

1
575 = 1<i< 7
’ n+p+1—2i == (7)

and 695 (1 < i < p) are given as the solution of a linear equation. X5P5(2KC) dominates
3:75(395) with respect to Ly (Ls), hence is a minimax estimator. For more details see Section
3 of Takemura and Sheena (2002). Original literature related to these two estimators include
James and Stein (1961), Olkin and Selliah (1977), Sharma and Krishnamoorthy (1983), Dey and
Srinivasan (1985), Krishnamoorthy and Gupta (1989) and Sheena (2002).
Let l
x=(T1,...,Tp-1), xj:Jl—H, 1<j<p-1
j
Takemura and Sheena (2002) showed that under some regularity conditions, any tail minimax
estimator with respect to Ly (Ly) converges to 2505 (£KG) as ||a|| — 0. More specifically, for
any tail minimax estimator, f)(G, 1), with the spectral decomposition (5)

H(G,l) — G, (8)
a(G ) — 8799 1<i<p, 9)

as ||z|| — 0.

In Section 4 of this paper, we consider a scale and orthogonally equivariant estimator and its
asymptotic risk with respect to Stein’s loss. Note that any orthogonally equivariant estimator
trivially satisfies (8). Therefore (9) is an important necessary condition for tail minimaxity of
orthogonally equivariant estimators. We focus ourselves on orthogonally equivariant estimators
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which satisfy (9). We derive the expansion of their risks with respect to z up to the first order in
Theorem 4. This result provides a second step test that orthogonally equivariant estimators must
satisfy in order to be tail minimax after they pass the first test (9).

We apply the result to two scale and orthogonally equivariant estimators; Stein’s estimator,
s , and Haff’s estimator, SH By an approximate minimization of the unbiased estimator of the
risk function, Stein (1975) proposed an orthogonally equivariant estimator, which is given by (6)
with

J

-1
1
¢i(l):li{(n—p+1)+2lizl l} : i=1,...,p. (10)
j# T
This estimator is called Stein’s rough estimator. Since this estimator sometimes violates the
condition

Y12ty > 2Py >0, (11)

isotonizing modification of the eigenvalues is carried out. We use the notation 35 for this modified
estimator. See Sheena and Takemura (1992) for decision theoretic results on isotonizing the
eigenvalues.

Haff (1991) studied the form of Bayes estimators and observed that a slight modification of
s emerges as an approximation of the Bayes rule. We use the notation S for this estimator.

It is not easy to give an explicit form of these estimators for general p. (See Sugiura and
Ishibayashi (1997) for their explicit forms when p = 2.) The calculation of their risks is also too
complicated to handle. Therefore it has not been theoretically proved whether these estimators
are minimax or not. According to Monte Carlo simulation carried out by Sugiura and Ishibayashi
(1997), though they substantially outperform not only /5 but also P8 when X is close to I,
(see also Lin and Perlman (1985)), their risks are over that of £75 when |jy|| is small, that is,
when the population eigenvalues are dispersed. Since the minimax estimator 375 has a constant
risk, this simulation result indicates that S , S are not minimax.

Using the expansion of the risks of these estimators with respect to z, we prove in Corollary 5
that 35 and £ are not minimax estimators.

The rest of the paper is organized as follows. In Section 2 we summarize some preliminary
results from Takemura and Sheena (2002). In Section 3, after proving some relevant lemmas and
Theorem 1, we derive asymptotic expansion of the distribution function of the eigenvalues and
the eigenvectors in Theorem 2. In Section 4 we derive asymptotic expansion of risk functions of
scale and orthogonally equivariant estimators. Theorem 4 is the main theorem of Section 4. As a
corollary to this theorem, non-minimaxity of 35 B is proved in Corollary 5.

2 Preliminaries

We state some definitions and notations used in the subsequent sections. Most of them are
in accordance with those in Takemura and Sheena (2002). We also briefly mention some related
properties without proof. See Takemura and Sheena (2002) for the proof.

Most of the calculations hereafter involves the integral of a function of G on a neighborhood of
I, € O (p) with respect to the invariant probability measure ;(dG) on O(p). For the expansion



with respect to z, it is convenient to specify the neighborhood. If we choose a small enough
neighborhood of I,,, we can use the lower triangular part of G as its coordinate; there exists a
diffeomorphism, G(u) = (g;;(u)), from

1
U =U*(e) = {u = (ui)1<j<i<p € B” ’ el = (Z “?J’> s¢

>]

N}
N—_——
,@\
|

3
—~
3

|
=

onto a neighborhood of I, € O"(p) (say G(U*))_such that G(0) = I,,, 0 = (0,...,0). Furthermore
real analytic functions g;;(u) (1 <4,j < p) on U* have the following expansions around the point
u = 0.

i—1 7j—1 p
—Uj; — Z Uik Usk + Z Uk Ujk — Z Ui Ugj + Rij lfj > 1,
k=1 k=i+1 k=j+1
si(u) = 1 i—1 1 P 12
i 1_§Z“§k_§zuii+Rn if j =1, 1)
k=1 k=i+1
Uy 1fj < 1,
where R;; (1 <1i < j < p) involves only higher order terms in w than 2. We choose € so that
gi(w) >1/2, i=1,....p. (13)

In many integrals in the following sections, G(U*) or U* will appear as the domain of the integral.

The measure on U* induced from the invariant probability u(dG) on O(p) has a density with
respect to Lebesgue measure in RP'. This is given as follows. Let p’ pairs, (1,7), 1 <j<i<p,be
ordered by the lexicographical order; (i1, 1) < (i2, j2) if and only if “j; < jo” or “j; = ja, i1 < i5”.
Consider 1-forms gidg; = g1idg1j + - - + gpidgpj, 1 < j < i < p. Let v be the vector with these
1-forms as its elements lexicographically ordered, that is;

v = (g5dg1, 95dg:, - - -, 9,dg1,95dGa, - - ., G,dgy1)".

Similarly define the vector du as

du = (dU21, dU31, e ,dupl, d’ugg7 e ,dum)_l)'.
We can express v as
v=Edu, == (§a(u))<srsy,
where &, (u)’s are real analytic functions of uw on U*. Let J*(u) = |det Z|. Then &J*(u), with a

normalizing constant ¢, gives the density of the measure induced from ;(dG) on U* with respect to
Lebesgue measure in R?'. Note that J *(u) is also a real analytic function on U*. For the purpose
of the present paper we do not need an explicit expression of the normalizing constant c.

Now consider an arbitrary function z(G, I, X) of G,l and XA. We give a formula on

E[I(G € G(U")z(G,1,N)],
where I(-) is the indicator function. Hereafter two notations for the indicator function

I(G € G(U), Igu-(G)

7



will be used interchangeably.
We define a compound function, zr(f, g, A), as

or(f, 4, A) = 2(TG(u(f, g, X)), L(F, A), N),

where

U(f, q, >\) = (Wj(.f: q, )\>>1§j<i§p = (Qijf]'_%A;%)‘i%)lﬁj<i§p> (14>
L) = (L(F ), (L N) = (fides - o)

Then
Ellwn(@o(G AN = [ [ ar(F.a. X h(F.a.N)dfda (15)

where R, = (0, c0) and

h(.fv q7A) = hO(fa q)hl(f7qa )‘) hQ(fv )‘) hg(qu,A)

with

ho(f,q) = (angl exp (—Zq”) eXp( ;Xp:f

hm(f,q,\) = eXp{ (Z gi(w) = D fi+ 3 gi5(w) i)} (16)
Ba(f.N) = f<f1A1>--->prp>H(1—fﬁiﬁ), (a7)
ha(foa,A) = Ig-(u)J"(u). (18)

The constant ¢ is the normalizing constant so that ho(f, q) is the density function of the asymptotic
distribution of (f, q) given by (3). We also often use the fact ho(f, q), hs(f,q,A) are bounded
functions and the fact A(f, g, A) is dominated by the function

hf.q) =K (H f) exp (— qu) exp (— Zﬁ) (19)

with some constant K.
We define ay = a, = 0 for unified description of statements including a;’s.

3 Asymptotic expansion of eigenvalues and eigenvectors

We first prove some lemmas which are useful for the expansion w.r.t. z of the integrals of the type
n (15). The following lemma evaluates the behavior of J*(u) around the origin.



Lemma 1 On U* = U*(¢) with a small enough ¢, J*(u) is given by

J =1 + = Z ) —] UU + Z J ulljluimui?,js, (20)
’L>J (4,7)€P

where <Z7j) - {(ilajl)u <i27j2)7 <i37j3)_}7 P = {(17.]) | 1 S js < 7:8 S b, = 17273} and J(“’a (Zvj))a
(1,7) € P are bounded functions on U*.

Proof.

In the following argument, we use the notation o(||u||"), r = 1,2, as a power series in u which
consists only of the terms [[,-; uy;* such that Y o, ng > r+ 1.

Differentiating (12), dg,; is given by

i—1 Jj—1
—dei — Z(ujkdulk + uzkdu]k) + Z (u;ﬂdu]k + u]kdukz)
k=1 k=i+1
— (ugjdug; + ugidug;) + rijdu if j >4,
dgij(u) = kzj;rl ! ’ !
i—1 p
— Z uzkduzk — Z ukldukl + friidu lfj = ’i,
— k=i+1
dui]’ if j <1,
where for 1 <i < j <p,
OR.
ridu = ”dum, Y= o||ul]).
i = 3 Gy, = o)
Then for 1 < j < i < p, we have
gidg; =Y Tu+To+ > Ty+Ti+> To+ Rij(du), (21)
I<j j<li<i i<l
where
-1
Ty = |uag+ Z (T Z (e Z UpiUg; | dugg
k=l+1 k=i+1
-1 j—1
+ Z(ujkuildulk + wpuyduy) — Z (uruwidug, + wirugdug)
k=1 k=l+1
P
+ Z (ukjuildukl + ukludduk])
k=j+1
Jj—1 P
T2 = Z ujkuijdujk + Z ukjuijdukj,
k=1 k=j+1
-1 i—1
Ty = | —ui— Z Uk Uik + Z Uk Wik, — Z ugug; | dugg,
k=1 k=l+1 k=i+1

9



1 i—1
T4 = 1 —_ = Zulk Z ukl dum,
k: i+1
Ts = w,duy,
Rij(duw) = Y n(wWdu, 79 (w) = o |ull?).
I>m

From this expression, we notice that off-diagonal elements of = do not contain a constant and the
diagonal element &;, 1 <t <p' =p(p—1)/2, is of the form

1 J i—1 P
+§ (Z“?[ - > up— Y “1%) + o(f|lul?),

=1 I=j+1 I=i+1

where t = (7, j) is the tth element in the lexicographical order.
Consider

detu—zs)'lgn ) &10)) "+ Ep o)

where o = (0(1),...,0(p’)) is a permutation of (1,...,p), and sign(e) = 1 if o is an even
permutation; —1 if o is an odd permutation. Note that in the right side, the terms of order
at most two in uw appear only when o is the identity permutation, o(t) = ¢, 1 < t < p’ with
sign(o) = 1, or when o is a transposition, i.e. for some s < t,

o(s) = t,
(

o(t) = s,

olw) = w, w#s,t.
with sign(o) = —1. Consequently det =, a real analytic function on U* can be expanded around
0 as

det==1+ - Z (Zull i u?l - Zp: Ui) —Zfstfts—l—a(HuHQ). (22)

Z>j =1 l=j+1 l=i+1 s<t

Now we examine the term Y, _; £s&s. Suppose that s = (i1, 71) and t = (i9, jo) are respectively
the sth and t¢th in the lexicographical order. Then &, is the coefficient of du;,;, in the expression
of g;ldgjl. Note that “jl < jg, 1 > jl, 19 > jQ” or “.jl = jg, 11 < ig, 11 > jl, 19 > ]'2”. From (21),

we have
J1i—1 i1—1 P
/ _ Zl]l
gildgjl = duiljl + Z uilldujll - Z uillduljl + Z ullldulﬁ + Z )dumk7
=1 I=j1+1 I=i1+1 m>k

where 7" ,tjl)(u) = o(||ul|). Therefore we have

£ = Wiziy +O(||u||) if j1 = Jo,
st o(||u|) otherwise.

10



Similarly we have
—Uiyiy +o([Jul]) if j1 = Jo,
ts = 8 Uipj, To(|lul)  if iy = jo,
o(||ul|) otherwise.

Therefore

DGttt == D g, Ho(llul?) == > (i — Du,, +o]|ull?). (23)

s<t J1=Jj2<i1<i2 11 <i2

From (22) and (23),

i1 P
detZ = 1+ Z(Zud dooug— ui)Jr Do Uiy Tolllul)

’L>j = l=j+1 l=i+1 J1=72<11<i2

Sl Y Y Yt Y o)

z>]>l z>l>] l>2>] i>1>51=42
1
= 1+3 Zz—l 22(1_1)%21_52 Vs + ) (1= D)ug + o([|ul]?)
z>l i>1 [>i i>1
= 1+3 Z(i — Dug + o([[u]?).
i>l

Since J*(u) = | det Z|, if we choose U* = U*(¢) with a small enough €, we have
J(u)=1+7 Z wiy + of[|ul|*). (24)
z>l

On the other hand, Taylor expansion of J*(u) around 0 is given by

. ) o 1 927
ij

11>71,42>]2

T (0) u s,
171 Wiz jo
8ui1j1 auisz

1 P

" (i,j)EP 8ui1jlaui2jzaui3j3

(H(U')'u') Uiy gy Wigga Uisjs s (25)

where f(u) is a function of w such that 0 < #(u) < 1. Note that

1 3T
3! 8ui1jl 8ui2j2 aui3j3

(6(w)u)

is bounded on the compact set U*. Using the notation J(u; (i, 7)) for this function and comparing
(24) with (25), we have the result. 1

For the next two lemmas, we define h*(f, q; o, 3) as

W (f,q;a,B) = Hfa’ [T exp (— > f; —bzqu) (26)

1>] i=1 1>

11



where @ > 0, b > 0 and
a = (ag,...,qp),
B = (Bo1,B31,- -5 Bp1, B32, - - -5 Bpp1), Bi;=0,1,... (1<j<i<p).
Let n(f,q,A) denote an arbitrary bounded function, that is,
M >0, In(f,q,N\)| < M.

Using Lemma 1 we can approximate integrals involving hs(f,q,A) in (18) in the following
lemma.

Lemma 2 Suppose that a; > 1, 1 =1,...,p. Then

/|, /R Cn(f.a N B (F a0 B) h(£.q, A) dfdg
/R/ n(f,q, ) h(f,qa, B) (1+ S (i — j)ud) dfdg + o(2).

z>]

Proof.
From (14) and (4),

s=1

/Rp/ n(f.q,A h*(f,q;a,ﬁ)( > J(u; (i,j))ﬁuist Ip.(u) df dq
(i.5)€P
Ap’ /Rp n(f’q’ A)h*(f,q,a,ﬁ)

is—1

(130 J(w; (i) qug (T ad)=C79) I (w)d f dg.

(1,7)EP m=js

Since a; > 1, i = 1,...,p, and n(f,q,N), J(u;(i,7))I5-(w) ((i,7) € P) are all bounded, the
integral of the right side converges. Taking into account that >>3_, (i, — j,)/2 > 3/2, we notice
the right side, hence the left side equals o(z). Therefore it suffices to show

/Rp /Rp (f.a.2) 1'(f,q; . B) (1+ ZZ_] Z])[U( )dfdq

z>_7

= Jo /R (Fra NV (FoaiB) (145 32— ) dfda +of2).

Z>j

Since I (u) = 1 — Ig.c(u), the left side equals I; — I, where
B o

I = / / .f qa h*(f7q7a7/3)
<1+ Z Z_j z]) (Zu%(f?qa )‘) > 6z)d.qu

z>] 1>)

(F.a N W (F a e B) (1453 — ) dfda,

1>7

+’U

+’U

12



We will prove Iy = o(z). The following inequalities hold. Note that every integral converges since
a;>1,1=1,...,p.

p
bos % [ ), @ a N a0 (. q . 0)

x (145 Zz—] ) 1(ul(f.a.0) > €)dfdg

z>] i>]

= 62228t<81:[ am) /RP/ Qst‘n(f q, )h*(f>qaaaﬁ)’
{1+ (=) f; (H 0, )M (S (£, 0. 0) > ) dfdq

z>] 1>7

p—1

= E*ZZZ%/ / ot dn(F @ R (F, @ e BYI(Y ul(f,a.0) > ) df dg
t=1 i>j
+o(2).

It now remains to prove

lim/Rp / £ @R n(E @ MR (F @00 B) (D uly(f.q,\) > €)dfdg = 0.

z—0
1>]

However this is obvious from the dominated convergence theorem and the fact

,lzi_r%I(Zu?j(f,q, A) > 62) = hml(qu (H am)z’ I > )
i>j
= 0.

1
We need another lemma on the approximation of integrals involving ho(f, A) in (17). We use

the same notation as in Lemma 2.

Lemma 3 Suppose that o; > 1, i =1,...,p. Then

I, /R 0 @A) B (F ;@ B) ha(F. ) dfdg

/Rp /Rp ZleaJ) b n(f.q,A) h*(f,q; o, B) dfdg + of2).

7j=1 J
Proof.
Let F(2) ={f | firxx >---> f,A\,} and
i Ai
SN = ha(fN) = () x (1= S 1)
— I ERELRAN Ry oy iy
fU(f)jl;[i(l fy ) ]:()(f)x(l i>j fj/\j)

13



Notice that g(f,A) is a finite sum of terms, each of which has the form
t
Jis Aig
ey (A DT 5
s=1JJs )\]s

with i > j,, s =1,...,¢, t > 2. Since f;, f;.' A, A < 1 on F(z), we have

1s ]

] @) (ﬁ fﬁ) n(f.a.\) I (f,q: . B) df dg]

s=1JJs s
< o f o (T4 ii)\n(f,q,k) W(f.q:x.8)| dfdg
- H(mgs o [ o) () .03 (. as )] s

Since a; > 1, i = 1,...,p, the right side integral converges. Therefore the left side integral is o(z).
Consequently

/Rp, /R g(£, ) n(f,a,N) B (f.q;, 8) dfdg = o(z). (27)

Besides

S [ f 55 ()0 0N 1 (F. a0 8) dfda

J+1<i

= S (Mew)e [, /R Jn(f.a N W (f,q0.8)dfdg (28)

]+1<z m=j

= o(z2).
From (27) and (28), we have

/R e ha(F, X n(f.a,A) h*(f.q; o, B) dfdgq

/Rp /RP p @aﬂ } Iriy(F) n(Ff.q. N) V' (f,q; ., B) dfdq + o(z).

] 1 J
Now it suffices to show
fiin e )
I_/Rp \/Rp = ljja]) }[}-(Z (f) (f q, ) (faqaaaﬁ)dqu—O(Z),

where F(2)¢ is the complement of F(z). From the decomposition,



where

) =11 B8 s e, o1,
we notice |I| < P71 I; with
= o Jo {1 (5 L410)) V() 0 0 1 (F 0 . B)] dfdg
]_1 J

for 1 <i < p— 1. With some constant M we have

I;

IN

i [, [ (o (EE20) ) (5010 9) api

< Ma;z /R,, /Rp ZfJH ) }le I7,(f)

j=1

W(f. g B)| dfdg.

By the dominated convergence theorem, of which use is guaranteed by «; > 1, 1 < i < p, we have
: f +1 Jis1
lim / / 1+ J Ir.(f)
5 s ]1fj >}fi

= /Rp f tml{o f}f aj)z} Ir.(f)] f}f

W (f,q; e, B)| dfdg

W (f,q; 0 B)| dfdg

Therefore I; = o(z), i =1,...,p — 1. This means I = o(z2). 1

Now we state the main result of this section. The next theorem tells us that P(G € N(I,)°)
vanishes faster than z. This guarantees that as far as the terms of order O(z) are concerned, we
can concentrate on an arbitrary small neighborhood N (I},) of I,. In the proof of the theorem we
need approximations of integrals involving hy(f, g, A) in (16).

Theorem 1 Suppose that n > p+ 4. For any open neighborhood N (I,) of I, € O (p),
P(G e N(I,)) =1+ o(2),

or equivalently

P(G € N(L)%) = o(2).

Proof.
It suffices to show that P(G € G(U*)) = o(z) for any small enough e. Let 7 = 22 and

'u(T) = (Uij(T))i>] (qu (H am ) . j)i>j'
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Then we have

mF.aN) = ool ()~ D5+ g i
=1 1<j
= (),
where i
1 & - .
1(r) = exp 5 {D () ~ i + 3 a8 (T] an) 700} (29)
i=1 i<j m=i
Then Taylor expansion of ¢(7) around 0 is given by
2 -3
t(r) =t(0) + 7¢'(0) + ?tﬁ(O) + 5zf”’(e(r)),

where 0 < 0(7) < 7.
First notice that ¢(0) = 1. Next straightforward calculation shows that ¢”(7)/t(7) can be
expressed as a finite sum (denoted by -’ hereafter) of terms each of which is of the form

coM (u H il qﬁ I cp: constant,
i>7

where
3
aiz—i(lgigp—l), a,>0, G;=0,1,... 1<j<i<p), v=0,1,...,

and M (wu) is a multiple of some (possibly higher order) derivatives of g;;(u) (1 <i < j <p) w.r.t
u (the order may vary from zero to three), hence a bounded function on U*.

Now we calculate ¢'(0) and ¢”(0). From (12), the real analytic function g;;j(u(7)) of 7 is
expanded as

1 _ _ _ .
gi(u(r)) = 1— 572(%‘2,@—1]2—11%—1 + qi2+1,ifi Ya;) + gu(T), 1< <p,
l 5 . . .
(qH—lzfz 2?221)‘tgii+1< 7) L ifj=i+1,
gij(u(T)) - (QZ+2 fz ECLE(ZE )+ T (Qz—l-l idi+2, H—lf fz H f 7 1)+ gi, ive(T) i j=i+2,
gu() if j>i+3,

where g;;(7) (1 < i < j < p) contains only the terms in 7 of order higher than 2. Remember
the conventional definition, ag = a, = 0. From this, we have the following expansions around the
point 7 = 0.

(g5(u(r)) = 1) fi = =72(q} ;- 1ff1az L Gaa) + (), 1<i<p,

g (u fJ(Ha)ZU—“:&j(TL 1<i<j<p,

16



where &;(7) (1 <1 < j <p) contains only the terms of order higher than 2. Therefore

1
t( —exp{ QZ qzz 1f, QAj— 1+qz+1za1) - 5251](7_)}

i<y
From this we have ¢(0) = 0 and
" - fi
t (0) = Z(qzz 1f Qj—1 + q1+1 'La’l)
Consequently hy(f, g, A) in (16) can be expressed as
h/l(f? q7 = 1 + = Z qzz 1f 1a1 1 + qH—l Zal) (30)

)3 oM (u ch“ [T a7 (o

i>j
Now we calculate P(CNJ € G(U")). Asin (15),
P(GeG(U") = El(Ge G(U*))]
= / [ 107 @) Ia(F 0 X) £, ) (.. X) dfdg

Substituting hy(f, g, A) in the right side with (30), we have

3

P(Ge GU")) =1+ 212 + 2 2 -y

where

ho= [ ] ho(f.@) ha(£N) h(F.q. %) dfdg,
12 = ; /RP/ /Ri ho(f’q qzz 1fzf a;— 1+Qz+1zal) hQ(.f )‘) h3(f q, )d.qua

tno= [ holf.@)t6() e Hf‘” [1a;" (6(

i>7

Xh’Q(f’ A) h3(f7 q, )dqu

First we prove 2215 = o(z). Note that if w = w(7) € U*(e), that is, 3., u%(7) < €2, then
from 0(7) < 7, we have

S 2 (6(r) = 3 a2 f (TT o) (0072 < S (r) < €

s>t s>t m=t s>t

17



This means w(0(7)) € U*. Since M(w) is bounded on U*, M(u(f(7))) is also bounded. Besides
from (13), g2(w(6(7))) > 1/2 (1 <i < p). Therefore ho(f,q) t(0(7)) < ho(F, q), where

fq-c@inj%pt-z%pr&-Zﬁ> (31)

1>

hao(f,q) and h3(f,q, ) are also bounded functions. Consequently there exists some K > 0 such
that for any z < 1

Bl < X[, [, ol 00 o Mutoo) T L1

1>]

Xh2(f’ A) hS(fa q, )dqu
dfdq.

SKZ&Awwqﬁ%HW]

1>

The condition n — p — 4 > 0 guarantees the convergence of the right side integral. This means
23] = o(z). (32)

Now we consider z[,. Since h3(f,q,A) is bounded and n — p — 4 > 0, the conditions on
a; (1 <i<p)in Lemma 3 is satisfied. Therefore we have

2y, = z;/}zp//lzp hO(faq q“ 1fzf1az l+qz+1zal)h2<f )\)h:s(f q, )dqu

p . )
= =) (1) = 218) + o(2),

where for 1 <i<p

f
B= [ fo 1ol @) (o + i) halfa.0) dfda.

i—1

/Rp/ /Rﬁ ho(f,q) ( q” lf;flaz 1+ql+lza'z (Z fin ) hs(f.q, ) dfdq.

7=1 J

Since 2218 = o(z), we have

p .
2l =2) )+ o(z).
i=1
Noticing again that n — p — 4 > 0 guarantees the conditions on «; (1 < i < p) in Lemma 2, we
have

(@ _ 2 fi 2 2
2ls) = =z /Rp/ /Rﬁ ho(f,q) (qi,iflﬂaifl —|—qi+1ﬂ-al ( + = Z 71— j) dfdq + o(z)

z>]

= 3—72(?1 + 212(11)27
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where

[2(?1 = / , / ho(f,q) (qii—liai—l +qi2—|—1,iai) dfdg,
R JRY, fic1

1212 = *Z S—t Ham St/ / q” 1ff1az 1+Qz+lza’z)QStft dfdq.

s>t
Obviously 212(1)2 = 0(z). Consequently
p )
2l =2) I+ o(z).
i=1

Using the fact that ho(f, q) is the density function of the asymptotic distribution of (f, q) given
by (3), we have

p p
2212(11)1 = Zaz‘—lE[qu‘ 1f7, 1 Zal QH—IZ

= S e B B — i+ 2)7 B i+ )]+ z wELE()]
_ zp:az 1n—z—|—1+1§al

p—1

— ; ai{in il—i 1 +1}.
Consequently
Z {7+ 1} +0(2) (33)

Last we evaluate I;. Using again Lemma 3, we have I} = 1 — zI12 + o(z), where

L, = /RP/ RP ho(f,Q) h3<f7q7 )‘> dqu

J

p—1
Lo = > a / - f"“ ho(f.q) hs(f,q, ) dfdq.
= R JR?
Furthermore by Lemma 2, we have I1; = I111 + I112 + 0(2), I1ia = I191 + I122 + 0(2), where

L = [ [ holf.q) dfda,
RP" JRE

1 s—1
Iy = 5 Z(S - t)(H am) 2t / . ho(f, )¢5, [+ dfdq,
s>t m=t ke

P
R+

p—1 )
Ly = Zaj /RP/ Rpf]Hho(f,Q) dfdgq,

Ji

p—1
I = 1za]zs—t(nam) o fy 0 0 ) dpda
J

= s>t

19



Note that I11; = 1, 2190 = 0o(z) and
25 2 1
hie = S3a [ [ ho(f.a) gt St dfdg +ol2)
t=1 JRTJRy

_ fgywmfuﬂEKKM—t+Urﬂ+d@

1
- 72 T 1+0(Z>’

p—1
. n_
2o =23 a; E[X*(n — §)] E[(x*(n— j + 1))~ —ZZCL] jil
Jj=1

Consequently

I =1+= ;at t_l—zZaJ + o(z). (34)

0 on— j— 1
From (32), (33) and (34),

n—1 1

P(G € G(U")) :1+;E¥A +1}] +o(2)

= 1+o0(2).

n—1—1 n—:i1—1

1
Next theorem gives the expansion of the asymptotic distribution function of (f,q) w.r.t. z up

to the first order.

Theorem 2 Suppose that n —p —4 > 0. Then

P(fi<oi, 1SVi<p, qu<ow 1<VE<Vs <p)

HFn 1+1 az H(I) ast

s>t
+§ZZ%‘( II @(Oést))( II Fn—i+1(04z'))€j(04j7Oéj+1,04j+1,j) + 0(z),
J=1 (s:)#(j+1.7) 1#7,J+1
P(fi < ay)
1 n—i+1
= Fyiyi(o) — §Z{aiFn—i—1<O‘i) - (ai—li. + ai>Fn_i+1(a,~)
n—1i+1 .
+ai71iani+3(ai)} + o(2), 1<i<p,

—t
#atq)/(ast)ast + O(Z) 1f s=1 + 1,

O(ag) + o(2) ift+2<s<p,

20



where F,(a) = P(x*(n) < a), ®(a)=P(N(0,1) <a) and

¢(a,be) = mFn_j_l(a)Fn_j(b) (®(c) = @'(c)e)
n—j
2P @ F(0)2(e)
+Fyj1(a) Fass (0)(@(c) — ®(c)c)
+%Fn_j_1(a>m_j+g(b) (®(c) - ¥'(c)e).

Proof.
Let A denote the event

Ji<a;, 1<Vi<p, and g4 < g, 1 <VE<Vs <p.

We have

P(A) = B[l Igow(G)] + E[La Igge(G)].

Since

Ella Igw+)c(G)] < Ellgr)c(G)]
and the right side is o(z) by Theorem 1,
E[Li I+ (G)] = o(z).

We consider E[I4 Igg+ (G)]. Substitute 14 Ig@+(G) with Ig@(G) in the proof of Theorem 1.
Then since

14 Ig(U*)(G) < IG(U*)(5)7

the integrals of order o(z) in the proof are still o(z) after the substitution. Therefore proceeding
as in the proof of Theorem 1 we have

PUA) = [T Frosones) [ 00) + 32 3 1o 02, (3)

=1 s>t

where

p—1
L= o [ [ ho(f.a) @y b T dfda,
j=1 IR

p—1 f
I, = -2 : h L 1, dfd
2 ;aj /Rp//Ri o(f,q) AR fdgq,

p—1
I = > q / / ho(f,4) ¢Gy1 5 14 dfdg,
= Rr' JRY

p—1 '
I = > a / / ho(f, q) qfﬂ,j@udqu.
j=1 RZ JR, fi
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If we use the formulas

B I06¢() S )] = nFia(e)
BIOC) ™ 1P 0) S )] = —5Fuafa),
E[(N(0,1))>I(N(0,1) < )] = ®(a)—P'(a)a,

we have

(T @) (I Fien(a)

(5,6)#(+1,7) i#]

~

5
I

<. =

ML
)

1
X (‘D(%‘HJ) - ‘I)/(Oéj+1,j)04j+1,j)ﬁFnﬁfl(%’),
p—1
I, = —22% (HCD Ot )( 11 Fn%ﬂ(%))
s>t 1#7,7+1
o
><n_jian—j+2(O‘j+1)Fn—j—1(O‘j)7
p—1
I; = Za]( H O(as )(H Foita 041)) (‘I’(Oéjﬂ,j) - ‘I)/(Oéjﬂ,j)ajﬂ,j)a
Jj=1 (s;)#(G+1.9)
p—1
I, = ZCLJ’( H Oést)( H F,_ i+1 az)
j=1 (s:0)#(+1.9) i#5,j+1
xnjlen () Faosa(05) ((ag41,) — ' (ags15)0501,)-

If we substitute these into (35), we have the result.

We can prove the statement for P(f; < ;) (1 < i < p)or Plgs < ag) (1 <t < s < p)
completely similarly. Note that the proof is essentially the same as putting oo in all the elements
other than a;(c) in the result on P(fi <ap, 1<Vi<p, qu<ag 1<Vi<Vs< p).

The next lemma, which will be used in the next section, is of interest by itself. Takemura and
Sheena (2002) showed & converges in probability to 0; that is,

P(x e N(0)°) =0

as |ly|| — 0 for any open neighborhood N(0) of 0 in [0,1]~!. The following result tells that
P(x € N(0)°) vanishes more rapidly than z.

Lemma 4 Suppose that n —p —1 > 0. For any open neighborhood N'(0) of 0 in [0, 1]P~1

P(x € N(0)) = o(2).
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Proof. Without loss of generality, we can assume that 3 = A is diagonal.
It suffices to prove the statement for the case

N(0) = [0,¢)"
with arbitrarily small € > 0. Note that

NO) = | {=|zi>e},

1<i<p—1
hence that )
.
Pa(x € N(0)) <Y Eall(x; > €)),
=1

where the subscript A of P and F refers to the probability and the expected value under 3 = A.
We will prove Ex[I(z; > €)] = o(z). Since the following inequality holds,

Epll(z; > €)] < € "Bzl (z; > €)] = e_laizEA[fyll(xi > 6],
it suffices to show
. Jit1 B
III%EA[ 7 I(z; > €)] =0.

By Lemma 5 in Appendix, we have

EA[f;;:l](q;i >¢)] < EA[(‘ilej)(;@m)[(%(w) > ¢)]
= B3 wy) (St ) (A WAL = )],

j=i+1 j=1
By the dominated convergence theorem (note n —p — 1 > 0) and Lemma 6 in Appendix,

i Er[( 3 ) (S )1 (AW AS) 2 )

- EIK.:Z%'LU”) (z; w) Ei%[(xi(A%WA%) > o]

= 0

4 Asymptotic expansion of risk

In this section we consider the asymptotic expansion of the risk of a scale and orthogonally
equivariant estimator with respect to Stein’s loss. It is possible to apply directly the lemmas and
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theorems in the previous section to the calculation of the risk, but it seems somewhat cumbersome.
We take another approach which uses the unbiased estimator of risk.

The unbiased estimator of risk was given independently by Stein (1977) and Haff (1979).
Sheena (1995) gave an alternative short derivation for the case of orthogonally equivariant estima-
tors. Kubokawa and Srivastava (1999) generalized the unbiased estimator to elliptically contoured
distributions.

Suppose that an orthogonally equivariant estimator given by (6) has C* functions (1), i =
1,...,p. Let

RE)=(n—p _p f 22%1 ZJ()_
Then
E[R(Z)] = E[tr(ZX7Y)], V> 0. (36)

Note that if an orthogonally equivariant estimator (6) is also scale equivariant, ¢;(1), 1 < i < p,
depends on I only through x; = l;11/l;, 1 <i < p—1. Hence we use the notation ¢;(x), 1 <i <p.
Using (36) for this estimator, we obtain

p
= E{n—p—Fl ch +22lacl
=1

QZC’ i — cj(x)l;

= li —1;

p
—> logci(x) — log [WE™!| —p}
p l]

= E[Z(n—i—p—l—l—%c, )+2> (ci(x) ))l»—l~
i

=1 1<J

P 9ei(x)
+2y 2
2=

p
— Y logey(@) — log | WS — p)

P - H]'*_l T,
= E[Z(n+p+1—zz ci(®) + 23 (i) — ¢j(m)) — i
i=1 1<J 1— Hm:z Tm

! Oci(x 801

(91; 22

(37)

P
zii1 — Y logci(x) — log (W™ — p|.

i=1

If we use this formula, as we will see later, we only have to evaluate E[z;], 1 <i <p— 1, for the
expansion of the asymptotic risk w.r.t. z up to the first order.

Theorem 3 Suppose that n —p — 4 > 0. Then

n—1t
Elz;] = a;z———— . 1<i<p-1.
;] azn_z_l—l—o(z) <i<p
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Proof.
Note N _
Elz;| = Elv; Igp+)(G)] + Elr; Igpc(G)).

Since

by Theorem 1, we have

Therefore we only have to prove

Ela; I (G)] = aiznT_L:l Yo(z), 1<i<p-L (38)
As in (15),
E[(L’z ]G(U*)(§>] = aiz ~/RP/ o f;_1 hU(f: q) hl(‘f7 q, A) h2(f7 A) h3('f7 q, A) d.qu (39>

The argument hereafter is almost the same as that in the proof of Theorem 1. The slight difference
is that here we only need lower terms in the expansions of the related functions or integrals since
z already exists in (39).

First consider the expansion of hy. If we use ¢(7) in (29) and its Taylor expansion,

2

t(r) = t(0) + 7' (0) + %t"(e(f)), 0<0(r) <,

by similar argument for the proof of (30), we can prove

p
" —
Il @A) =12 103 M (fran) [T T der'"; (40)
7j=1 s>t
Here > is a finite sum of terms of the form M(f,q,7) P L st ¢, where a; > -1 (1<

j<p—1), 0, >0, B =0,1,... (1<t<s<p)and M(f,q,7)is bounded on R} x RP' x [() 1].
Substituting (40) into (39), we have

E[ZL‘Z IG(U*)(E;?)] = (IZ‘ZIl + CLZ‘Z2IQ,

where

o= [ [ B e ) a0 dda

b= ) f; ho(£,)t(0()) M(f.q.7 Hf [T

7 s>t

X h2(f7 >‘) h’3(f7 q, ) d.qu
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Using boundedness of M(f,q, 7)ha(f, A hs(f, g, A) and the inequality ho(f, q)t(0(7)) < ho(f, q),
where ho(f,q) is given in (31) we can easily prove 22l = o(z) under the condition n —p —4 > 0.

Now we focus on I;. We apply to I; the following modified versions of Lemma 2 and 3. Using
the same notation as these lemmas, we can easily check that if a; >0, © =1,...,p, then

fo [y 750X (5 @00 ) ol 0, ) dfdg

/Rp/ n(f,q. A h*(f,q; o, 8) dfdq + o(1), (41)
Jo 750X (7 a5, 8) . X) dfdg
/Rp, /Rp n(f.a. A h*(f,q;,8) dfdg+ o(1). (42)

Using (41), we have
a;zly = a;zI3 + o(z),

where

L=, [, Bt a8 ardg

Furthermore by (42), we have
a;zl3 = a;z14 + o(z),

where
Lo= [ ] T (r.a) dpaq
rY JRE  f;
= E[*(n = )]E[(*(n —i+1)7]
B n—1
Con—i—1
This completes the proof of (38). 1

From Theorem 3, we derive two corollaries we will use later.

Corollary 1 Suppose that n —p — 4 > 0. If nonnegative integers oy, © = 1,...,p — 1, satisfy
Zp L a; > 2, then

Proof.
There exist s,t (1 < s,t <p—1) such that
p—1
H ) < xewy.

=1
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Therefore it suffices to prove
Elz;xj| = o(2), 1<i,j<p-—1

Note that - N
E[.CL'Z{E]] = E[[Ifll’][G(U*)(G)] + E[wlefg(g*)c(G)]

Since

Elwiz;lgge (@) < Ellgp-e(G)]
and the right side is o(z) by Theorem 1,

E[:E,-xj](;(g*)c (5)] = O(Z)

By (15), we have

Bl lgo (@) = a /R ) /R ) St Jid e 0 N dfdg
+

fi fi
S ZQaiaj /Rp’ ~/1%i f}::l f]fjl B(.f7q) dqu)

where h(f,q) is given by (19). The last integral converges if n — p — 2 > 0. Therefore
Elziz;Igm-(G)] = o(2).

This completes the proof. 1

Corollary 2 Suppose that n —p —4 > 0 and nonnegative integers o, B;, j =1,...,p—1, satisfy
YPla;>1, P23 > 1, then
B W] Gr——" yo(z) if a;=1, a; =0, Vj#£i,

1 5| n—i—1
I =1Iljo o(z) if >F- Laj >2.

Proof.
First consider the case o; =1, a; =0, Vj #i. Let y = Hlj %xﬂ] Then

T
_— xlzy —:1:14—11111515,
1_H§%]ﬁj m=0

where Sy = z; 3!, _; y™. By Theorem 3, E[x;] = a;2 + o(z). Therefore we only have to show

nzl

lir% Z_IE[tlim Si] = 0. (43)
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Since 0 < 57 < S5 < ---, we have, by the monotone convergence theorem,
o0
1 .
E[tlgglo Sy = hm E[S] = mzzjl am(z

-1

where a,,(z) = E[z;y™]z~", m > 1. By Fatou’s lemma for a counting measure, we have

0< Z lim iglf am(z) < hm mf Z am(z) < limsup Z am(z Z im sup a,,(z

m=1 z—0 =1 z—0
Since Z?;i i > 1, by Corollary 1, we have

lim sup a,,(z) = liII(l) am(z) = 0.
z—0 Z—

Therefore lim, o> o2 _; am(z) = 0. This completes the proof of (43).
For the case Z?;i a; > 2, we can prove the statement similarly. We omit the proof. 1

Finally we give the result on the expansion of the risk w.r.t. z up to the first order. Here we
consider a scale and orthogonally equivariant estimator that satisfies the condition (9), which is a
necessary condition for minimaxity. Let the estimator be given by (6) with ¢;(x) = ¥;(1)/l;, i =
1,...,p. We state three conditions: First two conditions are rather technical, while the last one is
the equivalence of (9).

1. ¢i(x) (1 < Vi <p)is a C? function of « on [0, 177!
2. There exists some lower bound ¢ such that 0 < ¢ < ¢;(x), 1 < Vi < p.
3. ¢i(0) =67 i=1,...,p, where 67 is given by (7).

Theorem 4 Suppose thatn—p—4 > 0. If a scale and orthogonally equivariant estimator satisfies
the above three conditions, then

E[L(S, %)) = R— 2[2 Z a—— {25”%1 + i = Mii}] + o(2),

where 9
C; . .
nij=—-—(0), 1<i<p, 1<j<p—1,
J aZL’j

and R is the minimaz risk.

Proof.
Taylor expansion of ¢;(x), i = 1,...,p, around 0 is given by
p—1 1 )
(@) =a(0) + 3 wmy +5 > &) (be)r.a, (44)
- 2 -
7j=1 1<s,t<p—1
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where

d)(z) = e (z), 0<0=0(z)<1

Cst 81’ axt ’
Note that since ¢;(x) is a C? function on [0, 177, & )( ) is continuous and hence bounded on
[0,1]P~. Similarly we have

dc; .
ac () = 77u+z H:c )T, 1<i<p-—1, (45)
€
ac; A() .
(CU) = Thi-1 "‘ Ci— 1s(‘9w>xm 2<i<p, (46>
8xi—1 s=1
1 .
logci(x) = loge;(0) + Z m] 3 Z 5@? (Ox)xrsr,, 1<i<p, (47)
J=1 l 1<s,t<p—1

where

@y 0
Cst (w) axsaxt
and from the condition 2 this is also bounded. Note that we use notations sparingly, i.e., § = 0(x)

is different from one equation to another. We use the same abbreviated notation below.
Substituting (44), (45), (46) and (47) into (37), we have

log ¢;(x)

E[Li(%, )]
p
= —Y logd/® — Ellog WX ™|

=1

P p—1 1 ,
—l—E{Z(n +p+1-— 22){2 xjni; + 3 > Eﬁ?(@w)xsxt}

i=1 j=1 1<s,t<p—1

]1
+23

7 1
7,<]1_Hm itm

{0675 = 6%+ Sl =) + ; > (&) (0x) — e (0m))wowe

s=1 1<s t<p 1
p—1
_2277221:1_‘_227721 14— 1_221’1 033 QZS—FQZ‘IZ 12 G~ ls
= s=1
Sy (i)
=3 a(6)%) iy — Z > (Qw)ajsmt].
i=1j=1 i=11<s,t<p—1

Apply Theorem 3 Corollary 1,2 to the right side. By straightforward calculation, using the
boundedness of ¢\; (63}) a9 (0:13) (1<i<p, 1<s,t<p-—1)and the fact

p
R=->"1logs/® — E[log| W=
i=1
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(see James and Stein (1961)), we have

E[L(S,%)] = R— 2[2 Z ai—— {25”52+1 + i — Mii}] + o(2):

The conditions 1-3 of Theorem 4 can be changed as follows.

1* ¢;(x) (1 < Vi < p)isa C? function of & on some open neighborhood of 0, say A(0), in
0, 1]P~1.

2* There exists some bounds such that 0 < ¢ < ¢;(x) <¢, 1 <Vi<p.
3* ¢;(0) = &/°, i=1,...,p.

Corollary 3 Suppose that n—p—4 > 0. If a scale and orthogonally equivariant estimator satisfies
the above three conditions, the result of Theorem 4 holds.

Proof.

Since the risk of an orthogonally equivariant estimator depends on ¥ only through A, we can
assume ¥ = A without loss of generality.

First we prove that any scale and orthogonally invariant estimator that satisfies the condition
2* has the following property;

EA[LI(Z, A)I(z € N(0)9)] = of2) (48)
for any open neighborhood A/(0) of 0 in [0, 1]P~*
Let R o
Li(S.A) = L(S,A) — log A~ W],
where
L(Z,A) = tr(ZA™ Zlog ci(x
Since

=
M
Z
IA
M=
M=
(Ql\?

x)l;A\; —i—Z‘logcl ‘—l—p

i=175=1

< 62102210: LN —i—pmax(’logc D—l—p
i=1 j=1

= ctr(WA 1)—|—pmax<‘logc ,D—i-p,

there exist a, M such that

0<a< ;, M >0, Mexp(traWA’l) > ‘E(E,A)’

30



Therefore

[BAIL(E, M) g gc(®)]| < MEp[exp(traWA™ ) Ig g c(@)]

S R
27221 (n/2)
1
(n—p—1)/2 —traWA I~ d ~
X /W>0 |W| exp( raW ) N(O)C(m) W, « 5@
— &‘”p/QMEA[IMO)C(a:)].
By Lemma 4, EA[IK/(O)C(m)] = 0(z). Therefore
EA[L(S, M) g (@)] = o(2). (49)
We can also prove
Epllog |A" W I g o ()] = o(2) (50)

similarly to the proof of Lemma 4. We briefly describe the proof. First note it suffices to give a
proof for the case when

N(0) = [0,e)"

with arbitrarily small positive number €. By Lemma 5, the following inequality holds.

EAng yA-lwwl(w W) e N(O)C)]
< -1 Za EAHlog|A 1W|’< wjj) (Zi: U~Jjj>](l"i(w) > 6)}

Jj=i+1

1 Z azEzﬂlog |W|’( w”) (Z wm) ( (AY2WAY?) > e)}

Jj=1+1

The condition n — p — 4 > 0 is sufficient for the convergence of

Therefore by Lemma 6 and the dominated convergence theorem,
hm E; Hlog |W|‘( wjj> (Xl: wjj)[(xi(Al/QWAl/Q) > e)} = 0.

J=1+1 7=1

This completes the proof of (50). From (49) and (50), it is obvious that (48) holds true.
We can construct another scale and orthogonally equivariant estimator 3*,

= GUG, W =diag(yil),.... v 1), (x)= 2

p
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< p) satisfy the conditions 1, 2*, 3* and on some open neighborhood of 0

(x), 1 <i<p. Then it follows that by (48) and Theorem 4

) = Ball(S, D) ()] + o(2)

= BalLi(S, 2) I ()] + of2)
EA[L1(37,2)] + o(z)

= 2[2 Y a;

such that ¢f(x) (1 <i
(say N¥), ¢ (@) = ¢;

EalLq(

M)

m{QéJséz_;'_l + /r’u ni+1,i}:| + O(Z)

Corollary 3 still requires not only the local conditions (1* and 3*) but also the global condition
(2*). Next corollary gives necessary conditions for an estimator to be tail minimax. It is relatively
easy to apply this corollary to a particular estimator, since it requires only local conditions.

Corollary 4 Suppose that n — p — 4 > 0. If a scale and orthogonally equivariant estimator that
satisfies the condition 1* is tail minimaz, then

¢i(0) = 677, 1<i<p, (51)

and
267%675 4 mi — mivrq > 0, I<i<p-1 (52)

Proof.
(51) is due to Theorem 4 of Takemura and Sheena (2002). Now suppose (51) is satisfied but
(52) is violated. Then there exist some positive numbers, a;, i = 1,...p — 1, such that

Z aZ {25J552+1 + Nii — ni—l—l,i} < 0.

We consider the linear convergence of ||y|| to 0 with these a;’s. Note that we can construct another
scale and orthogonally equivariant estimator 3%,

S -GG, W —diag(ill),.., 1), @) =D/ 1<i<p

such that ¢f(x) (1 < i < p) satisfy the conditions 1*-3* and on some open neighborhood of 0 (say
N*), ef(x) = ¢i(x), 1 <i < p. Then the following inequality holds

Es|Li(2,%)] = E,

v
S

%)
L))+ 0(2) (by (48))

|
S
£

{25JS(51+1 + Nii — ni—l—l,i}} + O(Z)‘



The right side is strictly larger than R for small enough z. 1

Now we apply Corollary 4 to Stein’s and Haff’s estimators. Both of them are known to
perform well numerically. (see Lin and Perlman (1985), Sugiura and Ishibayashi (1997)), but
their minimaxity has been an open problem.

Stein’s estimator 3% is an isotonized modification of the rough estimator given by (10). The
algorithm is depicted in Lin and Perlman (1985). After the modification ¢; (1 < i < p) is given
as the ratio of pooled adjacent I;’s and c; *’s of the rough estimator. Since the pooling depends
on the value of ¢;’s, it gets complicated especially when p is large. However for the application of
Corollary 4, we only have to know its behavior in a neighborhood of the point = 0. When [;’s
are fully dispersed, that is, ||| is small enough, the ;s in (10) keep the order (11), hence do not
need any modification. Then ¢;’s of £5 are given by

1 1 - ‘
cz-(m):[(n—p+1)+2§(%)+2;(1—1_mn)} o1<i<yp,

in a small enough neighborhood of 0. It is obvious that this ¢;(x) satisfies the condition 1*. Besides
we can easily check
¢(0) =6/,  1<i<p,

and
¢ 0¢;1q .
hi = o (0) = =2(67%)%, M1 = Bz, (0)=2(517)% 1<i<p-1
Consequently the left side of (52) equals to
2
2075005 — (07 = @l)*} = —2{ (07 - ol) " + o705} (53)

The right side is obviously negative. Therefore from Corollary 4, Stein’s estimator, 35 is not tail
minimax, hence not minimax when n — p —4 > 0. More strictly speaking, since (53) is negative
for 1 < Vi < p—1, we can say for any linear convergence of ||y||, the risk of 3% is over R for small
enough z.

The same argument holds for > H . Haff’s estimator is derived through a formal Bayes rule, but
in the end it emerges as another type of modification of Stein’s rough estimator (10) under the
constraint (11). If the rough estimator already keeps the order (11), it is completely the same as
335, Therefore the above argument for ¢;(x) on a small enough neighborhood of 0 still holds good.
Consequently $# is not minimax either. We summarize the results in the following corollary.

Corollary 5 Stein’s estimator 5 and Haff’s estimator £ are not minimaz.

Another interesting estimator of which minimaxity or non-minimaxity has not been proved
theoretically is the reference prior Bayes estimator derived by Yang and Berger (1994). This
estimator is given as {E[X7!]} !, where the expectation is taken with respect to the posterior
density of X

oS-I (N - Aj)}*1 exp(—; r3W)

i<j
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with the normalizing constant ¢. Though Sugiura and Ishibayashi (1997) gives some concrete
expressions of this estimator using Legendre polynomials or hypergeometric functions when p = 2,
it seems difficult to give explicit forms for general p. According to the simulation study by Sugiura
and Ishibayashi (1997), its risk approaches to the minimax risk R from upper side as ||y|| — 0 like
35 and £, This indicates that the reference prior estimator is not minimax either. To prove
this using Theorem 4 or its corollary, we need to evaluate ¢;(0) and n;;. For this purpose, the
methods of Takemura and Sheena (2002) might be useful, since the form of the posterior density
resembles that of Wishart distribution.

5 Appendix

The next result was essentially proved in the proof of Lemma 1 of Takemura and Sheena (2002).
We state it as an independent lemma and give a proof.

Lemma 5 The following inequalities hold for every fited W = (w;;) > 0.

P
fi=la" < Z Wy,
j=t

=1 < Z@jja

j=1
where 1 1 B 1 |
(@) =W = ASWAE, (@) = W = AlW AL

Proof.

Let W(; be the (p — i+ 1) x (p — i + 1) submatrix of W made by deleting the first i — 1
rows and columns. Let Z(i) denote the largest eigenvalue of W(;. Then using a theorem on the
magnitude of the eigenvalues of a submatrix (see, e.g. (6) in p227 of Marshal and Olkin (1979)),
[ < l_(i). Therefore

+
ll)\ZI S l ; < Z W( ]j Z ’L+] 1 Zw]J

~ Now let W@ be the i x 7 submatrix of W~! composed of the first ¢ rows and columns, and
1®) be its largest eigenvalue. Then we have [;! < [ and

VR )\<Z @Y\ <ZW@NA_ZW

Jj=1 Jj=1 Jj=1

Let L(W) = diag(ly(W),...,1,(W)) be the functions of W defined by the spectral decom-
position of W' in (1).
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Lemma 6 For every fived W = (w;;) > 0, it holds that

- lis1(A2WA?2)
lyl—=0 I;(AzWA?2)

=0 1< <p—1.

Y

Proof.
We define the notations;

A= (a;) = ATWA?,
A(iy,...,1s): principle submatrix composed of the i;jth row and column, j =1,...,s,
Li(A(iy, ... i) > - > 1s(A(iq, ..., 1s)): the ordered eigenvalues of A(iy, ..., ).

Suppose that there exist some positive numbers 4, My, My, s =1,...,p, such that

I,(A
lyll <vs = Ma > é ) > M. (54)

Then for ||y|| < min(yss1,Vs)

ls—l—l(A) :ls+1(A) Qss As41,5+1 <
ls<A) as+1,s+1 ls<A> Ags o

This implies l541(A)/ls(A) — 0 as ||ly|| — 0. Therefore we only have to prove the existence of
Vs, Ms1, Mo (1 < s < p) that satisfy (54). We prove it inductively with respect to p. If p = 1,
it is obvious since [1(A)/a;; = 1. Suppose the existence of v, My, Mg (1 < s < p) satisfying
(54) when p = k — 1. Now we consider the case p = k. Using the formula on the eigenvalues of a
submatrix, we have

-1 -1 -1
MSJrLlMSQ wsH,usss )\3+1)\S .

L(A) > LA, ... k—=1)) > 1(A) > L(A(L,....,k—=1)) > ---
>l (AQ, ... E—=1)) > 1(A),
L(A) > L(A2,.... k) > 12(A) > 15(A(2,...,k) > > 11(A(2,..., k) > l,(A).
Therefore for 2 < s < k — 1,

ls—1(A(2,...,k)) > ls(A) > Is(A(L,... k— 1))

aSS aSS a’SS

By the assumption for the case p = k — 1, there exist ~, My, M, such that
HyH <7 = Ml > lsfl(A<27 s 7k>>a’§517 lS<A(17 R k— 1))a;91 > MQ-
Combining these inequalities, we have

lyl| <v = M >(A)a > M.

This completes the proof for the existence of v, Mgy, My when s =2,... k — 1.
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Now we consider the cases s =1 and s = k = p. Since
_ 1 0
anlA — ( o 0 )

m h(4) = ll( lim alflA) =1.

lyll—0 ai llyll—0

as [yl — 0,

This guarantees the existence of the required ~;, My, Ms.
Note that
l_l(A>app = ll(A_l)app = ll()‘pA_l)wpp'

p

Since as ||y|| — 0,

_ 0O O _
MpAT = ( 0 wrP ) ) w? = (W),

li(ApA™1) — wPP. Therefore

LA) 1
lyll—0 a'pp wppwpp'
This guarantees the existence of the required vy,, M1, Ms. 1
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