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Abstract
Takemura and Sheena (2002) derived the asymptotic joint distribution of the eigenvalues and the
eigenvectors of Wishart matrix when the population eigenvalues become infinitely dispersed. They
also showed necessary conditions for an estimator of the population covariance matrix to be min-
imax for typical loss functions by calculating the asymptotic risk of the estimator. In this paper,
we further examine those distributions and risks by means of an asymptotic expansion. We focus
on a limiting process where the population eigenvalues become linearly dispersed, which can be
parametrized by one parameter. We obtain the asymptotic expansion of the distribution function
of relevant elements of the sample eigenvalues and eigenvectors with respect to the parameter. We
also derive the asymptotic expansion of the risk function of a scale and orthogonally equivariant
estimator. As an application, we prove non-minimaxity of Stein’s and Haff’s estimators, which
has been an open problem so far.

Keywords and phrases
asymptotic distribution, covariance matrix, minimax estimator, orthogonally equivariant, scale
equivariant, Stein’s loss, tail minimaxity.
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1 Introduction and summary of results

Let W = (wij) be distributed according to Wishart distribution Wp(n,Σ), where p is the
dimension, n is the degrees of freedom and Σ is the covariance matrix. In this paper we consider
asymptotics where the population eigenvalues become infinitely dispersed. Denote the spectral
decompositions of W and Σ by

W = GLG′, Σ = ΓΛΓ′, (1)

where
G, Γ ∈ O(p) = {G | G : p× p orthogonal matrix}

and
L = diag(l1, . . . , lp), Λ = diag(λ1, . . . , λp)

are diagonal matrices with the eigenvalues l1 ≥ · · · ≥ lp > 0, λ1 ≥ · · · ≥ λp > 0 of W and
Σ, respectively. We use the notations l = (l1, . . . , lp) and λ = (λ1, . . . , λp) hereafter. For the
uniqueness of the spectral decomposition of W , having chosen one decomposition of Σ, we decide
the sign of the columns of G so that Γ′G (say G̃ = (g̃ij)) has nonnegative diagonal elements.

Then the uniqueness of G is guaranteed almost surely and G̃ ∈ O+(p), where

O+(p) = {G ∈ O(p) | (G)ii ≥ 0, i = 1, . . . , p}.

Let

y = (y1, . . . , yp−1), yj =
λj+1

λj

, j = 1, . . . , p− 1.

We say that the population eigenvalues become infinitely dispersed when

‖y‖ → 0. (2)

Takemura and Sheena (2002) investigated the asymptotic distribution of the sample eigenvalues
(l1, . . . , lp) and the sample eigenvectors G under the limiting process (2). They proved that G̃
converges to Ip in probability, i.e.; for any neighborhood N (Ip) of Ip,

P (G̃ ∈ N (Ip)) → 1, as ‖y‖ → 0.

They also proved that f = (fi)1≤i≤p and q = (qij)1≤j<i≤p defined by

fi =
li
λi

, 1 ≤ i ≤ p,

qij = g̃ijl
1
2
j λ

− 1
2

i = g̃ijf
1
2
j λ

1
2
j λ

− 1
2

i , 1 ≤ j < i ≤ p.

have the following asymptotic distributions;

fi ∼ χ2
n−i+1, 1 ≤ i ≤ p, qij ∼ N(0, 1), 1 ≤ j < i ≤ p, (3)
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and fi (1 ≤ i ≤ p), qij (1 ≤ j < i ≤ p) are asymptotically mutually independently distributed.
Notice that the asymptotic distributions do not depend on the specific form of the limiting process
(2).

In this paper, we investigate these asymptotic distributions in more detail. For this purpose,
we need to specify the form of the limiting process (2). We consider linear convergence of y defined
by

yj =
λj+1

λj

= ajz, aj > 0, z > 0, 1 ≤ j ≤ p− 1, (4)

where aj’s are fixed and z → 0. This linear convergence is basic and would be useful in investigating
the behavior of f and q for other types of limiting processes. We derive asymptotic expansions of
distribution functions and risk functions to the order O(z). We say that a term of order O(z) in
our expansions is the first order term in z, although in usual large sample asymptotic expansions
with respect to n, the terms of order O(n−1/2) (or O(n−1) depending on contexts) are referred to
as the second order terms. In Section 3, we derive the asymptotic expansion of P (G̃ ∈ N (Ip)) in
Theorem 1 and the asymptotic expansion of the joint distribution function of f and q in Theorem
2 up to the first order in z. In particular in Theorem 1 we prove that O(z) term vanishes and
P (G̃ ∈ N (Ip)) = 1 + o(z). This guarantees that as far as the terms of order O(z) are concerned
we can concentrate on an arbitrary small neighborhood N (Ip) of Ip.

A recurring idea of the proof is that under (4) only the pairs of adjacent eigenvalues (λj, λj+1)
contribute to the term of order O(z) and the terms involving (λi, λj), j ≥ i + 2, are of the higher
order.

In Section 4, we consider the estimation problem of Σ from decision theoretic point of view.
Takemura and Sheena (2002) examined the asymptotic risk of estimators with respect to Stein’s
loss function

L1(Σ̂,Σ) = tr(Σ̂Σ−1)− log |Σ̂Σ−1| − p

and the quadratic loss function

L2(Σ̂,Σ) = tr(Σ̂Σ−1 − Ip)
2.

They derived a necessary condition for an estimator to be tail minimax. We call an estimator Σ̂
tail minimax with respect to Li if it satisfies the condition

∃δ > 0, ∀‖y‖ < δ, E[Li(Σ̂,Σ)] ≤ R̄i,

where R̄i is the minimax risk for Li, i = 1, 2. See Berger (1976) for the notion of tail minimaxity in
the estimation of a location vector in a general multivariate location family. Obviously a minimax
estimator is tail minimax.

Let Σ̂ = Σ̂(W ) = Σ̂(G, l) be an estimator of Σ and let

Σ̂(G, l) = H(G, l)D(G, l)H ′(G, l) (5)

be the spectral decomposition of Σ̂(G, l), where H(G, l) ∈ O(p) and

D(G, l) = diag(d1(G, l), . . . , dp(G, l)).
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In accordance with the definition of G, the sign of H(G, l) is determined by (Γ′H)ii ≥ 0, 1 ≤
∀i ≤ p. Hence H ∈ O+(p). Let

ci(G, l) =
di(G, l)

li
, i = 1, . . . , p.

An estimator of the form

Σ̂ = GΨ(L)G′, Ψ(L) = diag(ψ1(l), . . . , ψp(l)). (6)

is called orthogonally equivariant. For orthogonally equivariant estimators we have

H(G, l) = G,

ci(G, l) = ci(l) =
ψi(l)

li
, 1 ≤ i ≤ p.

Let Σ̂JS and Σ̂OS denote the best triangularly equivariant estimators for L1 and L2, respec-
tively. They are constant risk minimax estimators with respect to the corresponding loss functions.

Simple but important orthogonally equivariant estimators are those which have certain con-
stant ci’s; Σ̂SDS defined by ci = δJS

i and Σ̂KG defined by ci = δOS
i , where δJS

i and δOS
i are

coefficients which respectively appear in Σ̂JS and Σ̂OS. Actually

δJS
i =

1

n + p + 1− 2i
, 1 ≤ i ≤ p, (7)

and δOS
i (1 ≤ i ≤ p) are given as the solution of a linear equation. Σ̂SDS(Σ̂KG) dominates

Σ̂JS(Σ̂OS) with respect to L1 (L2), hence is a minimax estimator. For more details see Section
3 of Takemura and Sheena (2002). Original literature related to these two estimators include
James and Stein (1961), Olkin and Selliah (1977), Sharma and Krishnamoorthy (1983), Dey and
Srinivasan (1985), Krishnamoorthy and Gupta (1989) and Sheena (2002).

Let

x = (x1, . . . , xp−1), xj =
lj+1

lj
, 1 ≤ j ≤ p− 1.

Takemura and Sheena (2002) showed that under some regularity conditions, any tail minimax
estimator with respect to L1 (L2) converges to Σ̂SDS (Σ̂KG) as ‖x‖ → 0. More specifically, for
any tail minimax estimator, Σ̂(G, l), with the spectral decomposition (5)

H(G, l) → G, (8)

ci(G, l) → δ
JS(OS)
i , 1 ≤ i ≤ p, (9)

as ‖x‖ → 0.
In Section 4 of this paper, we consider a scale and orthogonally equivariant estimator and its

asymptotic risk with respect to Stein’s loss. Note that any orthogonally equivariant estimator
trivially satisfies (8). Therefore (9) is an important necessary condition for tail minimaxity of
orthogonally equivariant estimators. We focus ourselves on orthogonally equivariant estimators
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which satisfy (9). We derive the expansion of their risks with respect to z up to the first order in
Theorem 4. This result provides a second step test that orthogonally equivariant estimators must
satisfy in order to be tail minimax after they pass the first test (9).

We apply the result to two scale and orthogonally equivariant estimators; Stein’s estimator,
Σ̂S, and Haff’s estimator, Σ̂H . By an approximate minimization of the unbiased estimator of the
risk function, Stein (1975) proposed an orthogonally equivariant estimator, which is given by (6)
with

ψi(l) = li



(n− p + 1) + 2li

∑

j 6=i

1

li − lj





−1

, i = 1, . . . , p. (10)

This estimator is called Stein’s rough estimator. Since this estimator sometimes violates the
condition

ψ1 ≥ ψ2 ≥ · · · ≥ ψp ≥ 0, (11)

isotonizing modification of the eigenvalues is carried out. We use the notation Σ̂S for this modified
estimator. See Sheena and Takemura (1992) for decision theoretic results on isotonizing the
eigenvalues.

Haff (1991) studied the form of Bayes estimators and observed that a slight modification of
Σ̂S emerges as an approximation of the Bayes rule. We use the notation Σ̂H for this estimator.

It is not easy to give an explicit form of these estimators for general p. (See Sugiura and
Ishibayashi (1997) for their explicit forms when p = 2.) The calculation of their risks is also too
complicated to handle. Therefore it has not been theoretically proved whether these estimators
are minimax or not. According to Monte Carlo simulation carried out by Sugiura and Ishibayashi
(1997), though they substantially outperform not only Σ̂JS but also Σ̂SDS when Σ is close to Ip

(see also Lin and Perlman (1985)), their risks are over that of Σ̂JS when ‖y‖ is small, that is,
when the population eigenvalues are dispersed. Since the minimax estimator Σ̂JS has a constant
risk, this simulation result indicates that Σ̂S, Σ̂H are not minimax.

Using the expansion of the risks of these estimators with respect to z, we prove in Corollary 5
that Σ̂S and Σ̂H are not minimax estimators.

The rest of the paper is organized as follows. In Section 2 we summarize some preliminary
results from Takemura and Sheena (2002). In Section 3, after proving some relevant lemmas and
Theorem 1, we derive asymptotic expansion of the distribution function of the eigenvalues and
the eigenvectors in Theorem 2. In Section 4 we derive asymptotic expansion of risk functions of
scale and orthogonally equivariant estimators. Theorem 4 is the main theorem of Section 4. As a
corollary to this theorem, non-minimaxity of Σ̂S, Σ̂H is proved in Corollary 5.

2 Preliminaries

We state some definitions and notations used in the subsequent sections. Most of them are
in accordance with those in Takemura and Sheena (2002). We also briefly mention some related
properties without proof. See Takemura and Sheena (2002) for the proof.

Most of the calculations hereafter involves the integral of a function of G on a neighborhood of
Ip ∈ O+(p) with respect to the invariant probability measure µ(dG) on O(p). For the expansion
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with respect to z, it is convenient to specify the neighborhood. If we choose a small enough
neighborhood of Ip, we can use the lower triangular part of G as its coordinate; there exists a
diffeomorphism, G(u) = (gij(u)), from

Ū∗ = Ū∗(ε) =



u = (uij)1≤j<i≤p ∈ Rp′

∣∣∣∣∣ ‖u‖ =

(∑

i>j

u2
ij

) 1
2

≤ ε



 , p′ =

p(p− 1)

2
,

onto a neighborhood of Ip ∈ O+(p) (say G(Ū∗)) such that G(0) = Ip, 0 = (0, . . . , 0). Furthermore
real analytic functions gij(u) (1 ≤ i, j ≤ p) on Ū∗ have the following expansions around the point
u = 0.

gij(u) =





−uji −
i−1∑

k=1

uikujk +
j−1∑

k=i+1

ukiujk −
p∑

k=j+1

ukiukj + Rij if j > i,

1− 1

2

i−1∑

k=1

u2
ik −

1

2

p∑

k=i+1

u2
ki + Rii if j = i,

uij if j < i,

(12)

where Rij (1 ≤ i ≤ j ≤ p) involves only higher order terms in u than 2. We choose ε so that

gii(u)2 ≥ 1/2, i = 1, . . . , p. (13)

In many integrals in the following sections, G(Ū∗) or Ū∗ will appear as the domain of the integral.
The measure on Ū∗ induced from the invariant probability µ(dG) on O(p) has a density with

respect to Lebesgue measure in Rp′ . This is given as follows. Let p′ pairs, (i, j), 1 ≤ j < i ≤ p, be
ordered by the lexicographical order; (i1, j1) < (i2, j2) if and only if “j1 < j2” or “j1 = j2, i1 < i2”.
Consider 1-forms g′idgj = g1idg1j + · · · + gpidgpj, 1 ≤ j < i ≤ p. Let v be the vector with these
1-forms as its elements lexicographically ordered, that is;

v = (g′2dg1, g
′
3dg1, . . . , g

′
pdg1, g

′
3dg2, . . . , g

′
pdgp−1)

′.

Similarly define the vector du as

du = (du21, du31, . . . , dup1, du32, . . . , dup,p−1)
′.

We can express v as
v = Ξdu, Ξ = (ξst(u))1≤s,t≤p′ ,

where ξst(u)’s are real analytic functions of u on Ū∗. Let J∗(u) = | det Ξ|. Then c̄J∗(u), with a
normalizing constant c̄, gives the density of the measure induced from µ(dG) on Ū∗ with respect to
Lebesgue measure in Rp′ . Note that J∗(u) is also a real analytic function on Ū∗. For the purpose
of the present paper we do not need an explicit expression of the normalizing constant c̄.

Now consider an arbitrary function x(G, l,λ) of G, l and λ. We give a formula on

E[I(G̃ ∈ G(Ū∗))x(G, l,λ)],

where I(·) is the indicator function. Hereafter two notations for the indicator function

I(G̃ ∈ G(Ū∗)), IG(Ū∗)(G̃)
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will be used interchangeably.
We define a compound function, xΓ(f , q,λ), as

xΓ(f , q,λ) = x(ΓG(u(f , q,λ)), l(f ,λ),λ),

where

u(f , q,λ) = (uij(f , q, λ))1≤j<i≤p = (qijf
− 1

2
j λ

− 1
2

j λ
1
2
i )1≤j<i≤p, (14)

l(f , λ) = (l1(f , λ), · · · , lp(f , λ)) = (f1λ1, . . . , fpλp).

Then
E[IG(Ū∗)(G̃)x(G, l,λ)] =

∫

Rp′

∫

Rp
+

xΓ(f , q,λ) h(f , q,λ)dfdq, (15)

where R+ = (0, ∞) and

h(f , q,λ) = h0(f , q)h1(f , q,λ) h2(f ,λ) h3(f , q,λ)

with

h0(f , q) = c̃

( p∏

i=1

f
n−i−1

2
i

)
exp


−1

2

∑

i>j

q2
ij


 exp

(
−1

2

p∑

i=1

fi

)
,

h1(f , q,λ) = exp



−

1

2




p∑

i=1

(g2
ii(u)− 1)fi +

∑

i<j

g2
ij(u)fj

λj

λi






 , (16)

h2(f ,λ) = I (f1λ1 > · · · > fpλp)
∏

j<i

(
1− fiλi

fjλj

)
, (17)

h3(f , q,λ) = IŪ∗(u)J∗(u). (18)

The constant c̃ is the normalizing constant so that h0(f , q) is the density function of the asymptotic
distribution of (f , q) given by (3). We also often use the fact h2(f , q), h3(f , q,λ) are bounded
functions and the fact h(f , q, λ) is dominated by the function

h̄(f , q) = K

( p∏

i=1

f
n−i−1

2
i

)
exp


−1

2

∑

i>j

q2
ij


 exp

(
−1

4

p∑

i=1

fi

)
(19)

with some constant K.
We define a0 = ap = 0 for unified description of statements including ai’s.

3 Asymptotic expansion of eigenvalues and eigenvectors

We first prove some lemmas which are useful for the expansion w.r.t. z of the integrals of the type
in (15). The following lemma evaluates the behavior of J∗(u) around the origin.
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Lemma 1 On Ū∗ = Ū∗(ε) with a small enough ε, J∗(u) is given by

J∗(u) = 1 +
1

2

∑

i>j

(i− j)u2
ij +

∑

(i,j)∈P
J(u; (i, j))ui1j1ui2j2ui3j3 , (20)

where (i, j) = {(i1, j1), (i2, j2), (i3, j3)}, P = {(i, j) | 1 ≤ js < is ≤ p, s = 1, 2, 3} and J(u; (i, j)),
(i, j) ∈ P are bounded functions on Ū∗.

Proof.
In the following argument, we use the notation o(‖u‖r), r = 1, 2, as a power series in u which

consists only of the terms
∏

s>t u
nst
st such that

∑
s>t nst ≥ r + 1.

Differentiating (12), dgij is given by

dgij(u) =





−duji −
i−1∑

k=1

(ujkduik + uikdujk) +
j−1∑

k=i+1

(ukidujk + ujkduki)

−
p∑

k=j+1

(ukjduki + ukidukj) + rijdu if j > i,

−
i−1∑

k=1

uikduik −
p∑

k=i+1

ukiduki + riidu if j = i,

duij if j < i,

where for 1 ≤ i ≤ j ≤ p,

rij du =
∑

l>m

∂Rij

∂ulm

dulm,
∂Rij

∂ulm

= o(‖u‖).

Then for 1 ≤ j < i ≤ p, we have

g′idgj =
∑

l<j

T1l + T2 +
∑

j<l<i

T3l + T4 +
∑

i<l

T5l + R̃ij(du), (21)

where

T1l =


uil +

l−1∑

k=1

ulkuik −
i−1∑

k=l+1

ukluik +
p∑

k=i+1

ukluki


 dujl

+
l−1∑

k=1

(ujkuildulk + ulkuildujk)−
j−1∑

k=l+1

(ukluildujk + ujkuildukl)

+
p∑

k=j+1

(ukjuildukl + ukluildukj),

T2 =
j−1∑

k=1

ujkuijdujk +
p∑

k=j+1

ukjuijdukj,

T3l =


−uil −

l−1∑

k=1

ulkuik +
i−1∑

k=l+1

ukluik −
p∑

k=i+1

ukluki


 dulj,
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T4 =


1− 1

2

i−1∑

k=1

u2
ik −

1

2

p∑

k=i+1

u2
ki


 duij,

T5l = ulidulj,

R̃ij(du) =
∑

l>m

τ
(ij)
lm (u)dulm, τ

(ij)
lm (u) = o(‖u‖2).

From this expression, we notice that off-diagonal elements of Ξ do not contain a constant and the
diagonal element ξtt, 1 ≤ t ≤ p′ = p(p− 1)/2, is of the form

ξtt = 1 +
1

2




j∑

l=1

u2
il −

i−1∑

l=j+1

u2
il −

p∑

l=i+1

u2
li


 + o(‖u‖2),

where t = (i, j) is the tth element in the lexicographical order.
Consider

det Ξ =
∑
σ

sign(σ) ξ1,σ(1) · · · ξp′,σ(p′),

where σ = (σ(1), . . . , σ(p′)) is a permutation of (1, . . . , p′), and sign(σ) = 1 if σ is an even
permutation; −1 if σ is an odd permutation. Note that in the right side, the terms of order
at most two in u appear only when σ is the identity permutation, σ(t) = t, 1 ≤ t ≤ p′ with
sign(σ) = 1, or when σ is a transposition, i.e. for some s < t,





σ(s) = t,
σ(t) = s,

σ(w) = w, w 6= s, t.

with sign(σ) = −1. Consequently det Ξ, a real analytic function on Ū∗ can be expanded around
0 as

det Ξ = 1 +
1

2

∑

i>j




j∑

l=1

u2
il −

i−1∑

l=j+1

u2
il −

p∑

l=i+1

u2
li


−∑

s<t

ξstξts + o(‖u‖2). (22)

Now we examine the term
∑

s<t ξstξts. Suppose that s = (i1, j1) and t = (i2, j2) are respectively
the sth and tth in the lexicographical order. Then ξst is the coefficient of dui2j2 in the expression
of g′i1dgj1 . Note that “j1 < j2, i1 > j1, i2 > j2” or “j1 = j2, i1 < i2, i1 > j1, i2 > j2”. From (21),
we have

g′i1dgj1 = dui1j1 +
j1−1∑

l=1

ui1lduj1l −
i1−1∑

l=j1+1

ui1ldulj1 +
p∑

l=i1+1

uli1dulj1 +
∑

m>k

τ
(i1j1)
mk (u)dumk,

where τ
(i1j1)
mk (u) = o(‖u‖). Therefore we have

ξst =

{
ui2i1 + o(‖u‖) if j1 = j2,

o(‖u‖) otherwise.
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Similarly we have

ξts =





−ui2i1 + o(‖u‖) if j1 = j2,
ui2j1 + o(‖u‖) if i1 = j2,

o(‖u‖) otherwise.

Therefore
∑

s<t

ξstξts = − ∑

j1=j2<i1<i2

u2
i2i1

+ o(‖u‖2) = − ∑

i1<i2

(i1 − 1)u2
i2i1

+ o(‖u‖2). (23)

From (22) and (23),

det Ξ = 1 +
1

2

∑

i>j




j∑

l=1

u2
il −

i−1∑

l=j+1

u2
il −

p∑

l=i+1

u2
li


 +

∑

j1=j2<i1<i2

u2
i2i1

+ o(‖u‖2)

= 1 +
1

2

∑

i>j≥l

u2
il −

1

2

∑

i>l>j

u2
il −

1

2

∑

l>i>j

u2
li +

∑

i>l>j1=j2

u2
il + o(‖u‖2)

= 1 +
1

2

∑

i>l

(i− l)u2
il −

1

2

∑

i>l

(l − 1)u2
il −

1

2

∑

l>i

(i− 1)u2
li +

∑

i>l

(l − 1)u2
il + o(‖u‖2)

= 1 +
1

2

∑

i>l

(i− l)u2
il + o(‖u‖2).

Since J∗(u) = | det Ξ|, if we choose Ū∗ = Ū∗(ε) with a small enough ε, we have

J∗(u) = 1 +
1

2

∑

i>l

(i− l)u2
il + o(‖u‖2). (24)

On the other hand, Taylor expansion of J∗(u) around 0 is given by

J∗(u) = J∗(0) +
∑

i>j

∂J∗

∂uij

(0) uij +
1

2

∑

i1>j1,i2>j2

∂2J∗

∂ui1j1∂ui2j2

(0) ui1j1ui2j2

+
1

3!

∑

(i,j)∈P

∂3J∗

∂ui1j1∂ui2j2∂ui3j3

(θ(u)u) ui1j1ui2j2ui3j3 , (25)

where θ(u) is a function of u such that 0 < θ(u) < 1. Note that

1

3!

∂3J∗

∂ui1j1∂ui2j2∂ui3j3

(θ(u)u)

is bounded on the compact set Ū∗. Using the notation J(u; (i, j)) for this function and comparing
(24) with (25), we have the result.

For the next two lemmas, we define h∗(f , q; α,β) as

h∗(f , q; α, β) =
p∏

i=1

fαi
i

∏

i>j

q
βij

ij exp


−a

p∑

i=1

fi − b
∑

i>j

qij


, (26)

11



where a > 0, b > 0 and

α = (α1, . . . , αp),

β = (β21, β31, . . . , βp1, β32, . . . , βpp−1), βij = 0, 1, . . . (1 ≤ j < i ≤ p).

Let η(f , q, λ) denote an arbitrary bounded function, that is,

∃M > 0, |η(f , q,λ)| < M.

Using Lemma 1 we can approximate integrals involving h3(f , q,λ) in (18) in the following
lemma.

Lemma 2 Suppose that αi > 1, i = 1, . . . , p. Then
∫

Rp′

∫

Rp
+

η(f , q,λ) h∗(f , q; α,β) h3(f , q, λ) dfdq

=
∫

Rp′

∫

Rp
+

η(f , q,λ) h∗(f , q; α,β)
(
1 +

1

2

∑

i>j

(i− j)u2
ij

)
dfdq + o(z).

Proof.
From (14) and (4),

∫

Rp′

∫

Rp
+

η(f , q,λ) h∗(f , q; α,β)
( ∑

(i,j)∈P
J(u; (i, j))

3∏

s=1

uisjs

)
IŪ∗(u) dfdq

=
∫

Rp′

∫

Rp
+

η(f , q,λ)h∗(f , q; α,β)

×
( ∑

(i,j)∈P
J(u; (i, j))

3∏

s=1

qisjsf
− 1

2
js

(
is−1∏

m=js

a
1
2
m)z(is−js)/2

)
IŪ∗(u)dfdq.

Since αi > 1, i = 1, . . . , p, and η(f , q, λ), J(u; (i, j))IŪ∗(u) ((i, j) ∈ P) are all bounded, the
integral of the right side converges. Taking into account that

∑3
s=1(is − js)/2 ≥ 3/2, we notice

the right side, hence the left side equals o(z). Therefore it suffices to show
∫

Rp′

∫

Rp
+

η(f , q,λ) h∗(f , q; α,β)
(
1 +

1

2

∑

i>j

(i− j)u2
ij

)
IŪ∗(u)dfdq

=
∫

Rp′

∫

Rp
+

η(f , q, λ) h∗(f , q; α,β)
(
1 +

1

2

∑

i>j

(i− j)u2
ij

)
dfdq + o(z).

Since IŪ∗(u) = 1− IŪ∗C (u), the left side equals I1 − I2, where

I1 =
∫

Rp′

∫

Rp
+

η(f , q,λ) h∗(f , q; α, β)
(
1 +

1

2

∑

i>j

(i− j)u2
ij

)
dfdq,

I2 =
∫

Rp′

∫

Rp
+

η(f , q,λ) h∗(f , q; α, β)

×
(
1 +

1

2

∑

i>j

(i− j)u2
ij

)
I
(∑

i>j

u2
ij(f , q, λ) > ε2

)
dfdq.

12



We will prove I2 = o(z). The following inequalities hold. Note that every integral converges since
αi > 1, i = 1, . . . , p.

I2 ≤ ε−2
∑

s>t

∫

Rp′

∫

Rp
+

u2
st(f , q,λ)|η(f , q,λ)h∗(f , q; α,β)|

×
(
1 +

1

2

∑

i>j

(i− j)u2
ij

)
I
(∑

i>j

u2
ij(f , q,λ) > ε2

)
dfdq

= ε−2
∑

s>t

zs−t
( s−1∏

m=t

am

) ∫

Rp′

∫

Rp
+

f−1
t q2

st|η(f , q,λ)h∗(f , q; α,β)|

×
{
1 +

1

2

∑

i>j

(i− j)q2
ijf

−1
j

( i−1∏

m=j

am

)
zi−j

}
I
(∑

i>j

u2
ij(f , q,λ) > ε2

)
dfdq

= ε−2
p−1∑

t=1

zat

∫

Rp′

∫

Rp
+

f−1
t q2

t+1,t|η(f , q,λ)h∗(f , q; α,β)|I
(∑

i>j

u2
ij(f , q,λ) > ε2

)
dfdq

+o(z).

It now remains to prove

lim
z→0

∫

Rp′

∫

Rp
+

f−1
t q2

t+1,t|η(f , q,λ)h∗(f , q; α, β)|I
(∑

i>j

u2
ij(f , q,λ) > ε2

)
dfdq = 0.

However this is obvious from the dominated convergence theorem and the fact

lim
z→0

I
(∑

i>j

u2
ij(f , q, λ) > ε2

)
= lim

z→0
I
(∑

i>j

q2
ijf

−1
j

( i−1∏

m=j

am

)
zi−j > ε2

)

= 0.

We need another lemma on the approximation of integrals involving h2(f , λ) in (17). We use
the same notation as in Lemma 2.

Lemma 3 Suppose that αi > 1, i = 1, . . . , p. Then
∫

Rp′

∫

Rp
+

η(f , q, λ) h∗(f , q; α,β) h2(f ,λ) dfdq

=
∫

Rp′

∫

Rp
+

{
1−

(p−1∑

j=1

fj+1

fj

aj

)
z
}

η(f , q, λ) h∗(f , q; α,β) dfdq + o(z).

Proof.
Let F(z) = {f | f1λ1 > · · · > fpλp} and

g(f , λ) = h2(f , λ)− IF(z)(f)×
(
1−∑

i>j

fi

fj

λi

λj

)

= IF(z)(f)
∏

j<i

(
1− fi

fj

λi

λj

)
− IF(z)(f)×

(
1−∑

i>j

fi

fj

λi

λj

)
.

13



Notice that g(f ,λ) is a finite sum of terms, each of which has the form

IF(z)(f)(−1)t
t∏

s=1

fis

fjs

λis

λjs

with is > js, s = 1, . . . , t, t ≥ 2. Since fisf
−1
js

λisλ
−1
js

< 1 on F(z), we have

∣∣∣
∫

Rp′

∫

Rp
+

IF(z)(f)
( t∏

s=1

fis

fjs

λis

λjs

)
η(f , q,λ) h∗(f , q; α,β) dfdq

∣∣∣

≤
∫

Rp′

∫

Rp
+

IF(z)(f)
( 2∏

s=1

fis

fjs

λis

λjs

) ∣∣∣η(f , q,λ) h∗(f , q; α,β)
∣∣∣ dfdq

=
2∏

s=1

( is−1∏

m=js

am

)
zis−js

∫

Rp′

∫

Rp
+

IF(z)(f)
( 2∏

s=1

fis

fjs

) ∣∣∣η(f , q, λ) h∗(f , q; α,β)
∣∣∣ dfdq.

Since αi > 1, i = 1, . . . , p, the right side integral converges. Therefore the left side integral is o(z).
Consequently ∫

Rp′

∫

Rp
+

g(f ,λ) η(f , q, λ) h∗(f , q; α,β) dfdq = o(z). (27)

Besides

∑

j+1<i

∫

Rp′

∫

Rp
+

fi

fj

λi

λj

IF(z)(f) η(f , q, λ) h∗(f , q; α,β) dfdq

=
∑

j+1<i

( i−1∏

m=j

am

)
zi−j

∫

Rp′

∫

Rp
+

fi

fj

IF(z)(f) η(f , q,λ) h∗(f , q; α, β) dfdq (28)

= o(z).

From (27) and (28), we have

∫

Rp′

∫

Rp
+

h2(f ,λ) η(f , q,λ) h∗(f , q; α,β) dfdq

=
∫

Rp′

∫

Rp
+

{
1−

(p−1∑

j=1

fj+1

fj

aj

)
z
}

IF(z)(f) η(f , q,λ) h∗(f , q; α,β) dfdq + o(z).

Now it suffices to show

I =
∫

Rp′

∫

Rp
+

{
1−

(p−1∑

j=1

fj+1

fj

aj

)
z
}
IF(z)C (f) η(f , q,λ) h∗(f , q; α,β) dfdq = o(z),

where F(z)C is the complement of F(z). From the decomposition,

F(z)C =
p−1⋃

i=1

Fi(z),

14



where

Fi(z) = {f | 1 ≤ fi+1

fi

λi+1

λi

} = {f | 1 ≤ fi+1

fi

aiz}, i = 1, . . . , p− 1,

we notice |I| ≤ ∑p−1
i=1 Ii with

Ii =
∫

Rp′

∫

Rp
+

{
1 +

(p−1∑

j=1

fj+1

fj

aj

)
z
}
IFi

(f)
∣∣∣η(f , q,λ) h∗(f , q; α,β)

∣∣∣ dfdq

for 1 ≤ i ≤ p− 1. With some constant M we have

Ii ≤ M
∫

Rp′

∫

Rp
+

{
1 +

(p−1∑

j=1

fj+1

fj

aj

)
z
}
IFi

(f)
∣∣∣h∗(f , q; α,β)

∣∣∣ dfdq

≤ Maiz
∫

Rp′

∫

Rp
+

{
1 +

(p−1∑

j=1

fj+1

fj

aj

)
z
} fi+1

fi

IFi
(f)

∣∣∣h∗(f , q; α,β)
∣∣∣ dfdq.

By the dominated convergence theorem, of which use is guaranteed by αi > 1, 1 ≤ i ≤ p, we have

lim
z→0

∫

Rp′

∫

Rp
+

{
1 +

(p−1∑

j=1

fj+1

fj

aj

)
z
} fi+1

fi

IFi
(f)

∣∣∣h∗(f , q; α,β)
∣∣∣ dfdq

=
∫

Rp′

∫

Rp
+

lim
z→0

[{
1 +

(p−1∑

j=1

fj+1

fj

aj

)
z
}

IFi
(f)

] fi+1

fi

∣∣∣h∗(f , q; α,β)
∣∣∣ dfdq

= 0.

Therefore Ii = o(z), i = 1, . . . , p− 1. This means I = o(z).

Now we state the main result of this section. The next theorem tells us that P (G̃ ∈ N (Ip)
C)

vanishes faster than z. This guarantees that as far as the terms of order O(z) are concerned, we
can concentrate on an arbitrary small neighborhood N (Ip) of Ip. In the proof of the theorem we
need approximations of integrals involving h1(f , q, λ) in (16).

Theorem 1 Suppose that n > p + 4. For any open neighborhood N (Ip) of Ip ∈ O+(p),

P (G̃ ∈ N (Ip)) = 1 + o(z),

or equivalently
P (G̃ ∈ N (Ip)

C) = o(z).

Proof.
It suffices to show that P (G̃ ∈ G(Ū∗)C) = o(z) for any small enough ε. Let τ = z

1
2 and

u(τ) =
(
uij(τ)

)
i>j

=
(
qijf

− 1
2

j

( i−1∏

m=j

a
1
2
m

)
τ i−j

)
i>j

.
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Then we have

h1(f , q,λ) = exp
[
−1

2

{ p∑

i=1

(g2
ii(u)− 1)fi +

∑

i<j

g2
ij(u)fjλjλ

−1
i

}]

= t(τ),

where

t(τ) = exp
[
−1

2

{ p∑

i=1

(g2
ii(u(τ))− 1)fi +

∑

i<j

g2
ij(u(τ))fj

( j−1∏

m=i

am

)
τ 2(j−i)

}]
. (29)

Then Taylor expansion of t(τ) around 0 is given by

t(τ) = t(0) + τt′(0) +
τ 2

2
t′′(0) +

τ 3

3!
t′′′(θ(τ)),

where 0 < θ(τ) < τ .
First notice that t(0) = 1. Next straightforward calculation shows that t′′′(τ)/t(τ) can be

expressed as a finite sum (denoted by
∑′ hereafter) of terms each of which is of the form

c0M(u(τ))
p∏

i=1

fαi
i

∏

i>j

q
βij

ij τ γ, c0: constant,

where

αi ≥ −3

2
(1 ≤ i ≤ p− 1), αp ≥ 0, βij = 0, 1, . . . (1 ≤ j < i ≤ p), γ = 0, 1, . . . ,

and M(u) is a multiple of some (possibly higher order) derivatives of gij(u) (1 ≤ i ≤ j ≤ p) w.r.t
u (the order may vary from zero to three), hence a bounded function on Ū∗.

Now we calculate t′(0) and t′′(0). From (12), the real analytic function gij(u(τ)) of τ is
expanded as

gii(u(τ)) = 1− 1

2
τ 2(q2

i,i−1f
−1
i−1ai−1 + q2

i+1,if
−1
i ai) + g̃ii(τ), 1 ≤ i ≤ p,

gij(u(τ)) =





−τ(qi+1,if
− 1

2
i a

1
2
i ) + g̃i,i+1(τ) if j = i + 1,

−τ 2(qi+2,if
− 1

2
i a

1
2
i a

1
2
i+1) + τ 2(qi+1,iqi+2,i+1f

− 1
2

i f
− 1

2
i+1a

1
2
i a

1
2
i+1) + g̃i,i+2(τ) if j = i + 2,

g̃ij(τ) if j ≥ i + 3,

where g̃ij(τ) (1 ≤ i ≤ j ≤ p) contains only the terms in τ of order higher than 2. Remember
the conventional definition, a0 = ap = 0. From this, we have the following expansions around the
point τ = 0.

(g2
ii(u(τ))− 1)fi = −τ 2(q2

i,i−1

fi

fi−1

ai−1 + q2
i+1,iai) + ξii(τ), 1 ≤ i ≤ p,

g2
ij(u(τ))fj

( j−1∏

m=i

am

)
τ 2(j−i) = ξij(τ), 1 ≤ i < j ≤ p,
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where ξij(τ) (1 ≤ i ≤ j ≤ p) contains only the terms of order higher than 2. Therefore

t(τ) = exp
{1

2
τ 2

p∑

i=1

(q2
i,i−1

fi

fi−1

ai−1 + q2
i+1,iai)− 1

2

∑

i≤j

ξij(τ)
}
.

From this we have t′(0) = 0 and

t′′(0) =
p∑

i=1

(q2
i,i−1

fi

fi−1

ai−1 + q2
i+1,iai).

Consequently h1(f , q,λ) in (16) can be expressed as

h1(f , q,λ) = 1 +
z

2

p∑

i=1

(q2
i,i−1

fi

fi−1

ai−1 + q2
i+1,iai) (30)

+
z

3
2

3!
t(θ(τ))

∑′
c0M(u(θ(τ)))

p∏

i=1

fαi
i

∏

i>j

q
βij

ij (θ(τ))γ.

Now we calculate P (G̃ ∈ G(Ū∗)). As in (15),

P (G̃ ∈ G(Ū∗)) = E[I(G̃ ∈ G(Ū∗))]

=
∫

Rp′

∫

Rp
+

h0(f , q) h1(f , q,λ) h2(f ,λ) h3(f , q,λ) dfdq.

Substituting h1(f , q, λ) in the right side with (30), we have

P (G̃ ∈ G(Ū∗)) = I1 +
z

2
I2 +

z
3
2

3!
I3,

where

I1 =
∫

Rp′

∫

Rp
+

h0(f , q) h2(f , λ) h3(f , q, λ) dfdq,

I2 =
p∑

i=1

∫

Rp′

∫

Rp
+

h0(f , q) (q2
i,i−1

fi

fi−1

ai−1 + q2
i+1,iai) h2(f , λ) h3(f , q, λ) dfdq,

I3 =
∑′ ∫

Rp′

∫

Rp
+

h0(f , q) t(θ(τ)) c0 M(u(θ(τ)))
p∏

i=1

fαi
i

∏

i>j

q
βij

ij (θ(τ))γ

×h2(f ,λ) h3(f , q,λ)dfdq.

First we prove z
3
2 I3 = o(z). Note that if u = u(τ) ∈ Ū∗(ε), that is,

∑
s>t u

2
st(τ) ≤ ε2, then

from θ(τ) < τ , we have

∑

s>t

u2
st(θ(τ)) =

∑

s>t

q2
stf

−1
t

( s−1∏

m=t

am

)
(θ(τ))2(s−t) <

∑

s>t

u2
st(τ) ≤ ε2.
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This means u(θ(τ)) ∈ Ū∗. Since M(u) is bounded on Ū∗, M(u(θ(τ))) is also bounded. Besides
from (13), g2

ii(u(θ(τ))) ≥ 1/2 (1 ≤ i ≤ p). Therefore h0(f , q) t(θ(τ)) ≤ h̄0(f , q), where

h̄0(f , q) = c̃

( p∏

i=1

f
n−i−1

2
i

)
exp


−1

2

∑

i>j

q2
ij


 exp

(
−1

4

p∑

i=1

fi

)
. (31)

h2(f , q) and h3(f , q, λ) are also bounded functions. Consequently there exists some K > 0 such
that for any z < 1

|I3| ≤ ∑′ ∫

Rp′

∫

Rp
+

h0(f , q) t(θ(τ)) |c0 M(u(θ(τ)))|
p∏

i=1

fαi
i

∏

i>j

|qβij

ij | (θ(τ))γ

×h2(f ,λ) h3(f , q,λ)dfdq

≤ K
∑′ ∫

Rp′

∫

Rp
+

h̄0(f , q)
p∏

i=1

fαi
i

∏

i>j

|qβij

ij | dfdq.

The condition n− p− 4 > 0 guarantees the convergence of the right side integral. This means

z
3
2 I3 = o(z). (32)

Now we consider zI2. Since h3(f , q, λ) is bounded and n − p − 4 > 0, the conditions on
αi (1 ≤ i ≤ p) in Lemma 3 is satisfied. Therefore we have

zI2 = z
p∑

i=1

∫

Rp′

∫

Rp
+

h0(f , q) (q2
i,i−1

fi

fi−1

ai−1 + q2
i+1,iai) h2(f ,λ) h3(f , q,λ) dfdq

= z
p∑

i=1

(
I

(i)
21 − zI

(i)
22

)
+ o(z2),

where for 1 ≤ i ≤ p

I
(i)
21 =

∫

Rp′

∫

Rp
+

h0(f , q) (q2
i,i−1

fi

fi−1

ai−1 + q2
i+1,iai) h3(f , q,λ) dfdq,

I
(i)
22 =

∫

Rp′

∫

Rp
+

h0(f , q) (q2
i,i−1

fi

fi−1

ai−1 + q2
i+1,iai)

(p−1∑

j=1

fj+1

fj

aj

)
h3(f , q,λ) dfdq.

Since z2I
(i)
22 = o(z), we have

zI2 = z
p∑

i=1

I
(i)
21 + o(z).

Noticing again that n − p − 4 > 0 guarantees the conditions on αi (1 ≤ i ≤ p) in Lemma 2, we
have

zI
(i)
21 = z

∫

Rp′

∫

Rp
+

h0(f , q) (q2
i,i−1

fi

fi−1

ai−1 + q2
i+1,iai)

(
1 +

1

2

∑

i>j

(i− j)u2
ij

)
dfdq + o(z2)

= zI
(i)
211 + zI

(i)
212,
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where

I
(i)
211 =

∫

Rp′

∫

Rp
+

h0(f , q) (q2
i,i−1

fi

fi−1

ai−1 + q2
i+1,iai) dfdq,

I
(i)
212 =

1

2

∑

s>t

(s− t)
( s−1∏

m=t

am

)
zs−t

∫

Rp′

∫

Rp
+

h0(f , q) (q2
i,i−1

fi

fi−1

ai−1 + q2
i+1,iai) q2

stf
−1
t dfdq.

Obviously zI
(i)
212 = o(z). Consequently

zI2 = z
p∑

i=1

I
(i)
211 + o(z).

Using the fact that h0(f , q) is the density function of the asymptotic distribution of (f , q) given
by (3), we have

p∑

i=1

I
(i)
211 =

p∑

i=2

ai−1E[q2
i,i−1

fi

fi−1

] +
p−1∑

i=1

aiE[q2
i+1,i]

=
p∑

i=2

ai−1E[χ2(1)] E[(χ2(n− i + 2))−1] E[χ2(n− i + 1)] +
p−1∑

i=1

aiE[χ2(1)]

=
p∑

i=2

ai−1
n− i + 1

n− i
+

p−1∑

i=1

ai

=
p−1∑

i=1

ai{ n− i

n− i− 1
+ 1}.

Consequently

z

2
I2 =

z

2

p−1∑

i=1

ai{ n− i

n− i− 1
+ 1}+ o(z). (33)

Last we evaluate I1. Using again Lemma 3, we have I1 = I11 − zI12 + o(z), where

I11 =
∫

Rp′

∫

Rp
+

h0(f , q) h3(f , q,λ) dfdq

I12 =
p−1∑

j=1

aj

∫

Rp′

∫

Rp
+

fj+1

fj

h0(f , q) h3(f , q, λ) dfdq.

Furthermore by Lemma 2, we have I11 = I111 + I112 + o(z), I12 = I121 + I122 + o(z), where

I111 =
∫

Rp′

∫

Rp
+

h0(f , q) dfdq,

I112 =
1

2

∑

s>t

(s− t)
( s−1∏

m=t

am

)
zs−t

∫

Rp′

∫

Rp
+

h0(f , q)q2
st f−1

t dfdq,

I121 =
p−1∑

j=1

aj

∫

Rp′

∫

Rp
+

fj+1

fj

h0(f , q) dfdq,

I122 =
1

2

p−1∑

j=1

aj

∑

s>t

(s− t)
( s−1∏

m=t

am

)
zs−t

∫

Rp′

∫

Rp
+

fj+1

fj

q2
st f−1

t h0(f , q) dfdq.
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Note that I111 = 1, zI122 = o(z) and

I112 =
z

2

p−1∑

t=1

at

∫

Rp′

∫

Rp
+

h0(f , q) q2
t+1,tf

−1
t dfdq + o(z)

=
z

2

p−1∑

t=1

at E[χ2(1)] E[(χ2(n− t + 1))−1] + o(z)

=
z

2

p−1∑

t=1

at
1

n− t− 1
+ o(z),

zI121 = z
p−1∑

j=1

aj E[χ2(n− j)] E[(χ2(n− j + 1))−1] = z
p−1∑

j=1

aj
n− j

n− j − 1
.

Consequently

I1 = 1 +
z

2

p−1∑

t=1

at
1

n− t− 1
− z

p−1∑

j=1

aj
n− j

n− j − 1
+ o(z). (34)

From (32), (33) and (34),

P (G̃ ∈ G(Ū∗)) = 1 +
z

2

[p−1∑

i=1

ai

{
− n− i

n− i− 1
+

1

n− i− 1
+ 1

}]
+ o(z)

= 1 + o(z).

Next theorem gives the expansion of the asymptotic distribution function of (f , q) w.r.t. z up
to the first order.

Theorem 2 Suppose that n− p− 4 > 0. Then

P
(
fi ≤ αi, 1 ≤ ∀i ≤ p, qst ≤ αst, 1 ≤ ∀t < ∀s ≤ p

)

=
p∏

i=1

Fn−i+1(αi)
∏

s>t

Φ(αst)

+
1

2
z

p−1∑

j=1

aj

( ∏

(s,t)6=(j+1,j)

Φ(αst)
)( ∏

i6=j,j+1

Fn−i+1(αi)
)
ζj(αj, αj+1, αj+1,j) + o(z),

P (fi ≤ αi)

= Fn−i+1(αi)− 1

2
z
{
aiFn−i−1(αi)−

(
ai−1

n− i + 1

n− i
+ ai

)
Fn−i+1(αi)

+ai−1
n− i + 1

n− i
Fn−i+3(αi)

}
+ o(z), 1 ≤ i ≤ p,

P (qst ≤ αst)

=





Φ(αst)− z
n− t

n− t− 1
atΦ

′(αst)αst + o(z) if s = t + 1,

Φ(αst) + o(z) if t + 2 ≤ s ≤ p,
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where Fn(α) = P (χ2(n) ≤ α), Φ(α) = P (N(0, 1) ≤ α) and

ζj(a, b, c) =
1

n− j − 1
Fn−j−1(a)Fn−j(b)

(
Φ(c)− Φ′(c)c

)

−2
n− j

n− j − 1
Fn−j−1(a)Fn−j+2(b)Φ(c)

+Fn−j+1(a)Fn−j(b)
(
Φ(c)− Φ′(c)c

)

+
n− j

n− j − 1
Fn−j−1(a)Fn−j+2(b)

(
Φ(c)− Φ′(c)c

)
.

Proof.
Let A denote the event

fi ≤ αi, 1 ≤ ∀i ≤ p, and qst ≤ αst, 1 ≤ ∀t < ∀s ≤ p.

We have
P (A) = E[IA IG(Ū∗)(G̃)] + E[IA IG(Ū∗)C (G̃)].

Since
E[IA IG(Ū∗)C (G̃)] ≤ E[IG(Ū∗)C (G̃)]

and the right side is o(z) by Theorem 1,

E[IA IG(Ū∗)C (G̃)] = o(z).

We consider E[IA IG(Ū∗)(G̃)]. Substitute IA IG(Ū∗)(G̃) with IG(Ū∗)(G̃) in the proof of Theorem 1.
Then since

IA IG(Ū∗)(G̃) ≤ IG(Ū∗)(G̃),

the integrals of order o(z) in the proof are still o(z) after the substitution. Therefore proceeding
as in the proof of Theorem 1 we have

P (A) =
p∏

i=1

Fn−i+1(αi)
∏

s>t

Φ(αst) +
1

2
z

4∑

m=1

Im + o(z), (35)

where

I1 =
p−1∑

j=1

aj

∫

Rp′

∫

Rp
+

h0(f , q) q2
j+1,j f−1

j IA dfdq,

I2 = −2
p−1∑

j=1

aj

∫

Rp′

∫

Rp
+

h0(f , q)
fj+1

fj

IA dfdq,

I3 =
p−1∑

j=1

aj

∫

Rp′

∫

Rp
+

h0(f , q) q2
j+1,j IA dfdq,

I4 =
p−1∑

j=1

aj

∫

Rp′

∫

Rp
+

h0(f , q) q2
j+1,j

fj+1

fj

IA dfdq.
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If we use the formulas

E[χ2(n) I(χ2(n) ≤ α)] = nFn+2(α),

E[(χ2(n))−1 I(χ2(n) ≤ α)] =
1

n− 2
Fn−2(α),

E[(N(0, 1))2 I(N(0, 1) ≤ α)] = Φ(α)− Φ′(α)α,

we have

I1 =
p−1∑

j=1

aj

( ∏

(s,t) 6=(j+1,j)

Φ(αst)
)(∏

i6=j

Fn−i+1(αi)
)

×
(
Φ(αj+1,j)− Φ′(αj+1,j)αj+1,j

) 1

n− j − 1
Fn−j−1(αj),

I2 = −2
p−1∑

j=1

aj

(∏

s>t

Φ(αst)
)( ∏

i6=j,j+1

Fn−i+1(αi)
)

× n− j

n− j − 1
Fn−j+2(αj+1)Fn−j−1(αj),

I3 =
p−1∑

j=1

aj

( ∏

(s,t) 6=(j+1,j)

Φ(αst)
)( p∏

i=1

Fn−i+1(αi)
)(

Φ(αj+1,j)− Φ′(αj+1,j)αj+1,j

)
,

I4 =
p−1∑

j=1

aj

( ∏

(s,t) 6=(j+1,j)

Φ(αst)
)( ∏

i6=j,j+1

Fn−i+1(αi)
)

× n− j

n− j − 1
Fn−j+2(αj+1)Fn−j−1(αj)

(
Φ(αj+1,j)− Φ′(αj+1,j)αj+1,j

)
.

If we substitute these into (35), we have the result.
We can prove the statement for P (fi ≤ αi) (1 ≤ i ≤ p) or P (qst ≤ αst) (1 ≤ t < s ≤ p)

completely similarly. Note that the proof is essentially the same as putting ∞ in all the elements
other than αi(αst) in the result on P

(
fi ≤ αi, 1 ≤ ∀i ≤ p, qst ≤ αst, 1 ≤ ∀t < ∀s ≤ p

)
.

The next lemma, which will be used in the next section, is of interest by itself. Takemura and
Sheena (2002) showed x converges in probability to 0; that is,

P (x ∈ N (0)C) → 0

as ‖y‖ → 0 for any open neighborhood N (0) of 0 in [0, 1]p−1. The following result tells that
P (x ∈ N (0)C) vanishes more rapidly than z.

Lemma 4 Suppose that n− p− 1 > 0. For any open neighborhood N (0) of 0 in [0, 1]p−1,

P (x ∈ N (0)C) = o(z).
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Proof. Without loss of generality, we can assume that Σ = Λ is diagonal.
It suffices to prove the statement for the case

N (0) = [0, ε)p−1

with arbitrarily small ε > 0. Note that

N (0)C =
⋃

1≤i≤p−1

{x | xi ≥ ε},

hence that

PΛ(x ∈ N (0)C) ≤
p−1∑

i=1

EΛ[I(xi ≥ ε)],

where the subscript Λ of P and E refers to the probability and the expected value under Σ = Λ.
We will prove EΛ[I(xi ≥ ε)] = o(z). Since the following inequality holds,

EΛ[I(xi ≥ ε)] ≤ ε−1EΛ[xiI(xi ≥ ε)] = ε−1aizEΛ[
fi+1

fi

I(xi ≥ ε)],

it suffices to show

lim
z→0

EΛ[
fi+1

fi

I(xi ≥ ε)] = 0.

By Lemma 5 in Appendix, we have

EΛ[
fi+1

fi

I(xi ≥ ε)] ≤ EΛ

[( p∑

j=i+1

w̃jj

)( i∑

j=1

w̃jj
)
I
(
xi(W ) ≥ ε

)]

= EI
[( p∑

j=i+1

wjj

)( i∑

j=1

wjj
)
I
(
xi(Λ

1
2 WΛ

1
2 ) ≥ ε

)]
.

By the dominated convergence theorem (note n− p− 1 > 0) and Lemma 6 in Appendix,

lim
z→0

EI
[( p∑

j=i+1

wjj

)( i∑

j=1

wjj
)
I
(
xi(Λ

1
2 WΛ

1
2 ) ≥ ε

)]

= EI
[( p∑

j=i+1

wjj

)( i∑

j=1

wjj
)

lim
z→0

I
(
xi(Λ

1
2 WΛ

1
2 ) ≥ ε

)]

= 0

4 Asymptotic expansion of risk

In this section we consider the asymptotic expansion of the risk of a scale and orthogonally
equivariant estimator with respect to Stein’s loss. It is possible to apply directly the lemmas and
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theorems in the previous section to the calculation of the risk, but it seems somewhat cumbersome.
We take another approach which uses the unbiased estimator of risk.

The unbiased estimator of risk was given independently by Stein (1977) and Haff (1979).
Sheena (1995) gave an alternative short derivation for the case of orthogonally equivariant estima-
tors. Kubokawa and Srivastava (1999) generalized the unbiased estimator to elliptically contoured
distributions.

Suppose that an orthogonally equivariant estimator given by (6) has C1 functions ψi(l), i =
1, . . . , p. Let

R̂(Σ̂) = (n− p− 1)
p∑

i=1

ψi(l)

li
+ 2

p∑

i=1

∂ψi(l)

∂li
+ 2

∑

i<j

ψi(l)− ψj(l)

li − lj
.

Then
E[R̂(Σ̂)] = E[tr(Σ̂Σ−1)], ∀Σ > 0. (36)

Note that if an orthogonally equivariant estimator (6) is also scale equivariant, ci(l), 1 ≤ i ≤ p,
depends on l only through xi = li+1/li, 1 ≤ i ≤ p−1. Hence we use the notation ci(x), 1 ≤ i ≤ p.
Using (36) for this estimator, we obtain

E[L1(Σ̂,Σ)]

= E
[
(n− p + 1)

p∑

i=1

ci(x) + 2
p∑

i=1

li
∂ci(x)

∂li
+ 2

∑

i<j

ci(x)li − cj(x)lj
li − lj

−
p∑

i=1

log ci(x)− log |WΣ−1| − p
]

= E
[ p∑

i=1

(n + p + 1− 2i)ci(x) + 2
∑

i<j

(ci(x)− cj(x))
lj

li − lj
+ 2

p∑

i=1

li
∂ci(x)

∂li

−
p∑

i=1

log ci(x)− log |WΣ−1| − p
]

= E
[ p∑

i=1

(n + p + 1− 2i)ci(x) + 2
∑

i<j

(ci(x)− cj(x))

∏j−1
m=i xm

1−∏j−1
m=i xm

(37)

−2
p−1∑

i=1

∂ci(x)

∂xi

xi + 2
p∑

i=2

∂ci(x)

∂xi−1

xi−1 −
p∑

i=1

log ci(x)− log |WΣ−1| − p
]
.

If we use this formula, as we will see later, we only have to evaluate E[xi], 1 ≤ i ≤ p− 1, for the
expansion of the asymptotic risk w.r.t. z up to the first order.

Theorem 3 Suppose that n− p− 4 > 0. Then

E[xi] = aiz
n− i

n− i− 1
+ o(z), 1 ≤ i ≤ p− 1.
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Proof.
Note

E[xi] = E[xi IG(Ū∗)(G̃)] + E[xi IG(Ū∗)C (G̃)].

Since
E[xi IG(Ū∗)C (G̃)] ≤ E[IG(Ū∗)C (G̃)] = o(z)

by Theorem 1, we have
E[xi IG(Ū∗)C (G̃)] = o(z).

Therefore we only have to prove

E[xi IG(Ū∗)(G̃)] = aiz
n− i

n− i− 1
+ o(z), 1 ≤ i ≤ p− 1. (38)

As in (15),

E[xi IG(Ū∗)(G̃)] = aiz
∫

Rp′

∫

Rp
+

fi+1

fi

h0(f , q) h1(f , q,λ) h2(f ,λ) h3(f , q,λ) dfdq. (39)

The argument hereafter is almost the same as that in the proof of Theorem 1. The slight difference
is that here we only need lower terms in the expansions of the related functions or integrals since
z already exists in (39).

First consider the expansion of h1. If we use t(τ) in (29) and its Taylor expansion,

t(τ) = t(0) + τt′(0) +
τ 2

2
t′′(θ(τ)), 0 < θ(τ) < τ,

by similar argument for the proof of (30), we can prove

h1(f , q,λ) = 1 + z t(θ(τ))
∑′′

M̃(f , q, τ)
p∏

j=1

f
αj

j

∏

s>t

qβst
st ; (40)

Here
∑′′ is a finite sum of terms of the form M̃(f , q, τ)

∏p
j=1 f

αj

j

∏
s>t q

βst
st , where αj ≥ −1 (1 ≤

j ≤ p− 1), αp ≥ 0, βst = 0, 1, . . . (1 ≤ t < s ≤ p) and M̃(f , q, τ) is bounded on Rp
+×Rp′ × [0, 1].

Substituting (40) into (39), we have

E[xi IG(Ū∗)(G̃)] = aizI1 + aiz
2I2,

where

I1 =
∫

Rp′

∫

Rp
+

fi+1

fi

h0(f , q) h2(f ,λ) h3(f , q,λ) dfdq,

I2 =
∑′′ ∫

Rp′

∫

Rp
+

fi+1

fi

h0(f , q) t(θ(τ)) M̃(f , q, τ)
p∏

j=1

f
αj

j

∏

s>t

qβst
st

× h2(f ,λ) h3(f , q,λ) dfdq.
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Using boundedness of M̃(f , q, τ)h2(f ,λ)h3(f , q,λ) and the inequality h0(f , q)t(θ(τ)) ≤ h̄0(f , q),
where h̄0(f , q) is given in (31) we can easily prove z2I2 = o(z) under the condition n− p− 4 > 0.

Now we focus on I1. We apply to I1 the following modified versions of Lemma 2 and 3. Using
the same notation as these lemmas, we can easily check that if αi > 0, i = 1, . . . , p, then

∫

Rp′

∫

Rp
+

η(f , q,λ) h∗(f , q; α, β) h3(f , q,λ) dfdq

=
∫

Rp′

∫

Rp
+

η(f , q,λ) h∗(f , q; α,β) dfdq + o(1), (41)

∫

Rp′

∫

Rp
+

η(f , q,λ) h∗(f , q; α, β) h2(f ,λ) dfdq

=
∫

Rp′

∫

Rp
+

η(f , q,λ) h∗(f , q; α,β) dfdq + o(1). (42)

Using (41), we have
aizI1 = aizI3 + o(z),

where

I3 =
∫

Rp′

∫

Rp
+

fi+1

fi

h0(f , q) h2(f ,λ) dfdq.

Furthermore by (42), we have
aizI3 = aizI4 + o(z),

where

I4 =
∫

Rp′

∫

Rp
+

fi+1

fi

h0(f , q) dfdq

= E[χ2(n− i)]E[(χ2(n− i + 1))−1]

=
n− i

n− i− 1
.

This completes the proof of (38).

From Theorem 3, we derive two corollaries we will use later.

Corollary 1 Suppose that n − p − 4 > 0. If nonnegative integers αi, i = 1, . . . , p − 1, satisfy∑p−1
i=1 αi ≥ 2, then

E[
p−1∏

i=1

xαi
i ] = o(z).

Proof.
There exist s, t (1 ≤ s, t ≤ p− 1) such that

p−1∏

i=1

xαi
i ≤ xsxt.
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Therefore it suffices to prove

E[xixj] = o(z), 1 ≤ i, j ≤ p− 1.

Note that
E[xixj] = E[xixjIG(Ū∗)(G̃)] + E[xixjIG(Ū∗)C (G̃)].

Since
E[xixjIG(Ū∗)C (G̃)] ≤ E[IG(Ū∗)C (G̃)]

and the right side is o(z) by Theorem 1,

E[xixjIG(Ū∗)C (G̃)] = o(z).

By (15), we have

E[xixjIG(Ū∗)(G̃)] = z2aiaj

∫

Rp′

∫

Rp
+

fi+1

fi

fj+1

fj

h(f , q,λ) dfdq

≤ z2aiaj

∫

Rp′

∫

Rp
+

fi+1

fi

fj+1

fj

h̄(f , q) dfdq,

where h̄(f , q) is given by (19). The last integral converges if n− p− 2 > 0. Therefore

E[xixjIG(Ū∗)(G̃)] = o(z).

This completes the proof.

Corollary 2 Suppose that n− p− 4 > 0 and nonnegative integers αj, βj, j = 1, . . . , p− 1, satisfy∑p−1
j=1 αj ≥ 1,

∑p−1
j=1 βj ≥ 1, then

E




∏p−1
j=1 x

αj

j

1−∏p−1
j=1 x

βj

j


 =





aiz
n− i

n− i− 1
+ o(z) if αi = 1, αj = 0, ∀j 6= i,

o(z) if
∑p−1

j=1 αj ≥ 2.

Proof.
First consider the case αi = 1, αj = 0, ∀j 6= i. Let y =

∏p−1
j=1 x

βj

j . Then

xi

1−∏p−1
j=1 x

βj

j

= xi

∞∑

m=0

ym = xi + lim
t→∞St,

where St = xi
∑t

m=1 ym. By Theorem 3, E[xi] = aiz
n−i

n−i−1
+ o(z). Therefore we only have to show

lim
z→0

z−1E[ lim
t→∞St] = 0. (43)
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Since 0 ≤ S1 ≤ S2 ≤ · · ·, we have, by the monotone convergence theorem,

z−1E[ lim
t→∞St] = z−1 lim

t→∞E[St] =
∞∑

m=1

am(z),

where am(z) = E[xiy
m]z−1, m ≥ 1. By Fatou’s lemma for a counting measure, we have

0 ≤
∞∑

m=1

lim inf
z→0

am(z) ≤ lim inf
z→0

∞∑

m=1

am(z) ≤ lim sup
z→0

∞∑

m=1

am(z) ≤
∞∑

m=1

lim sup
z→0

am(z).

Since
∑p−1

j=1 βj ≥ 1, by Corollary 1, we have

lim sup
z→0

am(z) = lim
z→0

am(z) = 0.

Therefore limz→0
∑∞

m=1 am(z) = 0. This completes the proof of (43).
For the case

∑p−1
j=1 αj ≥ 2, we can prove the statement similarly. We omit the proof.

Finally we give the result on the expansion of the risk w.r.t. z up to the first order. Here we
consider a scale and orthogonally equivariant estimator that satisfies the condition (9), which is a
necessary condition for minimaxity. Let the estimator be given by (6) with ci(x) = ψi(l)/li, i =
1, . . . , p. We state three conditions: First two conditions are rather technical, while the last one is
the equivalence of (9).

1. ci(x) (1 ≤ ∀i ≤ p) is a C2 function of x on [0, 1]p−1.

2. There exists some lower bound c such that 0 < c ≤ ci(x), 1 ≤ ∀i ≤ p.

3. ci(0) = δJS
i , i = 1, . . . , p, where δJS

i is given by (7).

Theorem 4 Suppose that n−p−4 > 0. If a scale and orthogonally equivariant estimator satisfies
the above three conditions, then

E[L1(Σ̂,Σ)] = R̄− z
[
2

p−1∑

i=1

ai
n− i

n− i− 1
{2δJS

i δJS
i+1 + ηii − ηi+1,i}

]
+ o(z),

where

ηij =
∂ci

∂xj

(0), 1 ≤ i ≤ p, 1 ≤ j ≤ p− 1,

and R̄ is the minimax risk.

Proof.
Taylor expansion of ci(x), i = 1, . . . , p, around 0 is given by

ci(x) = ci(0) +
p−1∑

j=1

xjηij +
1

2

∑

1≤s,t≤p−1

c̃
(i)
st (θx)xsxt, (44)
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where

c̃
(i)
st (x) =

∂2ci

∂xs∂xt

(x), 0 < θ = θ(x) < 1.

Note that since ci(x) is a C2 function on [0, 1]p−1, c̃
(i)
st (x) is continuous and hence bounded on

[0, 1]p−1. Similarly we have

∂ci

∂xi

(x) = ηii +
p−1∑

s=1

c̃
(i)
is (θx)xs, 1 ≤ i ≤ p− 1, (45)

∂ci

∂xi−1

(x) = ηi,i−1 +
p−1∑

s=1

c̃
(i)
i−1,s(θx)xs, 2 ≤ i ≤ p, (46)

log ci(x) = log ci(0) +
p−1∑

j=1

xj

ci(0)
ηij +

1

2

∑

1≤s,t≤p−1

c̄
(i)
st (θx)xsxt, 1 ≤ i ≤ p, (47)

where

c̄
(i)
st (x) =

∂

∂xs∂xt

log ci(x)

and from the condition 2 this is also bounded. Note that we use notations sparingly, i.e., θ = θ(x)
is different from one equation to another. We use the same abbreviated notation below.

Substituting (44), (45), (46) and (47) into (37), we have

E[L1(Σ̂,Σ)]

= −
p∑

i=1

log δJS
i − E[log |WΣ−1|]

+E
[ p∑

i=1

(n + p + 1− 2i)
{p−1∑

j=1

xjηij +
1

2

∑

1≤s,t≤p−1

c̃
(i)
st (θx)xsxt

}

+2
∑

i<j

∏j−1
m=i xm

1−∏j−1
m=i xm

×
{
(δJS

i − δJS
j ) +

p−1∑

s=1

xs(ηis − ηjs) +
1

2

∑

1≤s,t≤p−1

(c̃
(i)
st (θx)− c̃

(j)
st (θx))xsxt

}

−2
p−1∑

i=1

ηiixi + 2
p∑

i=2

ηi,i−1xi−1 − 2
p−1∑

i=1

xi

p−1∑

s=1

c̃
(i)
is (θx)xs + 2

p∑

i=2

xi−1

p−1∑

s=1

c̃
(i)
i−1,s(θx)xs

−
p∑

i=1

p−1∑

j=1

xj(δ
JS
i )−1ηij − 1

2

p∑

i=1

∑

1≤s,t≤p−1

c̄
(i)
st (θx)xsxt

]
.

Apply Theorem 3, Corollary 1,2 to the right side. By straightforward calculation, using the
boundedness of c̃

(i)
st (θx), c̄

(i)
st (θx) (1 ≤ i ≤ p, 1 ≤ s, t ≤ p− 1) and the fact

R̄ = −
p∑

i=1

log δJS
i − E[log |WΣ−1|]
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(see James and Stein (1961)), we have

E[L1(Σ̂,Σ)] = R̄− z
[
2

p−1∑

i=1

ai
n− i

n− i− 1
{2δJS

i δJS
i+1 + ηii − ηi+1,i}

]
+ o(z).

The conditions 1–3 of Theorem 4 can be changed as follows.

1∗ ci(x) (1 ≤ ∀i ≤ p) is a C2 function of x on some open neighborhood of 0, say N (0), in
[0, 1]p−1.

2∗ There exists some bounds such that 0 < c < ci(x) < c, 1 ≤ ∀i ≤ p.

3∗ ci(0) = δJS
i , i = 1, . . . , p.

Corollary 3 Suppose that n−p−4 > 0. If a scale and orthogonally equivariant estimator satisfies
the above three conditions, the result of Theorem 4 holds.

Proof.
Since the risk of an orthogonally equivariant estimator depends on Σ only through Λ, we can

assume Σ = Λ without loss of generality.
First we prove that any scale and orthogonally invariant estimator that satisfies the condition

2∗ has the following property;

EΛ[L1(Σ̂,Λ)I(x ∈ Ñ (0)C)] = o(z) (48)

for any open neighborhood Ñ (0) of 0 in [0, 1]p−1.
Let

L1(Σ̂,Λ) = L̃(Σ̂,Λ)− log |Λ−1W |,
where

L̃(Σ̂,Λ) = tr(Σ̂Λ−1)−
p∑

i=1

log ci(x)− p.

Since

|L̃(Σ̂,Λ)| ≤
p∑

i=1

p∑

j=1

g2
ijcj(x)ljλ

−1
i +

p∑

i=1

∣∣∣log ci(x)
∣∣∣ + p

≤ c
p∑

i=1

p∑

j=1

g2
ijljλ

−1
i + p max

(∣∣∣log c
∣∣∣,

∣∣∣log c
∣∣∣
)

+ p

= c tr(WΛ−1) + p max
(∣∣∣log c

∣∣∣,
∣∣∣log c

∣∣∣
)

+ p,

there exist α, M such that

0 < α <
1

2
, M > 0, M exp

(
tr αWΛ−1

)
>

∣∣∣L̃(Σ̂,Λ)
∣∣∣.
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Therefore
∣∣∣EΛ[L̃(Σ̂,Λ)IÑ (0)C (x)]

∣∣∣ < MEΛ[exp
(
tr αWΛ−1

)
IÑ (0)C (x)]

=
M

2np/2Γp(n/2)
|Λ|−n/2

×
∫

W>0
|W |(n−p−1)/2 exp

(
− tr α̃WΛ−1

)
IÑ (0)C (x)dW , α̃ =

1

2
− α

= α̃−np/2MEΛ[IÑ (0)C (x)].

By Lemma 4, EΛ[IÑ (0)C (x)] = o(z). Therefore

EΛ[L̃(Σ̂,Λ)IÑ (0)C (x)] = o(z). (49)

We can also prove
EΛ[log |Λ−1W | IÑ (0)C (x)] = o(z) (50)

similarly to the proof of Lemma 4. We briefly describe the proof. First note it suffices to give a
proof for the case when

Ñ (0) = [0, ε)p−1

with arbitrarily small positive number ε. By Lemma 5, the following inequality holds.

EΛ

[∣∣∣log |Λ−1W |
∣∣∣I

(
x(W ) ∈ Ñ (0)C

)]

≤ zε−1
p−1∑

i=1

aiEΛ

[∣∣∣log |Λ−1W |
∣∣∣
( p∑

j=i+1

w̃jj

)( i∑

j=1

w̃jj
)
I
(
xi(W ) ≥ ε

)]

= zε−1
p−1∑

i=1

aiEI

[∣∣∣log |W |
∣∣∣
( p∑

j=i+1

wjj

)( i∑

j=1

wjj
)
I
(
xi(Λ

1/2WΛ1/2) ≥ ε
)]

.

The condition n− p− 4 > 0 is sufficient for the convergence of

EI

[∣∣∣log |W |
∣∣∣
( p∑

j=i+1

wjj

)( i∑

j=1

wjj
)]

.

Therefore by Lemma 6 and the dominated convergence theorem,

lim
z→0

EI

[∣∣∣log |W |
∣∣∣
( p∑

j=i+1

wjj

)( i∑

j=1

wjj
)
I
(
xi(Λ

1/2WΛ1/2) ≥ ε
)]

= 0.

This completes the proof of (50). From (49) and (50), it is obvious that (48) holds true.
We can construct another scale and orthogonally equivariant estimator Σ̂∗,

Σ̂∗ = GΨ∗G′, Ψ∗ = diag(ψ∗1(l), . . . , ψ
∗
p(l)), c∗i (x) =

ψ∗i (l)
li

, 1 ≤ i ≤ p
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such that c∗i (x) (1 ≤ i ≤ p) satisfy the conditions 1, 2∗, 3∗ and on some open neighborhood of 0
(say N ∗), c∗i (x) = ci(x), 1 ≤ i ≤ p. Then it follows that by (48) and Theorem 4

EΛ[L1(Σ̂,Σ)] = EΛ[L1(Σ̂,Σ)IN ∗(x)] + o(z)

= EΛ[L1(Σ̂
∗,Σ)IN ∗(x)] + o(z)

= EΛ[L1(Σ̂
∗,Σ)] + o(z)

= R̄− z
[
2

p−1∑

i=1

ai
n− i

n− i− 1
{2δJS

i δJS
i+1 + ηii − ηi+1,i}

]
+ o(z).

Corollary 3 still requires not only the local conditions (1∗ and 3∗) but also the global condition
(2∗). Next corollary gives necessary conditions for an estimator to be tail minimax. It is relatively
easy to apply this corollary to a particular estimator, since it requires only local conditions.

Corollary 4 Suppose that n − p − 4 > 0. If a scale and orthogonally equivariant estimator that
satisfies the condition 1∗ is tail minimax, then

ci(0) = δJS
i , 1 ≤ i ≤ p, (51)

and
2δJS

i δJS
i+1 + ηii − ηi+1,i ≥ 0, 1 ≤ i ≤ p− 1. (52)

Proof.
(51) is due to Theorem 4 of Takemura and Sheena (2002). Now suppose (51) is satisfied but

(52) is violated. Then there exist some positive numbers, ai, i = 1, . . . p− 1, such that

p−1∑

i=1

ai
n− i

n− i− 1
{2δJS

i δJS
i+1 + ηii − ηi+1,i} < 0.

We consider the linear convergence of ‖y‖ to 0 with these ai’s. Note that we can construct another
scale and orthogonally equivariant estimator Σ̂∗,

Σ̂∗ = GΨ∗G′, Ψ∗ = diag(ψ∗1(l), . . . , ψ
∗
p(l)), c∗i (x) = ψ∗i (l)/li, 1 ≤ i ≤ p

such that c∗i (x) (1 ≤ i ≤ p) satisfy the conditions 1∗–3∗ and on some open neighborhood of 0 (say
N ∗), c∗i (x) = ci(x), 1 ≤ i ≤ p. Then the following inequality holds

EΣ[L1(Σ̂,Σ)] = EΛ[L1(Σ̂,Σ)]

≥ EΛ[L1(Σ̂,Σ)I(x ∈ N ∗)]

= EΛ[L1(Σ̂
∗,Σ)I(x ∈ N ∗)]

= EΛ[L1(Σ̂
∗,Σ)] + o(z) (by (48))

= R̄− z
[
2

p−1∑

i=1

ai
n− i

n− i− 1
{2δJS

i δJS
i+1 + ηii − ηi+1,i}

]
+ o(z).
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The right side is strictly larger than R̄ for small enough z.

Now we apply Corollary 4 to Stein’s and Haff’s estimators. Both of them are known to
perform well numerically. (see Lin and Perlman (1985), Sugiura and Ishibayashi (1997)), but
their minimaxity has been an open problem.

Stein’s estimator Σ̂S is an isotonized modification of the rough estimator given by (10). The
algorithm is depicted in Lin and Perlman (1985). After the modification ψi (1 ≤ i ≤ p) is given
as the ratio of pooled adjacent li’s and c−1

i ’s of the rough estimator. Since the pooling depends
on the value of ci’s, it gets complicated especially when p is large. However for the application of
Corollary 4, we only have to know its behavior in a neighborhood of the point x = 0. When li’s
are fully dispersed, that is, ‖x‖ is small enough, the ψi’s in (10) keep the order (11), hence do not
need any modification. Then ci’s of Σ̂S are given by

ci(x) =
[
(n− p + 1) + 2

∑

i<j

( 1

1−∏j−1
m=i xm

)
+ 2

∑

i>j

(
1− 1

1−∏i−1
m=j xm

)]−1
, 1 ≤ i ≤ p,

in a small enough neighborhood of 0. It is obvious that this ci(x) satisfies the condition 1∗. Besides
we can easily check

ci(0) = δJS
i , 1 ≤ i ≤ p,

and

ηii =
∂ci

∂xi

(0) = −2(δJS
i )2, ηi+1,i =

∂ci+1

∂xi

(0) = 2(δJS
i+1)

2, 1 ≤ i ≤ p− 1.

Consequently the left side of (52) equals to

2
{
δJS
i δJS

i+1 − (δJS
i )2 − (δJS

i+1)
2
}

= −2
{(

δJS
i − δJS

i+1

)2
+ δJS

i δJS
i+1

}
. (53)

The right side is obviously negative. Therefore from Corollary 4, Stein’s estimator, Σ̂S is not tail
minimax, hence not minimax when n − p − 4 > 0. More strictly speaking, since (53) is negative
for 1 ≤ ∀i ≤ p− 1, we can say for any linear convergence of ‖y‖, the risk of Σ̂S is over R̄ for small
enough z.

The same argument holds for Σ̂H . Haff’s estimator is derived through a formal Bayes rule, but
in the end it emerges as another type of modification of Stein’s rough estimator (10) under the
constraint (11). If the rough estimator already keeps the order (11), it is completely the same as
Σ̂S. Therefore the above argument for ci(x) on a small enough neighborhood of 0 still holds good.
Consequently Σ̂H is not minimax either. We summarize the results in the following corollary.

Corollary 5 Stein’s estimator Σ̂S and Haff’s estimator Σ̂H are not minimax.

Another interesting estimator of which minimaxity or non-minimaxity has not been proved
theoretically is the reference prior Bayes estimator derived by Yang and Berger (1994). This
estimator is given as {E[Σ−1]}−1, where the expectation is taken with respect to the posterior
density of Σ

c|Σ|−(n/2+1)
{∏

i<j

(λi − λj)
}−1

exp
(
−1

2
trΣ−1W

)
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with the normalizing constant c. Though Sugiura and Ishibayashi (1997) gives some concrete
expressions of this estimator using Legendre polynomials or hypergeometric functions when p = 2,
it seems difficult to give explicit forms for general p. According to the simulation study by Sugiura
and Ishibayashi (1997), its risk approaches to the minimax risk R̄ from upper side as ‖y‖ → 0 like
Σ̂S and Σ̂H . This indicates that the reference prior estimator is not minimax either. To prove
this using Theorem 4 or its corollary, we need to evaluate ci(0) and ηij. For this purpose, the
methods of Takemura and Sheena (2002) might be useful, since the form of the posterior density
resembles that of Wishart distribution.

5 Appendix

The next result was essentially proved in the proof of Lemma 1 of Takemura and Sheena (2002).
We state it as an independent lemma and give a proof.

Lemma 5 The following inequalities hold for every fixed W = (wij) > 0.

fi = liλ
−1
i ≤

p∑

j=i

w̃jj

f−1
i = l−1

i λi ≤
i∑

j=1

w̃jj,

where
(w̃ij) = W̃ = Λ− 1

2 WΛ− 1
2 , (w̃ij) = W̃−1 = Λ

1
2 W−1Λ

1
2 .

Proof.
Let W(i) be the (p − i + 1) × (p − i + 1) submatrix of W made by deleting the first i − 1

rows and columns. Let l̄(i) denote the largest eigenvalue of W(i). Then using a theorem on the
magnitude of the eigenvalues of a submatrix (see, e.g. (6) in p227 of Marshal and Olkin (1979)),
li ≤ l̄(i). Therefore

liλ
−1
i ≤ l̄(i)λ

−1
i ≤

p−i+1∑

j=1

(W(i))jjλ
−1
i ≤

p−i+1∑

j=1

(W(i))jjλ
−1
i+j−1 =

p∑

j=i

w̃jj.

Now let W (i) be the i × i submatrix of W−1 composed of the first i rows and columns, and
l̄(i) be its largest eigenvalue. Then we have l−1

i ≤ l̄(i) and

l−1
i λi ≤ l̄(i)λi ≤

i∑

j=1

(W (i))jjλi ≤
i∑

j=1

(W (i))jjλj =
i∑

j=1

w̃jj.

Let L(W ) = diag(l1(W ), . . . , lp(W )) be the functions of W defined by the spectral decom-
position of W in (1).
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Lemma 6 For every fixed W = (wij) > 0, it holds that

lim
‖y‖→0

li+1(Λ
1
2 WΛ

1
2 )

li(Λ
1
2 WΛ

1
2 )

= 0, 1 ≤ i ≤ p− 1.

Proof.
We define the notations;

A = (aij) = Λ
1
2 WΛ

1
2 ,

A(i1, . . . , is): principle submatrix composed of the ijth row and column, j = 1, . . . , s,

l1(A(i1, . . . , is)) ≥ · · · ≥ ls(A(i1, . . . , is)): the ordered eigenvalues of A(i1, . . . , is).

Suppose that there exist some positive numbers γs,Ms1,Ms2, s = 1, . . . , p, such that

‖y‖ < γs ⇒ Ms1 >
ls(A)

ass

> Ms2. (54)

Then for ‖y‖ < min(γs+1, γs)

ls+1(A)

ls(A)
=

ls+1(A)

as+1,s+1

ass

ls(A)

as+1,s+1

ass

≤ Ms+1,1M
−1
s2 ws+1,s+1w

−1
ss λs+1λ

−1
s .

This implies ls+1(A)/ls(A) → 0 as ‖y‖ → 0. Therefore we only have to prove the existence of
γs,Ms1,Ms2 (1 ≤ s ≤ p) that satisfy (54). We prove it inductively with respect to p. If p = 1,
it is obvious since l1(A)/a11 = 1. Suppose the existence of γs,Ms1,Ms2 (1 ≤ s ≤ p) satisfying
(54) when p = k − 1. Now we consider the case p = k. Using the formula on the eigenvalues of a
submatrix, we have

l1(A) ≥ l1(A(1, . . . , k − 1)) ≥ l2(A) ≥ l2(A(1, . . . , k − 1)) ≥ · · ·
≥ lk−1(A(1, . . . , k − 1)) ≥ lk(A),

l1(A) ≥ l1(A(2, . . . , k)) ≥ l2(A) ≥ l2(A(2, . . . , k)) ≥ · · · ≥ lk−1(A(2, . . . , k)) ≥ lk(A).

Therefore for 2 ≤ s ≤ k − 1,

ls−1(A(2, . . . , k))

ass

≥ ls(A)

ass

≥ ls(A(1, . . . , k − 1))

ass

.

By the assumption for the case p = k − 1, there exist γ,M1,M2 such that

‖y‖ < γ ⇒ M1 > ls−1(A(2, . . . , k))a−1
ss , ls(A(1, . . . , k − 1))a−1

ss > M2.

Combining these inequalities, we have

‖y‖ < γ ⇒ M1 > ls(A)a−1
ss > M2.

This completes the proof for the existence of γs,Ms1,Ms2 when s = 2, . . . , k − 1.
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Now we consider the cases s = 1 and s = k = p. Since

a−1
11 A →

(
1 0
0′ 0

)

as ‖y‖ → 0,

lim
‖y‖→0

l1(A)

a11

= l1
(

lim
‖y‖→0

a11
−1A

)
= 1.

This guarantees the existence of the required γ1,M11,M12.
Note that

l−1
p (A)app = l1(A

−1)app = l1(λpA
−1)wpp.

Since as ‖y‖ → 0,

λpA
−1 →

(
0 0
0′ wpp

)
, wpp = (W−1)pp,

l1(λpA
−1) → wpp. Therefore

lim
‖y‖→0

lp(A)

app

=
1

wppwpp
.

This guarantees the existence of the required γp,Mp1,Mp2.
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