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Invariant minimal Markov basis for sampling contingency tables
with fixed marginals

Satoshi AOKI and Akimichi TAKEMURA

Graduate School of Information Science and Technology
University of Tokyo, Tokyo, Japan

SUMMARY

In this paper we define an invariant Markov basis for a connected Markov chain over the set of
contingency tables with fixed marginals and derive some characterizations of minimality of the
invariant basis. We also give a necessary and sufficient condition for uniqueness of invariant
minimal Markov basis. The invariance here refers to permutation of indices of each axis of the
contingency tables. If the categories of each axis do not have any order relations among them,
it is natural to consider the action of the symmetric group on each axis of the contingency
table. A general algebraic algorithm for obtaining a Markov basis was given by Diaconis and
Sturmfels (1998). Their algorithm is based on computing Gröbner basis of a well-specified
polynomial ideal. However the reduced Gröbner basis depends on the particular term order
and is not symmetric. Therefore it is of interest to consider properties of invariant Markov
basis. We study minimality of invariant Markov basis using techniques of Takemura and Aoki
(2003).

Keywords : exact tests, hierarchical models, Markov chain Monte Carlo, orbit, symmetric
group, transformation group.

1 Introduction

In performing exact conditional tests in discrete exponential families given sufficient statistics,
the p values are usually calculated by large sample approximations. However when the sample
size is small compared to the size of the sample space, the large sample approximation may
not be sufficiently accurate. When the sample size and the sample space are relatively small,
enumeration of the sample space may be feasible with some ingenious enumeration schemes.
For the case of two-way contingency tables with fixed row and column sums, Mehta and Patel
(1983) proposed a network algorithm, which incorporates appropriate trimming in the enumer-
ation. Aoki (2002, 2003) extended this trimming for Fisher’s exact test in two-way contingency
tables and for the conditional tests of the Hardy-Weinberg proportions (triangular two-way
contingency tables). However, the problem of computing p values by enumeration for k-way
contingency tables, k > 2, seems to be largely open in the literature.

As another approach, a Markov chain Monte Carlo approach is extensively used in various
settings of contingency tables, for example, Besag and Clifford (1989) for performing significance
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tests for the Ising model; Smith et al. (1996) for tests of independence, quasi-independence
and quasi-symmetry for square contingency tables; Aoki and Takemura (2002) for tests of
quasi-independence for two-way contingency tables containing some structural zeros; Guo and
Thompson (1992) for tests of the Hardy-Weinberg proportions; Diaconis and Saloff-Coste (1995)
for two-way contingency tables; Hernek (1998), Dyer and Greenhill (2000) for 2×J contingency
tables; Forster et al. (1996) for 2k contingency tables. Most of these literatures deal with various
two-way settings.

Diaconis and Sturmfels (1998) proposed a general algorithm for generating random samples
from a conditional distribution given sufficient statistics for general discrete exponential family
of distributions. They suggests computing a Markov basis by finding a Gröbner basis of a
well-specified polynomial ideal. Their approach is extremely appealing because, in principle,
it can be used for the problems of any dimension. Despite its generality, however, the power
of their procedure is limited for the following two reasons; the computational feasibility and
outputs of redundant basis elements. The first one stems from the computational complexity
of computing Gröbner bases. Although intensive research is being conducted for improving the
efficiency of Gröbner bases computation (e.g. Sturmfels, 1995; Boffi and Rossi, 2001), it is still
difficult to obtain a Gröbner basis by standard packages even for problems of moderate sizes.
The second one, which we especially consider in this paper, stems from the lack of minimality
and symmetry of a reduced Gröbner basis. Gröbner basis is in general not symmetric because
it depends on the particular term order.

In this paper, we consider the symmetry of the basis. We treat the permutation of indices
of each axis of contingency tables as an action of a direct product of symmetric groups to the
basis elements and define an invariant Markov basis. Logically important point is that if a
unique minimal Markov basis exists then it is also the unique invariant Markov basis. On the
other hand, if a minimal Markov basis is not unique, an invariant minimal Markov basis is
important, since a minimal Markov basis is usually not symmetric (see Takemura and Aoki,
2003).

In Takemura and Aoki (2003), we derived some characterizations of a minimal Markov basis
and gave a necessary and sufficient condition for uniqueness of a minimal Markov basis. We
combine this approach with the theory of transformation groups to study minimality of invariant
Markov bases and give some characterizations of invariant Markov basis and its minimality. We
also give a necessary and sufficient condition for uniqueness of invariant minimal Markov basis.

The construction of this paper is as follows. Definitions and notations of contingency tables,
Markov basis and invariance are given in Section 2. Structures of an invariant minimal Markov
basis are derived in Section 3. Examples of all hierarchical 2× 2× 2× 2 models are studied in
Section 4.

2 Preliminaries

In this section, we give necessary notations and definitions on Markov basis in Section 2.1 and
group actions on contingency tables in Section 2.2.
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2.1 Contingency tables and Markov basis

Consider an I1 × · · ·× Ik k-way contingency table x. We denote a cell of the contingency table
by i = (i1, . . . , ik) or i = (i1 . . . ik). The set of cells is denoted by

I = I1 × · · · × Ik,

where I` = {1, . . . , I`}, ` = 1, . . . , k. We write x = {x(i)} �
∈I where x(i) is a frequency of cell

i. Let X denote the set of all k-way contingency tables given by

X = {x = {x(i)} �
∈I | x(i) ∈ {0, 1, 2, . . .} for i ∈ I} .

We define the degree of x ∈ X as deg(x) =
∑

�
∈I

x(i), which is the total frequency of x. X is

partitioned as

X =
∞⋃

n=0

Xn, Xn = {x ∈ X | deg(x) = n} .

Let K = {1, . . . , k} and let D denote a subset of K. The D-marginal xD = {xD(iD)} �
D∈ID

of x is the contingency table with marginal cells iD ∈
∏

`∈D

I` and entries given by

xD(iD) =
∑

�
K\D∈IK\D

x(iD, jK\D) .

Note that xD is an m-way contingency table if D = {i1, . . . , im}.
Let D1, . . . , Dr ⊂ K. Throughout this paper we assume that D1 ∪ · · · ∪ Dr = K and

there does not exist i 6= j such that Di ⊆ Dj. Note that {D1, . . . , Dr} corresponds to the
generating class of a hierarchical log-linear model for the contingency table. The set of D-
marginal frequencies

t = t(x) = (xD1
, . . . , xDr)

is the sufficient statistic under the hierarchical log-linear model. Note that if the cells and the
elements of the sufficient statistic are ordered appropriately, we can write t in matrix form as
t = Ax as in Section 2.1 of Takemura and Aoki (2003).

We define the reference set of all the contingency tables having the same (D1, . . . , Dr)-
marginals as

F � = F � (D1, . . . , Dr) = {x ∈ X | t(x) = t} .

Since all contingency tables in the same reference set F � have the same degree, we define
the degree of t by deg(t) = deg(x), x ∈ F � . Then the set T of possible values of the sufficient
statistic t, i.e., T = {t(x) | x ∈ X}, is partitioned as

T =

∞⋃

n=0

Tn, Tn = {t | deg(t) = n} .

Let Z ⊃ X be the set of k-way arrays z = {z(i)} �
∈I containing integer entries

Z = {z = {z(i)} �
∈I | z(i) ∈ {. . . ,−1, 0, 1, . . .} for i ∈ I} .
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Similarly to the D-marginal xD of x, the D-marginal of z is defined and denoted by zD. An
array z ∈ Z is a move for D1, . . . , Dr if zDj

= 0 for j = 1, . . . , r. Here 0 denotes the zero array.
Let M(D1, . . . , Dr) denote the set of all moves for D1, . . . , Dr given by

M(D1, . . . , Dr) = {z ∈ Z | zDj
= 0, j = 1, . . . , r} ⊂ Z .

For a move z for D1, . . . , Dr, the positive part z+ = {z+(i)} �
∈I and the negative part z− =

{z−(i)} �
∈I are defined by

z+(i) = max(z(i), 0), z−(i) = max(−z(i), 0),

respectively. Then z = z+−z− and z+, z− ∈ X . Moreover, z+ and z− have the same sufficient
statistic, i.e., t(z+) = t(z−), and are in the same reference set :

z+, z− ∈ F � ( � +)(D1, . . . , Dr) = F � ( � −)(D1, . . . , Dr).

Note that if z is a move, then −z is also a move with (−z)+ = z− and (−z)− = z+. Fur-
thermore non-zero elements of z+ and z− do not share a common cell. We define a degree of
z ∈ M(D1, . . . , Dr) as deg(z) = deg(z+) = deg(z−). We also define a set of moves with degree
less than or equal to n as

Mn(D1, . . . , Dr) = {z ∈ M(D1, . . . , Dr) | deg(z) ≤ n}. (1)

We occasionally write simply Mn for convenience.
Let B ⊂ M(D1, . . . , Dr) be a set of moves for D1, . . . , Dr. Let x, x′ ∈ F � (D1, . . . , Dr). We

say that x′ is accessible from x by B if there exists a sequence of moves z1, . . . , zA ∈ B and
εs ∈ {−1, 1}, s = 1, . . . , A, such that

x′ = x +

A∑

s=1

εszs,

x +

a∑

s=1

εszs ∈ F � (D1, . . . , Dr) for 1 ≤ a ≤ A ,

(2)

i.e., we can apply moves from B to x one by one and go from x to x′, without causing negative
cell frequencies on the way. It should be noted that accessibility by B is an equivalence relation
and each reference set is partitioned into disjoint equivalence classes by B. We call these
equivalence classes B-equivalence classes of the reference set. If x and x′ are elements from
two different B-equivalence classes of the same reference set, we say that a move z = x − x′

connects these two equivalence classes (see Section 2 of Takemura and Aoki, 2003).

Here we define a Markov basis.

Definition 1 A finite set B ⊂ M(D1, . . . , Dr) is a Markov basis for D1, . . . , Dr if for all t ∈ T ,
F � (D1, . . . , Dr) itself constitutes one B-equivalence class.

Logically important point here is the existence of a finite Markov basis for any D1, . . . , Dr,
which is guaranteed by the Hilbert basis theorem (see Section 3.1 of Diaconis and Sturmfels,
1998). In this definition, if B is a Markov basis and z,−z ∈ B, then B \ {z} and B \ {−z}
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are also Markov bases, respectively. Moreover, if we replace any element z of a Markov basis
B with −z, the remaining set is still a Markov basis. In other words, there is a freedom of the
signs of the elements of a Markov basis. In this paper, we identify an element z of a Markov
basis with its sign change −z for convenience.

A Markov basis B is minimal if no proper subset of B is a Markov basis. A minimal Markov
basis always exists, because from any Markov basis, we can remove redundant elements one by
one, until none of the remaining elements can be removed any further. However, a minimal
Markov basis is not always unique. Takemura and Aoki (2003) gives some characterizations of a
minimal Markov basis. An important fact is that for t ∈ T such that F � (D1, . . . , Dr) = {x, x′}
is a two-elements set, a move z = x−x′ belongs to each Markov basis for D1, . . . , Dr (see Lemma
2.3 of Takemura and Aoki, 2003). We call such a move an indispensable move. Furthermore,
the unique minimal Markov basis exists if and only if the set of indispensable moves forms a
Markov basis. In this case, the set of indispensable moves is the unique minimal Markov basis
(see Corollary 2.2 of Takemura and Aoki, 2003).

Our moves contain many zero cells. Furthermore often the non-zero cells of a move contain
either 1 or −1. Therefore a move can be concisely denoted by locations of its non-zero cells.
We express a move z of degree n as

z = [{i1, . . . , in} ‖ {j1, . . . , jn}],

where i1, . . . , in are the cells of positive frequencies of z and j1, . . . , jn are the cells of negative
frequencies of z. In the case z(i) > 1, i is repeated z(i) times. Similarly j is repeated −z(j)
times if z(j) < −1. We use similar notation for contingency tables as well. x ∈ Xn is simply
denoted as

x = [{i1, . . . , in}] = [i1, . . . , in] .

2.2 Symmetric group and its action

Here we define an action of a direct product of symmetric groups on cells. From the action
on cells, further actions are induced on contingency tables, marginal cells, marginal frequencies
and moves.

First we give a brief list of definitions and notations of group action. Let a group G act on
a set X . G(x) = {gx | g ∈ G} is the orbit through x. For a subset A of X , G(A) = {gx | x ∈
A, g ∈ G}. X /G denotes the orbit space, i.e. the set of orbits. Gx = {g | gx = x} denotes the
isotropy subgroup of x in G. If G acts on X , the action of G on the set of functions f on X
is induced by gf(x) = f(g−1x). Let h : X → Y be a surjection. If h(x) = h(x′) ⇒ h(gx′) =
h(gx), ∀g ∈ G, then the action of G on Y is induced by defining gy = h(gx), where y = h(x).
Throughout the rest of this paper, the number of elements of a finite set A is denoted by |A|.

In our problem G is the direct product of symmetric groups, which acts on the index set I.
Let G` denote the symmetric group of order I` for ` = 1, . . . , k and let

G = G1 × G2 × · · · × Gk

be the direct product. We write an element of g ∈ G as

g = g1 × · · · × gk =

(
1 · · · I1

σ1(1) · · · σ1(I1)

)
× · · · ×

(
1 · · · Ik

σk(1) · · · σk(Ik)

)
.
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G acts on I by
i′ = gi

= (g1i1, . . . , gkik)
= (σ1(i1), . . . , σk(ik)) .

Then the action of G on X is induced by

x′ = gx

= {x(g−1i)} �
∈I .

G also acts on the marginal cells by

i′D = giD

= (gs1
is1

, . . . , gsmism)
= (σs1

(is1
), . . . , σsm(ism)),

where D = {s1, . . . , sm}. Hence G acts on marginal tables by

x′
D = gxD

= {xD(g−1iD)} �
D∈ID

.

Considering this action simultaneously for D1, . . . , Dr, the action of G on the sufficient statistic
t = (xD1

, . . . , xDr) is defined by

gt = (gxD1
, . . . , gxDr).

An important point here is that the action of G on t is induced from the action of G on
x, because the the calculation of D-marginals and the action of G on X are commutative.
Although this is intuitively clear, we state this as a lemma and give a proof.

Lemma 1 (gx)D = gxD for all g ∈ G and x ∈ X.

Proof. Write x̃ = gx. From the definitions, it follows that

x̃D(iD) =
∑

�
K\D∈IK\D

x̃(iD, jK\D)

=
∑

�
K\D∈IK\D

x(g−1(iD, jK\D))

=
∑

�
K\D∈IK\D

x(g−1iD, g−1jK\D)

= xD(g−1iD)
= (gxD)(iD) .

Q.E.D.
By this lemma, if xDi

= yDi
, i = 1, . . . , r, then (gx)Di

= (gy)Di
, i = 1, . . . , r, ∀g ∈ G. In

terms of the sufficient statistic this can be equivalently written as t(x) = t(y) ⇒ t(gx) = t(gy),
∀g ∈ G. Therefore the action of G on T is induced from the action of G on X . Also it is
important to note that the isotropy subgroup G � of t acts on the reference set F � .
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So far we have only considered non-negative frequencies. However clearly the above con-
sideration can also be applied to the set Z of integer arrays. In particular, Lemma 1 holds for
the action of G on Z, i.e., taking marginals of integer arrays commutes with the action of G.
Therefore if z is a move, then gz is a move as well. Therefore

G(M(D1, . . . , Dr)) = M(D1, . . . , Dr).

and G acts on M(D1, . . . , Dr). More concretely, in terms of the positive part and the negative
part we can write

z′ = gz

= gz+ − gz− .

We also define that a move z = z+ −z− is symmetric if z+ = gz− for some g ∈ G. Conversely,
a move z is asymmetric if G(z+) 6= G(z−).

Now we can define an invariant set of moves. B ⊂ M(D1, . . . , Dr) is G-invariant if G(B) =
B. Note that here we are identifying a move z ∈ B with its sign change −z. Therefore B is
G-invariant if and only if

∀g ∈ G, ∀z ∈ B =⇒ gz ∈ B or − gz ∈ B .

In other words, B is G-invariant if and only if it is a union of orbits B =
⋃

� ∈A G(z) for some
subset A ⊂ M(D1, . . . , Dr) of moves.

A finite set B ⊂ M(D1, . . . , Dr) is an invariant Markov basis for D1, . . . , Dr if it is a Markov
basis and it is G-invariant. An invariant Markov basis is minimal if no proper G-invariant
subset of B is a Markov basis. A minimal invariant Markov basis always exists, because from
any invariant Markov basis, we can remove orbits one by one, until none of the remaining orbits
can be removed any further.

3 Characterizations of an invariant Markov basis and its

uniqueness

In this section, we first study the relationships between the orbits and Mn−1(D1, ..., Dr)-
equivalence classes of Xn and then derive some characterizations of an invariant minimal Markov
basis and its uniqueness.

3.1 Some properties of orbits of contingency tables and marginal
frequencies

Here we derive some basic properties of orbits of G acting on X and T . First we note that
deg(x) = deg(gx), ∀g ∈ G, and hence G(Xn) = Xn. Therefore we consider the action of G on
each Xn separately. Similarly we consider the action of G on each Tn separately.

Consider a particular sufficient statistic t ∈ Tn. Let G(t) ∈ Tn/G be the orbit through t.
Let

FG( � ) =
⋃

� ′∈G( � )

F � ′
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denote the union of reference sets over the orbit G(t) through t. Let x ∈ F � . Because t(gx) =
gt, it follows that

gx ∈ Fg � ⊂ FG( � ).

Therefore G(FG( � )) = FG( � ). This implies that Xn is partitioned as

Xn =
⋃

α∈Tn/G

Fα, (3)

where α runs over the set of different orbits and we can consider the action of G on each FG( � )

separately.

Example 1 Consider the case of k = 3 and D1 = {1}, D2 = {2}, D3 = {3}. This is the
complete independence model of the three-way tables. The decomposition (3) of X1 for this case
is trivial since T1 itself is one G-orbit. We consider the decomposition of X2. For this case
there are eight G-orbits in T2 as

T2/G = {G(t1), . . . , G(t8)},
ti = t(xi), i = 1, . . . , 8,
x1 = [(111), (111)], x2 = [(111), (112)],
x3 = [(111), (121)], x4 = [(111), (211)],
x5 = [(111), (122)], x6 = [(111), (212)],
x7 = [(111), (221)], x8 = [(111), (222)]

(4)

and we have
X2 = FG( �

1) ∪ · · · ∪ FG( �
8). (5)

The numbers of elements of the orbits G(t1), . . . , G(t8) are calculated as follows.

|G(t1)| = I1I2I3, |G(t2)| = I1I2

(
I3

2

)
,

|G(t3)| = I1

(
I2

2

)
I3, |G(t4)| =

(
I1

2

)
I2I3,

|G(t5)| = I1

(
I2

2

) (
I3

2

)
, |G(t6)| =

(
I1

2

)
I2

(
I3

2

)
,

|G(t7)| =

(
I1

2

)(
I2

2

)
I3, |G(t8)| =

(
I1

2

) (
I2

2

) (
I3

2

)
.

(6)

Furthermore we have

|F � | =





1 for t ∈ G(t1) ∪ G(t2) ∪ G(t3) ∪ G(t4),
2 for t ∈ G(t5) ∪ G(t6) ∪ G(t7),
4 for t ∈ G(t8).

(7)

Consider a particular FG( � ). An important observation is that there is a direct product
structure in FG( � ). Write

G(t) = {t1, . . . , ta},

where a = a(t) = |G(t)| is the number of elements of the orbit G(t) ⊂ Tn. Let b = b(t) =
|FG( � )/G| be the number of orbits of G acting on FG( � ) and let x1, . . . , xb be representative
elements of different orbits, i.e., FG( � ) = G(x1) ∪ · · · ∪ G(xb) gives a partition of FG( � ). Then
we have the following lemma.
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Lemma 2 FG( � ) is partitioned as

FG( � ) =

a⋃

i=1

b⋃

j=1

F � i
∩ G(xj), (8)

where each F �
i
∩ G(xj) is non-empty. Furthermore if t′i = gti, then x ∈ F �

i
7→ gx ∈ F � ′

i
gives

a bijection between F �
i
∩ G(x) and F � ′

i
∩ G(x).

Proof. FG( � ) = F �
1
∪ · · · ∪ F � a is a partition. Intersecting this partition with FG( � ) =⋃b

j=1 G(xj) gives the partition (8). Let x ∈ F � . Then the orbit G(x) intersects each refer-
ence set, i.e. G(x) ∩ F �

i
6= ∅ for i = 1, . . . , a.

Since every g ∈ G is a bijection of FG( � ) to itself and

g(F � ∩ G(x)) = Fg � ∩ G(x),

g gives a bijection between F �
i
∩ G(x) and F � ′

i
∩ G(x). Q.E.D.

In particular for each j, F �
i
∩ G(xj), i = 1, . . . , a, have the same number of elements

|F �
1
∩ G(xj)| = · · · = |F � a ∩ G(xj)|.

In addition, for ti, t
′
i ∈ G(t) such that t′i = gti, the map g : G �

i
→ gG �

i
g−1 gives an isomorphism

between G �
i
and G � ′

i
= gG �

i
g−1, where G �

i
and G � ′

i
are the the isotropy subgroup of ti and t′i

in G, respectively. Therefore there are the following isomorphic structures in F �
i
,

(G � i
,F � i

) ' (G � ′
i
,F � ′

i
). (9)

Example 2 (Example 1 continued.) In the decomposition (5), we have |FG( � i)/G| = b(ti) = 1
and FG( �

i) = G(xi) for i = 1, . . . , 8. Therefore the right hand side of (8) is simply
⋃a

i=1 F � i

in this case. To see the isomorphic structure (9), consider FG( �
8), for example. The isotropy

subgroup of t8 is given by
G �

8
= G̃1

12,12 × G̃2
12,12 × G̃3

12,12,

where we define

G̃`
i1i2,j1j2 = {g ∈ G` | (σ`(i1), σ`(i2)) ∈ {(j1, j2), (j2, j1)}}, i1 6= i2, j1 6= j2.

We also define

G`
i1i2,j1j2

= {g ∈ G` | (σ`(i1), σ`(i2)) = (j1, j2)} ⊂ G̃`
i1i2,j1j2

for later use. Since G` is the symmetric group of order I`, we have |G̃`
i1i2,j1j2

| = 2(I` − 2)! and
|G`

i1i2,j1j2 | = (I` − 2)!. The reference set F �
8

is written as

F �
8

= {[(111), (222)], [(112), (221)], [(121), (212)], [(122), (211)]}.

Consider another element x′ = [(111), (223)] ∈ FG( �
8) and write t′ = t(x′). The isotropy

subgroup of t′ is given by
G � ′ = G̃1

12,12 × G̃2
12,12 × G̃3

13,13
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and the reference set F � ′ is written as

F � ′ = {[(111), (223)], [(113), (221)], [(121), (213)], [(123), (211)]}.

We see the relations t′ = gt8 and gG �
8
g−1 = G � ′ for g ∈ G̃1

12,12 × G̃2
12,12 × G̃3

12,13. In particular
x′ = gx8 holds if g ∈ G1

12,12 × G2
12,12 × G3

12,13 ∪ G1
12,21 × G2

12,21 × G3
12,31.

Next we present examples of b = 2 and b = 3.

Example 3 Consider the case of k = 4 and D1 = {1, 2}, D2 = {1, 3}, D3 = {2, 3}, D4 = {3, 4}.
This is an example of reducible models. Consider a particular t ∈ T4 such that

t = (xD1
, xD2

, xD3
, xD4

),

where
xD1

= [(i1i2), (i1i
′
2), (i

′
1i2), (i

′
1i

′
2)],

xD2
= [(i1i3), (i1i

′
3), (i

′
1i3), (i

′
1i

′
3)],

xD3
= [(i2i3), (i2i

′
3), (i

′
2i3), (i

′
2i

′
3)],

xD4
= [(i3i4), (i3i

′
4), (i

′
3i4), (i

′
3i

′
4)].

For each im 6= i′m, m = 1, . . . , 4, there are eights elements in F � as

F � = {x1, . . . , x8},
x1 = [(i1i2i3i4), (i1i

′
2i

′
3i4), (i

′
1i2i

′
3i

′
4), (i

′
1i

′
2i3i

′
4)],

x2 = [(i1i2i3i4), (i1i
′
2i

′
3i

′
4), (i

′
1i2i

′
3i4), (i

′
1i

′
2i3i

′
4)],

x3 = [(i1i2i3i
′
4), (i1i

′
2i

′
3i4), (i

′
1i2i

′
3i

′
4), (i

′
1i

′
2i3i4)],

x4 = [(i1i2i3i
′
4), (i1i

′
2i

′
3i

′
4), (i

′
1i2i

′
3i4), (i

′
1i

′
2i3i4)],

x5 = [(i1i2i
′
3i4), (i1i

′
2i3i4), (i

′
1i2i3i

′
4), (i

′
1i

′
2i

′
3i

′
4)],

x6 = [(i1i2i
′
3i4), (i1i

′
2i3i

′
4), (i

′
1i2i3i4), (i

′
1i

′
2i

′
3i

′
4)],

x7 = [(i1i2i
′
3i

′
4), (i1i

′
2i3i4), (i

′
1i2i3i

′
4), (i

′
1i

′
2i

′
3i4)],

x8 = [(i1i2i
′
3i

′
4), (i1i

′
2i3i

′
4), (i

′
1i2i3i4), (i

′
1i

′
2i

′
3i4)].

We see that
G � = G̃1

i1i′
1
,i1i′

1
× G̃2

i2i′
2
,i2i′

2
× G̃3

i3i′
3
,i3i′

3
× G̃4

i4i′
4
,i4i′

4
(10)

for this case, and each F � contains two G � -orbits, i.e.,

F � = {x1, x4, x5, x8} ∪ {x2, x3, x6, x7} = G � (x1) ∪ G � (x2).

Extending t to G(t), we see the direct product structure (8) of FG( � ), where b = |FG( � )/G| =
|F � /G � | = 2,

a = |G(t)| =

(
I1

2

) (
I2

2

) (
I3

2

) (
I4

2

)

and
|F � ′ ∩ G(x1)| = |F � ′ ∩ G(x2)| = 4

for each t′ ∈ G(t).
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Example 4 Consider the case of k = 4 and D1 = {1, 2}, D2 = {1, 3}, D3 = {2, 3}, D4 = {4}.
Again this is an example of reducible models. Consider a particular t ∈ T4 such that

t = (xD1
, xD2

, xD3
, xD4

),

where xD1
, xD2

, xD3
are the same as in Example 3, and xD4

= [(i4), (i4), (i
′
4), (i

′
4)]. For each

im 6= i′m, m = 1, . . . , 4, there are twelve elements in F � as

F � = {x1, . . . , x12},
x9 = [(i1i2i3i4), (i1i

′
2i

′
3i

′
4), (i

′
1i2i

′
3i

′
4), (i

′
1i

′
2i3i4)],

x10 = [(i1i2i3i
′
4), (i1i

′
2i

′
3i4), (i

′
1i2i

′
3i4), (i

′
1i

′
2i3i

′
4)],

x11 = [(i1i2i
′
3i4), (i1i

′
2i3i

′
4), (i

′
1i2i3i

′
4), (i

′
1i

′
2i

′
3i4)],

x12 = [(i1i2i
′
3i

′
4), (i1i

′
2i3i4), (i

′
1i2i3i4), (i

′
1i

′
2i

′
3i

′
4)]

and x1, . . . , x8 are the same as in Example 3. We see that G � is defined by (10) again, and
each F � contains three G � -orbits, i.e.,

F � = {x1, x4, x5, x8} ∪ {x2, x3, x6, x7} ∪ {x9, x10, x11, x12} = G � (x1) ∪ G � (x2) ∪ G � (x9).

Extending t to G(t), we see the direct product structure (8) of FG( � ), where b = |FG( � )/G| =
|F � /G � | = 3,

a = |G(t)| =

(
I1

2

) (
I2

2

) (
I3

2

) (
I4

2

)

and
|F � ′ ∩ G(x1)| = |F � ′ ∩ G(x2)| = |F � ′ ∩ G(x9)| = 4

for each t′ ∈ G(t).

The following example of b = 2 is somewhat complicated but it is important in showing an
asymmetric indispensable move.

Example 5 Consider the case of k = 3 and D1 = {1, 2}, D2 = {1, 3}, D3 = {2, 3}. This model
is considered extensively for I1 = I2 = 3 in Aoki and Takemura (2003). Here we study the case
of I1 = 3, I2 = 5, I3 = 6 and a sufficient statistic t = (xD1

, xD2
, xD3

) ∈ T14, where

xD1
= [(11), (13), (14), (15), (22), (23), (24), (25), (31), (32), (33), (34), (35), (35)],

xD2
= [(11), (12), (13), (16), (23), (24), (25), (26), (31), (32), (34), (35), (36), (36)],

xD3
= [(11), (16), (24), (26), (32), (33), (34), (41), (43), (45), (52), (55), (56), (56)].

In this case, F � = {x1, x2}, where

x1 = [(111), (132), (143), (156), (224), (233), (245), (256), (316), (326), (334), (341), (352), (355)],
x2 = [(116), (133), (141), (152), (226), (234), (243), (255), (311), (324), (332), (345), (356), (356)].

Furthermore, there is no g ∈ G satisfying x1 = gx2, i.e., G(x1) ∩ G(x2) = ∅. (This is obvious
since only x2 contains 2 as a cell frequency.) Therefore x1−x2 is an asymmetric indispensable
move. Extending t to G(t), we see that

|F � ′ ∩ G(x1)| = |F � ′ ∩ G(x2)| = 1

for each t′ ∈ G(t).
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3.2 A direct product structure of each reference set

Considering the isomorphic structures of (9), now we can focus our attention on each reference
set. Consider a particular reference set F � . Here we can restrict our attention to the action
of G � on F � . In characterizing a Markov basis and its minimality, Takemura and Aoki (2003)
showed that it is essential to consider Mdeg( � )−1(D1, . . . , Dr)-equivalence classes of F � , where
Mn−1(D1, . . . , Dr) is given in (1). Therefore we have to confirm the relation between the action
of G � and Mn−1(D1, . . . , Dr)-equivalence classes of F � , deg(t) = n.

Let K � denote the number of Mn−1(D1, . . . , Dr)-equivalence classes of F � as in Theorem 1
of Takemura and Aoki (2003). In this paper, we write the set of Mn−1(D1, . . . , Dr)-equivalence
classes of F � as H � for simplicity, i.e.,

H � = F � /Mn−1(D1, . . . , Dr) = {X1, . . . , XK � }, K � = |H � |, deg(t) = n,

in the notation of Takemura and Aoki (2003). In the sequel let Xγ ∈ H � denote each equivalence
class.

Example 6 (Example 3 continued.) Consider the model considered in Example 3. Now we
can restrict our attention to I1 = I2 = I3 = I4 = 2 case, i.e., im = 1, i′m = 2 for m = 1, . . . , 4
and consider M3(D1, . . . , D4)-equivalence classes of F � . In this case, we see that |H � | = 2 and

H � = F � /Mn−1(D1, . . . , Dr) = {{x1, x2, x3, x4}, {x5, x6, x7, x8}}

since

x1 − x2 = [(1111), (1221), (2122), (2212)]− [(1111), (1222), (2121), (2212)]
= [{(1221), (2122)} ‖ {(1222), (2121)}] ∈ M2(D1, . . . , D4),

for example.

Example 7 (Example 4 continued.) Similar result to Example 6 is derived for the model in
Example 4. Again we can restrict our attention to I1 = I2 = I3 = I4 = 2 case and consider
M3(D1, . . . , D4)-equivalence classes of F � . In this case, we see that |H � | = 2 and

H � = F � /Mn−1(D1, . . . , Dr) = {{x1, x2, x3, x4, x9, x10}, {x5, x6, x7, x8, x11, x12}}.

We now have the following important lemma.

Lemma 3 If x′ is accessible from x by Mn−1(D1, . . . , Dr), then gx′ is accessible from gx by
Mn−1(D1, . . . , Dr).

Proof. Note that deg(z) ≤ n − 1 if and only if deg(gz) ≤ n − 1. If x′ is accessible from x,
then by (2)

x′ = x +

A∑

s=1

εszs,

x +
a∑

s=1

εszs ∈ F � (D1, . . . , Dr) for 1 ≤ a ≤ A .

12



Applying g to the both sides of the equations we get

gx′ = gx +
A∑

s=1

εsgzs,

gx +
a∑

s=1

εsgzs ∈ Fg � (D1, . . . , Dr) for 1 ≤ a ≤ A .

Q.E.D.
This lemma holds for all g ∈ G. In particular, gx ∈ F � ( � ) if g ∈ G � . This implies that an

action of G � is induced on H � . In fact if π : x 7→ Xγ denotes the natural projection of x to its
equivalence class, then Lemma 3 states

π(x) = π(x′) ⇒ π(gx) = π(gx′).

Let x ∈ Xγ and g ∈ G � . Then gx belongs to some Mn−1(D1, . . . , Dr)-equivalence class Xγ′ .
By Lemma 3, this γ′ does not depend on the choice of x ∈ Xγ and we may write γ′ = gγ. Since
by definition a group action is bijective we have the following lemma.

Lemma 4
g ∈ G � : Xγ 7→ Xγ′

is a bijection of H � to itself.

Combining this result and the isomorphic structure of (9), we see that the structure of H � ′ and
in particular |H � ′| are common for all t′ ∈ G(t).

Now consider the orbit space H � /G � . Write each element of H � /G � as Γ, and write

XΓ =
⋃

Xγ∈Γ

Xγ. (11)

Then we have the decomposition

F � =
⋃

Γ∈H � /G �

XΓ.

By definition, XΓ is G � -invariant for each Γ and G � acts on XΓ. Therefore we consider each XΓ

separately. An important observation is that there is a direct product structure in XΓ, which is
similar to Lemma 2. Let ∆ = ∆(Γ) = XΓ/G � be the G � -orbit space of XΓ and xδ ∈ XΓ, δ ∈ ∆,
be the representative elements of different orbits. Then we have the following lemma.

Lemma 5 F � is partitioned as

F � =
⋃

Γ∈H � /G �

XΓ

=
⋃

Γ∈H � /G �




⋃

Xγ∈Γ

⋃

δ∈∆

Xγ ∩ G � (xδ)


 ,

(12)

where each Xγ∩G � (xδ) is non-empty. Furthermore if γ′ = gγ, g ∈ G � , then x ∈ Xγ 7→ gx ∈ Xgγ

gives a bijection between Xγ ∩ G � (x) and Xγ′ ∩ G � (x).
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Proof. Similarly to the proof of Lemma 2, intersecting the partition (11) with XΓ =
⋃

δ∈∆

G � (xδ)

gives the partition (12). For each x ∈ XΓ, the orbit G � (x) intersects each equivalence class Xγ ,
i.e. G � (x) ∩ Xγ 6= ∅ for all Xγ ∈ Γ.

From Lemma 4 and the definition of XΓ, every g ∈ G � is a bijection of XΓ to itself and

g(Xγ ∩ G � (x)) = Xgγ ∩ G � (x).

Therefore g ∈ G � gives a bijection between Xγ ∩ G � (x) and Xγ′ ∩ G � (x). Q.E.D.

Example 8 (Examples 3, 6 continued.) Combining the results of Example 3 and Example
6, a direct product structure for this model is obtained. We see that |Γ| = |∆| = 2 and
|Xγ ∩ G � (x)| = 2 for each Xγ ∈ Γ. Since G � (Xγ) = F � , |H � /G � | = 1 for this model.

Example 9 (Examples 4, 7 continued.) Similarly, combining the results of Example 4 and
Example 7 yields a direct product structure for this model. We see that |Γ| = 2, |∆| = 3 and
|Xγ ∩ G � (x)| = 2 for each Xγ ∈ Γ. Since G � (Xγ) = F � , |H � /G � | = 1 for this model.

We see that |H � /G � | = 1 in the above two examples. We present an example of |H � /G � | = 2
by considering the asymmetric indispensable move of Example 5.

Example 10 (Extension of Example 5.) Consider the case of k = 6 and D1 = {1, 2}, D2 =
{1, 3}, D3 = {2, 3}, D4 = {4, 5}, D5 = {4, 6}, D6 = {5, 6}. This is a direct product model of two
three-way models with all two-dimensional marginals fixed. As for the 1, 2, 3 axes, we consider
I1 = 3, I2 = 5, I3 = 6 and define xD1

, xD2
, xD3

in the same way as Example 5. Therefore the
possible patterns of x{1,2,3} are either x1 or x2 of Example 5. As for the 4, 5, 6 axes, we consider
I1 = 2, I2 = 7, I3 = 7 and define xD4

, xD5
, xD6

as

xD4
= xD5

= [(11), (12), (13), (14), (15), (16), (17), (21), (22), (23), (24), (25), (26), (27)],
xD6

= [(11), (12), (21), (23), (32), (34), (43), (45), (54), (56), (65), (67), (76), (77)].

In this case, again there are two possible patterns of x{4,5,6} as

x′
1 = [(111), (123), (132), (145), (154), (167), (176), (212), (221), (234), (243), (256), (265), (277)],

x′
2 = [(112), (121), (134), (143), (156), (165), (177), (211), (223), (232), (245), (254), (267), (276)].

x′
1 − x′

2 is a symmetric indispensable move in (4, 5, 6)-marginal tables.
For the sufficient statistic t defined above, consider the structure of F � . F � is written as

F � = {x | x{1,2,3} = x1 or x2 and x{4,5,6} = x′
1 or x′

2}.

We have |F � | = 3 · 14! since

|{x | x{1,2,3} = x1, x{4,5,6} = x′
1}| = 14!,

|{x | x{1,2,3} = x1, x{4,5,6} = x′
2}| = 14!,

|{x | x{1,2,3} = x2, x{4,5,6} = x′
1}| = 14!/2,

|{x | x{1,2,3} = x2, x{4,5,6} = x′
2}| = 14!/2.
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Consider the M13-equivalence classes of F � . Note that the above four sets are M2-equivalence
classes of F � since each set contains all combinations of permutations of (1, 2, 3)- and (4, 5, 6)-
marginal patterns. Furthermore any two elements in the different sets are not accessible each
other by M13 since x1 − x2 and x′

1 − x′
2 are indispensable moves in (1, 2, 3)- and (4, 5, 6)-

marginal tables, respectively. From these considerations, we see that |H � | = 4. Write H � =
{X11, X12, X21, X22}, where

Xij = {x | x{1,2,3} = xi, x{4,5,6} = x′
j}.

Considering the G � -orbit space of H � , we have

H � /G � = {{X11, X12}, {X21, X22}}

since x1−x2 is an asymmetric move in (1, 2, 3)-marginal tables, whereas x′
1−x′

2 is a symmetric
move in (4, 5, 6)-marginal tables. Therefore |H � /G � | = 2 and |Γ| = 2 for each Γ ∈ H � /G � , and
we have the union of direct product structure in (12).

3.3 Structure of an invariant minimal Markov basis and conditions
for its uniqueness

Here we investigate the action of G on the moves. Let z = z+ − z− ∈ M(D1, . . . , Dr) be a
move. By the identification

z ↔ (z+, z−) (13)

we can regard z as an element of F � × F � , where t = t(z+) = t(z−). Let M
�
(D1, . . . , Dr)

denote the set of moves z such that t = t(z+) = t(z−).
In order to be more precise, we define

F � , � = {(x1, x2) | x1, x2 ∈ F � , supp(x1) ∩ supp(x2) = ∅},

where supp(x) denotes the set of positive cells of x. Then by the identification (13), M
�
(D1, . . . , Dr)

and F � , � are in 1-to-1 correspondence. We identify M
�
(D1, . . . , Dr) and F � , � hereafter. For

α ∈ Tn/G we define
Fα,α = ∪ � ∈αF � , � .

Then G(Fα,α) = Fα,α and we can consider action of G on each Fα,α separately. It is then clear
that Lemma 2 holds also for the moves, i.e.

FG( � ),G( � ) =
a⋃

i=1

b′⋃

j=1

F � i, � i
∩ G(zj),

where z1, . . . , zb′ are representative moves of the orbits FG( � ),G( � )/G.
Let B ⊂ M(D1, . . . , Dr) be a finite set of moves and define

Bn,α = B ∩ Fα,α, α ∈ Tn/G.

Then B is partitioned as

B =
⋃

n

⋃

α∈Tn/G

Bn,α. (14)

Since B is invariant if and only if it is a union of orbits G(z), the following lemma holds.
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Lemma 6 B is invariant if and only if Bn,α is invariant for each n and α ∈ Tn/G.

This lemma shows that we can restrict our attention to a particular Fα,α in studying the
invariance of a Markov basis.

We now use our argument in Takemura and Aoki (2003) to construct an invariant minimal
Markov basis. Fix n and α ∈ Tn/G. Takemura and Aoki (2003) shows that the essential
ingredient in the construction of a minimal Markov basis is the Mn−1(D1, . . . , Dr)-equivalence
classes of F � , t ∈ α.

Let B be an invariant set of moves and consider the partition (14). Let z = z+−z− ∈ Bn,α be
a move connecting Xγ ∈ H � and Xγ′ ∈ H � , i.e., z+ ∈ Xγ and z− ∈ Xγ′ . Then gz = gz+ − gz−

is a move connecting Xgγ and Xgγ′ . Applying g−1 the converse is also true. This implies that
the way Bn,α ∩ F � , � connects the Mn−1(D1, . . . , Dr)-equivalence classes H � is the same for all
t ∈ α.

Now we are in a position to state the following theorem

Theorem 1 Let B be a G-invariant minimal Markov basis and Let B =
⋃

n

⋃
α∈Tn/G Bn,α be

the partition in (14). Then each Bn,α ∩ F � , � , t ∈ α, α ∈ Tn/G, is a minimal invariant set of
moves, which connects Mdeg( � )−1(D1, . . . , Dr)-equivalence classes of F �

Conversely, from each α ∈ Tn/G with |Hα| ≥ 2 choose a representative sufficient statistic
t ∈ α and choose a G � -invariant minimal set of moves B � connecting Mdeg( � )−1(D1, . . . , Dr)-
equivalence classes of F � , where G � ⊂ G is the isotropy subgroup of t, and extend B � to G(B � ).
Then

B =
⋃

n

⋃

� ∈Tn/G
|H � |≥2

G(B � )

is a G-invariant minimal Markov basis.

This theorem only adds a statement of minimal G-invariance to the structure of a minimal
Markov basis considered in Theorem 1 of Takemura and Aoki (2003). The reason that B is
minimal G-invariant is stated above, and the reason that B is a Markov basis is included in the
proof of Theorem 1 of Takemura and Aoki (2003).

In principle this theorem can be used to construct an invariant minimal Markov basis

by considering
⋃

α∈Tn/G

Bn,α, n = 1, 2, 3, . . . step by step. By the Hilbert basis theorem, there

exists some n0 such that for n ≥ n0 no new moves need to be added. Then an invariant

minimal Markov basis is written as

n0⋃

n=1

⋃

α∈Tn/G

Bn,α. Obviously, there is a considerable difficulty

in implementing this procedure directly. To see this, we apply Theorem 1 directly to the
complete independence model of the three-way contingency tables.

Example 11 (Examples 1, 2 continued.) Consider the complete independence model of the
three-way contingency tables, i.e., k = 3, D1 = {1}, D2 = {2}, D3 = {3}. We apply Theorem 1
directly to this case and derive an invariant minimal Markov basis.

First consider the case n = 1. As is stated in Example 1, T1 itself is one G-orbit. Further,
F � is one element set for each t ∈ T1 and is itself an M0-equivalence class. Therefore we can
conclude that no degree 1 move is needed for Markov basis.
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Next consider the case n = 2. As we derived in Example 1, the orbit space T2/G is written
as (4). Considering (7), we need not consider the case t ∈ G(t1) ∪G(t2) ∪G(t3) ∪G(t4) since
F � is one element set (and is itself an M1-equivalence class). We have to consider all t such
that t ∈ G(t5) ∪G(t6) ∪G(t7) ∪G(t8). Consider the case t ∈ G(t5) ∪G(t6) ∪G(t7). We know
that |F � | = 2 for these t. Representative reference sets are written as

F �
5

= {x5, x
′
5}, x′

5 = [(112), (121)],
F �

6
= {x6, x

′
6}, x′

6 = [(112), (211)],
F �

7
= {x7, x

′
7}, x′

7 = [(121), (211)].

Since each element of F � is itself an M1-equivalence class of F � , we have to connect these
elements to construct a Markov basis. Obviously, the move that connects two elements of F �

has to be the difference of these, and is an indispensable move. It is also shown that such move
is G � -invariant. Therefore we have

B �
j

= {zj} = {xj − x′
j}, j = 5, 6, 7 (15)

and G(B �
5
) ∪ G(B �

6
) ∪ G(B �

7
) is included in all G-invariant minimal Markov basis. Finally

consider the case t ∈ G(t8). The representative reference set is written as

F �
8

= {x8, x
′
8, x

′′
8, x

′′′
8 },

x′
8 = [(112), (221)], x′′

8 = [(121), (212)], x′′′
8 = [(211), (122)].

and each element of F �
8

is itself an M1-equivalence class. We have to construct a set of moves
which is G �

8
-invariance and connects these four equivalence classes. Here we have the following

proposition.

Proposition 1 G �
8
-invariant minimal set of moves B �

8
which connects the four elements of

F �
8

is either of the following three sets.

{x8 − x′
8, x

′′
8 − x′′′

8 , x8 − x′′
8, x

′
8 − x′′′

8 },
{x8 − x′

8, x
′′
8 − x′′′

8 , x8 − x′′′
8 , x′

8 − x′′
8},

{x8 − x′′
8, x

′
8 − x′′′

8 , x8 − x′′′
8 , x′

8 − x′′
8}.

(16)

Proof. This proposition is directly shown from the fact that the following three sets of moves,

{x8 − x′
8, x

′′
8 − x′′′

8 }, {x8 − x′′
8, x

′
8 − x′′′

8 }, {x8 − x′′′
8 , x′

8 − x′′
8} (17)

are G �
8
-orbits in M(D1, D2, D3), respectively. Q.E.D.

We consider the action of group G �
8

to the reference set F �
8

in detail. We have shown in

Example 2 that G �
8

= G̃1
12,12 × G̃2

12,12 × G̃3
12,12. Let g1 ∈ G1

12,12 × G2
12,12 × G3

12,12 ⊂ G �
8
. Then

it follows that {e, g1} is an isotropy subgroup either of x8, x
′
8, x

′′
8, x

′′′
8 . The pair of (G �

8
,F �

8
) is

isomorphic to (G �
8
, G �

8
/{e, g1}), and G �

8
/{e, g1} is isomorphic to Klein four-group.

Next consider the case n = 3. But in this case, it is observed that no move of degree 3 is
needed. In fact, no move of degree n ≥ 3 is needed in this model as shown in Section 3 of
Takemura and Aoki (2003). From these considerations, an invariant minimal Markov basis for
this model is summarized as follows.
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Proposition 2 A G-invariant minimal Markov basis for the complete independent model of
the three-way contingency tables is written as

B = G(B �
5
) ∪ G(B �

6
) ∪ G(B �

7
) ∪ G(B �

8
),

where B �
5
,B �

6
,B �

7
are sets of indispensable moves given in (15) and B �

8
is either of the three

sets of dispensable moves in (16).

The number of the G-invariant minimal Markov basis elements is derived as

|B| =
8∑

j=5

|G(B � j
)| =

8∑

j=5

|G(tj)| · |B � j
| =

7∑

j=5

|G(tj)| + 2|G(t8)|

where |G(tj)| is given in (6).

In this example, we see that an invariant minimal Markov basis for this model is not unique.
It should be noted that a minimal Markov basis is not unique either for this model (Takemura
and Aoki, 2003). Since the set of the indispensable moves is G-invariant, an invariant minimal
Markov basis and a minimal Markov basis differ only in dispensable moves. This is always true
and here we also state the following obvious fact.

Lemma 7 If there exists a unique minimal Markov basis, then it is a unique invariant minimal
Markov basis.

Now we derive a necessary and sufficient condition for the existence of a unique invariant
minimal Markov basis. As a direct consequence of Theorem 1, first we give the following
corollary to Theorem 1 without a proof.

Corollary 1 An invariant minimal Markov basis is unique if and only if for each n and α ∈
Tn/G with |Hα| ≥ 2 B � , t ∈ α, is a unique minimal G � -invariant set of moves connecting
Mdeg( � )−1(D1, . . . , Dr)-equivalence classes of F � .

Therefore we consider F � for each t separately. Recall that there is an union of direct
products structure in F � as shown in (12). Since each XΓ is G � -invariant, first we summarize
the structure of a minimal invariant set of moves connecting different XΓ’s, Γ ∈ H � /G � .

Lemma 8 B is a G � -invariant minimal set of moves that connects XΓ, Γ ∈ H � /G � if and only
if B is written as

B = G � (z1) ∪ · · · ∪ G � (z|H � /G � |−1), (18)

where the set of the representative moves z1, . . . , z|H � /G � |−1 connects XΓ, Γ ∈ H � /G � into a tree.
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Proof. Let z = z+ − z− is a move that connects XΓ and XΓ′, Γ 6= Γ′, i.e., z+ ∈ XΓ and
z− ∈ XΓ′ . Then gz also connects XΓ and XΓ′ for any g ∈ G � , since gz+ ∈ XΓ, gz− ∈ XΓ′ .

Q.E.D.
This lemma implies the following necessarily condition for existing an unique invariant

minimal Markov basis.

Corollary 2 If an invariant minimal Markov basis is unique, then the following conditions
hold for all t such that |H � | ≥ 2.

(i) |H � /G � | is at most 2.
(ii) For F � such that |H � /G � | = 2, G � (z) is the same for all z = z+ − z−, z+ ∈ Xγ, z

− ∈ Xγ′ ,
where F � = Xγ ∪ Xγ′ .

Next we consider the structure of a minimal invariant set of moves connecting the equivalence
classes in each XΓ. Consider a move z = z+ − z− connecting different Xγ ∈ XΓ, i.e., z+ ∈
Xγ, z

− ∈ Xγ′ , Xγ 6= Xγ′. Since the action of G � on XΓ is transitive, without loss of generality
we fix Xγ to be a particular equivalence set Xγ0

and let z+ ∈ Xγ0
when we consider G � (z). For

each γ′ 6= γ0, we define an orbit graph Gγ′ = G(XΓ, Eγ′), where the edge set Eγ′ is defined as

Eγ′ = {(Xγ1
, Xγ2

) | (gz+, gz−) ∈ (Xγ1
, Xγ2

) for some g ∈ G � where z+ ∈ Xγ0
, z− ∈ Xγ′}.

It should be noted that Eγ′ (and hence Gγ′) does not depend on the choice of z+ ∈ Xγ0

and z− ∈ Xγ′, whereas the orbits G � (z) differ for the different choice of (δ1, δ2), where z+ ∈
Xγ0

∩ G � (xδ1), z− ∈ Xγ′ ∩ G � (xδ2) when |∆| = |XΓ/G � | ≥ 2. Furthermore

Eγ1
∩ Eγ2

= ∅ for all γ1 6= γ2

by definition. We also define that the orbit graph Gγ′ is indispensable if the graph G(XΓ,
⋃

γ 6=γ′

Eγ)

is not connected. An important point here is that if the set of indispensable orbit graphs
connects all the equivalence classes in XΓ, then this corresponds to the unique minimal invariant
set of moves for XΓ. Combining this result and Corollary 2, we have the following result.

Theorem 2 A minimal invariant Markov basis is unique if and only if the following conditions
hold for all t such that |H � | ≥ 2, in addition to (i) and (ii) of Corollary 2.

(iii) |∆| = |XΓ/G � | = 1 for all Γ.
(iv) The set of indispensable orbit graphs connects all Xγ ∈ XΓ for all Γ.
(v) For all indispensable orbit graphs of (iv), there is only one orbit G � (z) that derives it.

In Section 3 of Takemura and Aoki (2003), minimal Markov bases and their uniqueness are
shown for some examples. We see that for some examples a minimal Markov basis is unique,
and for other examples it is not unique. Since a unique minimal Markov basis is also the unique
invariant minimal Markov basis, logically interesting case is that, an invariant minimal Markov
basis is unique, nevertheless a minimal Markov basis is not unique. The Hardy-Weinberg
model is such an example, if we define a symmetric group acting to the upper triangular tables
appropriately. See Section 3 of Takemura and Aoki (2003). Except for this peculiar example,
the only example that we have found so far is a one-way contingency tables.
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Example 12 Consider the case of k = 1 and D = {1}. As is stated in Takemura and Aoki
(2003), a minimal Markov basis for this case is not unique, and consists of I1 − 1 degree 1
moves that connect I elements in X1 into a tree. By Cayley’s theorem, there are II1−2

1 ways of
choosing a minimal Markov basis. On the other hand, the set of all degree 1 moves,

B = {x − x′ | x, x′ ∈ X1, x 6= x′}

is a G-orbit in M(D). Therefore B is the unique invariant minimal Markov basis. B consists

of

(
I1

2

)
degree 1 moves.

We show that three examples considered so far do not have unique invariant minimal Markov
basis.

Example 13 (Examples 3, 6, 8 continued.) Consider B4, � where t ∈ T4/G is given in Example
3. In this case, the conditions of Corollary 2 is satisfied since |H � /G � | = 1. However, the ways
of connecting two equivalence classes, {x1, x2, x3, x4}, {x5, x6, x7, x8} are not unique. In fact,
though the orbit graph (i.e., connected two vertices) is unique and indispensable, there are the
following five G � -invariant minimal set of moves that derives it.

{x1 − x5, x4 − x8}, {x1 − x8, x4 − x5},
{x2 − x6, x3 − x7}, {x2 − x7, x3 − x6},
{x1 − x6, x1 − x7, x2 − x5, x2 − x8, x3 − x5, x3 − x8, x4 − x6, x4 − x7}.

Example 14 (Examples 4, 7, 9 continued.) Consider B4, � where t ∈ T4/G is given in Ex-
ample 4. Similarly to Example 13, the conditions of Corollary 2 is satisfied in this case since
|H � /G � | = 1. However, the ways of connecting two equivalence classes, {x1, x2, x3, x4, x9, x10},
{x5, x6, x7, x8, x11, x12} are not unique. In this case, the orbit graph also consists of con-
nected two vertices, and is unique and indispensable. However, there are the following nine
G � -invariant minimal set of moves that derives it.

{x1 − x5, x4 − x8}, {x1 − x8, x4 − x5},
{x2 − x6, x3 − x7}, {x2 − x7, x3 − x6},
{x9 − x11, x10 − x12}, {x9 − x12, x10 − x11},
{x1 − x6, x1 − x7, x2 − x5, x2 − x8, x3 − x5, x3 − x8, x4 − x7, x4 − x6},
{x1 − x11, x1 − x12, x9 − x5, x9 − x8, x4 − x11, x4 − x12, x10 − x5, x10 − x8},
{x2 − x11, x2 − x12, x9 − x6, x9 − x7, x3 − x11, x3 − x12, x10 − x6, x10 − x7}.

Example 15 (Examples 1, 2, 11 continued.) We have seen that an invariant minimal Markov
basis is not unique for the complete independence model of the three-way contingency tables. In
fact, three sets of moves (17) in Proposition 1 correspond to different orbit graphs, respectively.
Therefore in this case, each orbit graph is dispensable.

4 Invariant minimal Markov basis for all hierarchical 24

models

In this section, we give a complete list of a minimal and an invariant minimal Markov basis for
all hierarchical 2× 2× 2 × 2 models. Though our list is restricted to the case of 2× 2 × 2 × 2,
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if a set of moves whose supports are contained in 2 × 2 × 2 × 2 array constitutes a Markov
basis for a general I1 × I2 × I3 × I4 case, we can derive a minimal and an invariant minimal
Markov basis for the general case, by considering the orbits Tn/G. For example, a minimal
and an invariant minimal Markov basis for the complete independence model of the three-way
contingency tables are derived in Examples 1, 2 and 11. These results are extensions of the
results for the 2 × 2 × 2 case, since the moves with supports contained in 2 × 2 × 2 arrays
constitute a Markov basis for general case.

To derive the following list, we used several methods. If the model is decomposable, it
is known that Markov bases consist of degree 2 moves only (Dobra, 2001). If the model is
reducible, an algorithm proposed by Dobra and Sullivant (2002) can be used. We also perform
a primitive consideration of the sign patterns, which is similar to Aoki and Takemura (2003).

What the list means is as follows. The models that we consider are hierarchical 24 models.
There are 20 different models. Figure 1 is the list of independence graphs of these models.

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

(a) (b) (c) (d)

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

(e) (f) (g) (h)

1 2

3 4

1 2

3 4

1 2

3 4

(i) (j) (k)

Figure 1: Independence graphs for four-way contingency tables
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We specify each model by their generating set. For example, a model 123/24/34 means
D1 = {1, 2, 3}, D2 = {2, 4}, D3 = {3, 4}. The degree of freedom is a number of independent
cells in 24 tables under the models. For each model, we give a minimal and an invariant minimal
Markov basis. As stated in Theorem 1, an invariant minimal Markov basis is written as

B =

n0⋃

n=1

⋃

� ∈Tn/G
|H � |≥2

G(B � ).

In our models, n0 is at most 8. We give a list of B � for all t ∈ Tn/G, |H � | ≥ 2. To specify
each move, we use symbols x and y to denote representative elements x ∈ X4 and y ∈ X2

in this section. Though some of these representative elements are already used in Examples
in the previous section, we newly number these elements to avoid confusion. We give sets of
indispensable moves, i.e., B � such that |H � | = 2, with their representative elements. For
example, there are 6 indispensable moves of degree 4 with representative elements x1, x2, x3

for the model 123/124/34. This means that, for i = 1, 2, 3, each reference set with the same
sufficient statistic t(xi) has two elements, i.e., F � ( � i) = {xi,1, xi,2}, and the representative move
is written as B � ( � i) = {xi,1 − xi,2}. A complete list of the indispensable moves is given by
extending each B � ( � i) to G(B � ( � i)), i.e.,

G(B � ( � 1)) ∪ G(B � ( � 2)) ∪ G(B � ( � 3)),

and there are

6 =

3∑

i=1

|G(B � ( � i))| =

3∑

i=1

|B � ( � i)| · |G(t(xi))| =

3∑

i=1

|G(t(xi))|

elements of indispensable moves. In our examples, |G(t)| is equal for each n such that t ∈ Tn

when |H � | = 2 and given as

|G(t)| =





1, t ∈ T8,
8, t ∈ T6,
2, t ∈ T4,
4, t ∈ T2.

Uniqueness of a minimal Markov basis is also shown. As we have stated, if the set of in-
dispensable moves constitutes a Markov basis, this is a unique (invariant) minimal Markov
basis. On the other hand, if a minimal Markov basis is not unique, uniqueness of an invariant
minimal Markov basis is important. In all of 24 hierarchical models, however, we found that an
invariant minimal Markov basis is also not unique when a minimal Markov basis is not unique.
We discuss this point in Section 5. When a minimal basis is not unique, there is at least one
reference set which itself does not constitute one B-equivalence class, where B is the set of
indispensable moves. Furthermore, if F � is such a reference set, all the reference sets in FG( � )

have the isomorphic structures as stated in Lemma 2. We give this isomorphic structures
of reference sets with representative elements, |G(t)|, |FG( � )/G| and |F � |. Then we give a
direct product structure for each reference set F � ∈ FG( � ) as shown in Lemma 5, with
|∆| and |Λ|. We omit |H � /G � | since for all our models |H � /G � | = 1. Finally we give a minimal
basis, orbit graphs and an invariant minimal basis for each reference set. As for a
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minimal basis, we only show the number of different set of dispensable moves and number of its
elements, which are calculated from the number of equivalence classes and the number of their
elements. As is stated in Takemura and Aoki (2003), if a reference set consists of t equivalence
classes and each equivalence class has u elements, there are utt−2

different set of t − 1 moves
for this reference set in a minimal basis. On the other hand, for an invariant minimal basis, we
show the orbit graphs and the orbits of moves that derive them. Table 1 shows the numbers of
elements in each minimal basis and invariant minimal basis.

4.1 Models with the independence graph (a)

• Model 1234 (saturated, graphical model)
degree of freedom: 0

• Model 123/124/134/234
degree of freedom: 1
indispensable move: 1 move of degree 8 with representative element

[(1111)(1122)(1212)(1221)(2112)(2121)(2211)(2222)].

uniqueness: unique minimal basis exists.

• Model 123/124/134
degree of freedom: 2
indispensable moves: 2 moves of degree 4 with representative element

x1 = [(1111)(1122)(1212)(1221)].

uniqueness: unique minimal basis exists.

• Model 123/124/34
degree of freedom: 3
indispensable moves: 6 moves of degree 4 with representative elements

x1, x2 = [(1111)(1122)(2112)(2121)], x3 = [(1111)(1122)(2212)(2221)].

uniqueness: unique minimal basis exists.

• Model 123/14/24/34
degree of freedom: 4
indispensable moves: 12 moves of degree 4 with representative elements

x1, x2, x3, x4 = [(1111)(1212)(2112)(2211)],
x5 = [(1111)(1212)(2122)(2221)], x6 = [(1111)(1222)(2112)(2221)]

and 8 moves of degree 6 with representative element

[(1111)(1111)(1122)(1212)(2112)(2221)].

uniqueness: unique minimal basis exists.
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Table 1: List of minimal basis and invariant minimal basis for 24 hierarchical models
graph generating set number of basis
(a) 1234 ∅

123/124/134/234 unique minimal basis (1 move of deg 8)
123/124/134 unique minimal basis (2 moves of deg 4)
123/124/34 unique minimal basis (6 moves of deg 4)

123/14/24/34 unique minimal basis (12 moves of deg 4 and 8 moves of deg 6)
12/13/14/23/24/34 unique minimal basis (20 moves of deg 4 and 40 moves of deg 6)

(b) 123/234 unique minimal basis (4 moves of deg 2)
123/24/34 unique minimal basis (4 moves of deg 2 and 16 moves of deg 4)

12/13/23/24/34 indispensable moves: 4 moves of deg 2 and 28 moves of deg 4
dispensable moves of a minimal basis:
16 kinds of 3 moves of deg 4

dispensable moves of an invariant minimal basis:
3 kinds of 4 moves of deg 4

(c) 12/13/24/34 unique minimal basis (8 moves of deg 2 and 8 moves of deg 4)
(d) 123/34 unique minimal basis (12 moves of deg 2)

12/13/23/34 indispensable moves: 12 moves of deg 2 and 4 moves of deg 4
dispensable moves of a minimal basis:
4096 kinds of 5 moves of deg 4

dispensable moves of an invariant minimal basis:
8 kinds of 10 moves of deg 4 or 2 kinds of 16 moves of deg 4

(e) 123/4 unique minimal basis (28 moves of deg 2)
12/13/23/4 indispensable moves: 28 moves of deg 2 and 2 moves of deg 4

dispensable moves of a minimal basis:
9216 kinds of 3 moves of deg 4

dispensable moves of an invariant minimal basis:
24 kinds of 10 moves of deg 4 or 12 kinds of 16 moves of deg 4

(f) 12/13/24 unique minimal basis (20 moves of deg 2)
(g) 12/13/14 indispensable moves: 12 moves of deg 2

dispensable moves of a minimal basis:
256 kinds of 6 moves of deg 2

dispensable moves of an invariant minimal basis:
3 kinds of 8 moves of deg 2

(h) 12/13/4 indispensable moves: 28 moves of deg 2
dispensable moves of a minimal basis:
256 kinds of 6 moves of deg 2

dispensable moves of an invariant minimal basis:
3 kinds of 8 moves of deg 2

(i) 12/34 unique minimal basis (36 moves of deg 2)
(j) 12/3/4 indispensable moves: 28 moves of deg 2

dispensable moves of a minimal basis:
166 = 16777216 kinds of 18 moves of deg 2

dispensable moves of an invariant minimal basis:
27 kinds of 24 moves of deg 2

(k) 1/2/3/4 indispensable moves: 24 moves of deg 2
dispensable moves of a minimal basis:
168 × 86 = 1.1259 × 1015 kinds of 31 moves of deg 2

dispensable moves of an invariant minimal basis:
2268 kinds of 44 moves of deg 2
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• Model 12/13/14/23/24/34
degree of freedom: 5
indispensable moves: 20 moves of degree 4 with representative elements

x1, x2, x3, x4, x5, x6,
x7 = [(1111)(1221)(2121)(2211)], x8 = [(1111)(1221)(2122)(2212)],
x9 = [(1111)(1222)(2121)(2212)], x10 = [(1111)(1222)(2122)(2211)]

and 40 moves of degree 6 with representative elements

[(1111)(1111)(1122)(1212)(2112)(2221)],
[(1111)(1111)(1222)(2122)(2212)(2221)],
[(1111)(1111)(1122)(1221)(2121)(2212)],
[(1111)(1111)(1212)(1221)(2122)(2211)],
[(1111)(1111)(1222)(2112)(2121)(2211)].

uniqueness: unique minimal basis exists.

4.2 Models with the independence graph (b)

• Model 123/234 (graphical, decomposable model)
degree of freedom: 4
indispensable moves: 4 moves of degree 2 with representative element

y1 = [(1111)(2112)].

uniqueness: unique minimal basis exists.

• Model 123/24/34
degree of freedom: 5
indispensable moves: 4 moves of degree 2 with representative element y1,

and 16 moves of degree 4 with representative elements

x1, x3,
x11 = [(1111)(1122)(1212)(2221)], x12 = [(1111)(1122)(1221)(2212)],
x13 = [(1111)(1212)(1221)(2122)], x14 = [(1111)(1212)(2122)(2221)],
x15 = [(1111)(1221)(2122)(2212)], x16 = [(1111)(2122)(2212)(2221)].

uniqueness: unique minimal basis exists.

• Model 12/13/23/24/34
degree of freedom: 6
indispensable moves: 4 moves of degree 2 with representative element y1,

and 28 moves of degree 4 with representative elements

x1, x3, x7, x9, x11, x12, x13, x14, x16,
x17 = [(1111)(1221)(2121)(2212)], x18 = [(1111)(1221)(2122)(2211)],
x19 = [(1112)(1221)(2122)(2212)], x20 = [(1111)(1222)(2122)(2212)],
x21 = [(1111)(1222)(2122)(2211)].
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uniqueness: unique minimal basis does not exist.
isomorphic structures of reference set:

F � ( � 8) = G(x8), |G(t(x8))| = 1, |F � ( � 8)| = 4.

direct product structure for F � ( � 8):

F � ( � 8) = Xγ1
∪ Xγ2

∪ Xγ3
∪ Xγ4

= G(x8),
Xγ1

= {x8}, Xγ2
= {x8,2}, Xγ3

= {x8,3}, Xγ4
= {x8,4},

|Γ| = 4, |Λ| = 1,
|Xγ1

∩ G(x8)| = |{x8}| = 1,
x8,2 = [(1121)(1211)(2112)(2222)],
x8,3 = [(1112)(1222)(2121)(2211)],
x8,4 = [(1122)(1212)(2111)(2221)].

minimal basis for F � ( � 8): 16 kinds of 3 moves.
orbit graphs for F � ( � 8): 3 kinds of dispensable orbit graphs,

Eγ2
= {(Xγ1

, Xγ2
), (Xγ3

, Xγ4
)},

Eγ3
= {(Xγ1

, Xγ3
), (Xγ2

, Xγ4
)},

Eγ4
= {(Xγ1

, Xγ4
), (Xγ2

, Xγ3
)},

which correspond to
Bγ2

= {x8 − x8,2, x8,3 − x8,4},
Bγ3

= {x8 − x8,3, x8,2 − x8,4},
Bγ4

= {x8 − x8,4, x8,2 − x8,3},

respectively.
invariant minimal basis for F � ( � 8): 3 kinds of 4 moves,

{Bγ2
,Bγ3

}, {Bγ2
,Bγ4

}, {Bγ3
,Bγ4

}.

4.3 Models with the independence graph (c)

• Model 12/13/24/34 (graphical model)
degree of freedom: 7
indispensable moves: 8 moves of degree 2 with representative elements

y1, y2 = [(1111)(1221)],

and 8 moves of degree 4 with representative elements x3, x5, x9, x10.
uniqueness: unique minimal basis exists.

4.4 Models with the independence graph (d)

• Model 123/34 (graphical, decomposable model)
degree of freedom: 6
indispensable moves: 12 moves of degree 2 with representative elements

y1, y3 = [(1111)(1212)], y4 = [(1111)(2212)].

uniqueness: unique minimal basis exists.

26



• Model 12/13/23/34
degree of freedom: 7
indispensable moves: 12 moves of degree 2 with representative elements y1, y3, y4,

and 4 moves of degree 4 with representative elements x7, x10.
uniqueness: unique minimal basis does not exist.
isomorphic structures of reference sets:

FG( � ( � 17)) = F � ( � 17) ∪ F � ( � 18) ∪ F � ( � 19) ∪ F � ( � 20) = G(x17),
|G(t(x17))| = 4, |FG( � ( � 17))/G| = 1, |F � ( � 17)| = 4,

F � ( � 8) = G(x8) ∪ G(x9),
|G(t(x8))| = 1, |FG( � ( � 8))/G| = 2, |F � ( � 8)| = 8.

direct product structure for F � ( � 17):

F � ( � 17) = Xγ1
∪ Xγ2

= G � ( � 17)(x17),
Xγ1

= {x17, x20,3}, Xγ2
= {x18,2, x19,4},

|Γ| = 2, |Λ| = 1,
|Xγ1

∩ G � ( � 17)(x17)| = |{x17, x20,3}| = 2,
x18,2 = [(1121)(1211)(2112)(2221)],
x19,4 = [(1121)(1212)(2111)(2221)],
x20,3 = [(1112)(1221)(2121)(2211)].

direct product structure for F � ( � 8):

F � ( � 8) = Xγ1
∪ Xγ2

= G � ( � 8)(x8) ∪ G � ( � 8)(x9),
Xγ1

= {x8, x8,3, x9, x9,3}, Xγ2
= {x8,2, x8,4, x9,2, x9,4},

|Γ| = 2, |Λ| = 2,
|Xγ1

∩ G � ( � 8)(x8)| = |{x8, x8,3}| = 2,
x9,2 = [(1121)(1212)(2111)(2222)],
x9,3 = [(1112)(1221)(2122)(2211)],
x9,4 = [(1122)(1211)(2112)(2221)].

minimal basis for F � ( � 17): 4 kinds of 1 move.
minimal basis for F � ( � 8): 16 kinds of 1 move.
orbit graph for F � ( � 17): unique indispensable orbit graph,

{(Xγ1
, Xγ2

)}

which either of
B1 = {x17 − x18,2, x20,3 − x19,4},
B2 = {x17 − x19,4, x20,3 − x18,2}

derives.
invariant minimal basis for F � ( � 17): 2 kinds of 2 moves, B1 or B2.
orbit graph for F � ( � 8): unique indispensable orbit graph,

{(Xγ1
, Xγ2

)}
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which either of

B1 = {x8 − x8,2, x8,3 − x8,4}, B2 = {x8 − x8,4, x8,2 − x8,3},
B3 = {x9 − x9,2, x9,3 − x9,4}, B4 = {x9 − x9,4, x9,2 − x9,3},

B5 = {x8 − x9,2, x8 − x9,4, x9 − x8,2, x9 − x8,4, x9,3 − x8,2, x9,3 − x8,4, x8,3 − x9,2, x8,3 − x9,4}

derives.
invariant minimal basis for F � ( � 8): 5 kinds, i.e., 4 kinds of 2 moves, B1, . . . ,B4, or 1
kind of 8 moves, B5.

4.5 Models with the independence graph (e)

• Model 123/4 (graphical, decomposable model)
degree of freedom: 7
indispensable moves: 28 moves of degree 2 with representative elements

y1, y3, y4,
y5 = [(1111)(1122)], y6 = [(1111)(1222)],
y7 = [(1111)(2122)], y8 = [(1111)(2222)].

uniqueness: unique minimal basis exists.

• Model 12/13/23/4
degree of freedom: 8
indispensable moves: 28 moves of degree 2 with representative elements

y1, y3, y4, y5, y6, y7, y8,

and 2 moves of degree 4 with representative element x7.
uniqueness: unique minimal basis does not exist.
isomorphic structures of reference sets:

FG( � ( � 17)) = F � ( � 17) ∪ F � ( � 19) = G(x17),
|G(t(x17))| = 2, |FG( � ( � 17))/G| = 1, |F � ( � 17)| = 8,

F � ( � 8) = G(x8) ∪ G(x9) ∪ G(x10),
|G(t(x8))| = 1, |FG( � ( � 8))/G| = 3, |F � ( � 8)| = 12.

direct product structure for F � ( � 17):

F � ( � 17) = Xγ1
∪ Xγ2

= G � ( � 17)(x17),
Xγ1

= {x17, x18, x19,3, x20,3}, Xγ2
= {x17,2, x18,2, x19,4, x20,4},

|Γ| = 2, |Λ| = 1,
|Xγ1

∩ G � ( � 17)(x17)| = |{x17, x18, x19,3, x20,3}| = 4,
x17,2 = [(1121)(1211)(2111)(2222)],
x19,3 = [(1111)(1222)(2121)(2211)],
x20,4 = [(1122)(1211)(2111)(2221)].
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direct product structure for F � ( � 8):

F � ( � 8) = Xγ1
∪ Xγ2

= G � ( � 8)(x8) ∪ G � ( � 8)(x9) ∪ G � ( � 8)(x10),
Xγ1

= {x8, x8,3, x9, x9,3, x10, x10,3},
Xγ2

= {x8,2, x8,4, x9,2, x9,4, x10,2, x10,4},
|Γ| = 2, |Λ| = 3,

|Xγ1
∩ G � ( � 8)(x8)| = |{x8, x8,3}| = 2,

x10,2 = [(1122)(1211)(2111)(2222)],
x10,3 = [(1112)(1221)(2121)(2212)],
x10,4 = [(1121)(1212)(2112)(2221)].

minimal basis for F � ( � 17): 16 kinds of 1 move.
minimal basis for F � ( � 8): 36 kinds of 1 move.
orbit graph for F � ( � 17): unique indispensable orbit graph,

{(Xγ1
, Xγ2

)}

which either of

B1 = {x20,3 − x20,4, x19,3 − x19,4, x18 − x18,2, x17 − x17,2},
B2 = {x20,3 − x18,2, x19,3 − x17,2, x18 − x20,4, x17 − x19,4},
B3 = {x20,3 − x19,4, x19,3 − x20,4, x18 − x17,2, x17 − x18,2},
B4 = {x20,3 − x17,2, x19,3 − x18,2, x18 − x19,4, x17 − x20,4}

derives.
invariant minimal basis for F � ( � 17): 4 kinds of 4 moves, B1, . . . ,B4.
orbit graph for F � ( � 8): unique indispensable orbit graph,

{(Xγ1
, Xγ2

)}

which either of

B1 = {x8 − x8,2, x8,3 − x8,4}, B2 = {x8 − x8,4, x8,3 − x8,2},
B3 = {x9 − x9,2, x9,3 − x9,4}, B4 = {x9 − x9,4, x9,3 − x9,2},

B5 = {x10 − x10,2, x10,3 − x10,4}, B6 = {x10 − x10,4, x10,3 − x10,2},
B7 = {x8 − x9,2, x8 − x9,4, x8,3 − x9,2, x8,3 − x9,4,

x9 − x8,2, x9 − x8,4, x9,3 − x8,2, x9,3 − x8,4},
B8 = {x8 − x10,2, x8 − x10,4, x8,3 − x10,2, x8,3 − x10,4,

x10 − x8,2, x10 − x8,4, x10,3 − x8,2, x10,3 − x8,4},
B9 = {x9 − x10,2, x9 − x10,4, x9,3 − x10,2, x9,3 − x10,4,

x10 − x9,2, x10 − x9,4, x10,3 − x9,2, x10,3 − x9,4}

derives.
invariant minimal basis for F � ( � 8): 9 kinds, i.e., 6 kinds of 2 moves, B1, . . . ,B6, or 3
kinds of 8 moves, B7, . . . ,B9.

4.6 Models with the independence graph (f)

• Model 123/4 (graphical, decomposable model)
degree of freedom: 8
indispensable moves: 20 moves of degree 2 with representative elements y1, y2, y5, y6, y7.
uniqueness: unique minimal basis exists.
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4.7 Models with the independence graph (g)

• Model 12/13/14 (graphical, decomposable model)
degree of freedom: 8
indispensable moves: 12 moves of degree 2 with representative elements y2, y3, y5.
uniqueness: unique minimal basis does not exist.
isomorphic structures of reference sets:

FG( � ( � 6)) = F � ( � 6) ∪ F � ( � ′
6
) = G(y6),

|G(t(y6))| = 2, |FG( � ( � 6))/G| = 1, |F � ( � 6)| = 4,
y′

6 = [(2111)(2222)].

direct product structure for F � ( � 6):

F � ( � 6) = Xγ1
∪ Xγ2

∪ Xγ3
∪ Xγ4

= G � ( � 6)(y6),
Xγ1

= {y6}, Xγ2
= {y6,2}, Xγ3

= {y6,3}, Xγ4
= {y6,4},

|Γ| = 4, |Λ| = 1,
|Xγ1

∩ G � ( � 6)(y6)| = |{y6}| = 1,
y6,2 = [(1112)(1221)],
y6,3 = [(1121)(1212)],
y6,4 = [(1122)(1211)].

minimal basis for F � ( � 6): 16 kinds of 3 moves.
orbit graphs for F � ( � 6): 3 kinds of dispensable orbit graphs,

Eγ2
= {(Xγ1

, Xγ2
), (Xγ3

, Xγ4
)},

Eγ3
= {(Xγ1

, Xγ3
), (Xγ2

, Xγ4
)},

Eγ4
= {(Xγ1

, Xγ4
), (Xγ2

, Xγ3
)},

which correspond to
Bγ2

= {y6 − y6,2, y6,3 − y6,4},
Bγ3

= {y6 − y6,3, y6,2 − y6,4},
Bγ4

= {y6 − y6,4, y6,2 − y6,3},

respectively.
invariant minimal basis for F � ( � 6): 3 kinds of 4 moves,

{Bγ2
,Bγ3

}, {Bγ2
,Bγ4

}, {Bγ3
,Bγ4

}.

4.8 Models with the independence graph (h)

• Model 12/13/4 (graphical, decomposable model)
degree of freedom: 9
indispensable moves: 28 moves of degree 2 with representative elements

y1, y2, y3, y4, y5, y7, y8.

uniqueness: unique minimal basis does not exist.
isomorphic structures of reference sets:

FG( � ( � 6)) = F � ( � 6) ∪ F � ( � ′
6
) = G(y6),

|G(t(y6))| = 2, |FG( � ( � 6))/G| = 1, |F � ( � 6)| = 4.
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direct product structure for F � ( � 6): same as model 12/13/14.
minimal basis for F � ( � 6): 16 kinds of 3 moves.
orbit graphs for F � ( � 6): 3 kinds of dispensable orbit graphs (same as model 12/13/14).
invariant minimal basis for F � ( � 6): 3 kinds of 4 moves (same as model 12/13/14).

4.9 Models with the independence graph (i)

• Model 12/34 (graphical, decomposable model)
degree of freedom: 9
indispensable moves: 36 moves of degree 2 with representative elements

y1, y2, y3, y4, y6, y7, y8,
y9 = [(1111)(2121)], y10 = [(1111)(2221)].

uniqueness: unique minimal basis exists.

4.10 Models with the independence graph (j)

• Model 12/3/4 (graphical, decomposable model)
degree of freedom: 10
indispensable moves: 28 moves of degree 2 with representative elements

y1, y2, y3, y4, y5, y9, y10.

uniqueness: unique minimal basis does not exist.
isomorphic structures of reference sets:

FG( � ( � 6)) = F � ( � 6) ∪ F � ( � ′
6
) = G(y6),

|G(t(y6))| = 2, |FG( � ( � 6))/G| = 1, |F � ( � 6)| = 4,
FG( � ( � 7)) = F � ( � 7) ∪ F � ( � ′

7
) = G(y7),

|G(t(y7))| = 2, |FG( � ( � 7))/G| = 1, |F � ( � 7)| = 4,
y′

7 = [(1211)(2222)],
FG( � ( � 8)) = F � ( � 8) ∪ F � ( � ′

8
) = G(y8),

|G(t(y8))| = 2, |FG( � ( � 8))/G| = 1, |F � ( � 8)| = 4,
y′

8 = [(1211)(2122)].

direct product structure for F � ( � 6): same as model 12/13/14.
direct product structure for F � ( � 7):

F � ( � 7) = Xγ1
∪ Xγ2

∪ Xγ3
∪ Xγ4

= G � ( � 7)(y7),
Xγ1

= {y7}, Xγ2
= {y7,2}, Xγ3

= {y7,3}, Xγ4
= {y7,4},

|Γ| = 4, |Λ| = 1,
|Xγ1

∩ G � ( � 7)(y7)| = |{y7}| = 1,
y7,2 = [(1112)(2121)],
y7,3 = [(1121)(2112)],
y7,4 = [(1122)(2111)].
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direct product structure for F � ( � 8):

F � ( � 8) = Xγ1
∪ Xγ2

∪ Xγ3
∪ Xγ4

= G � ( � 8)(y8),
Xγ1

= {y8}, Xγ2
= {y8,2}, Xγ3

= {y8,3}, Xγ4
= {y8,4},

|Γ| = 4, |Λ| = 1,
|Xγ1

∩ G � ( � 8)(y8)| = |{y8}| = 1,
y8,2 = [(1112)(2221)],
y8,3 = [(1121)(2212)],
y8,4 = [(1122)(2211)].

minimal basis for F � ( � 6),F � ( � 7),F � ( � 8): 16 kinds of 3 moves, respectively.
orbit graphs for F � ( � 6),F � ( � 7),F � ( � 8): 3 kinds of dispensable orbit graphs, respectively
(same as model 12/13/14).
invariant minimal basis for F � ( � 6),F � ( � 7),F � ( � 8): 3 kinds of 4 moves, respectively (same
as model 12/13/14).

4.11 Models with the independence graph (k)

• Model 12/3/4 (graphical, decomposable model)
degree of freedom: 11
indispensable moves: 24 moves of degree 2 with representative elements

y1, y2, y3, y5, y9, y11 = [(1111)(2211)].

uniqueness: unique minimal basis does not exist.
isomorphic structures of reference sets:

FG( � ( � 4)) = F � ( � 4) ∪ F � ( � ′
4
) = G(y4),

|G(t(y4))| = 2, |FG( � ( � 4))/G| = 1, |F � ( � 4)| = 4,
y′

4 = [(1121)(2222)],
FG( � ( � 6)) = F � ( � 6) ∪ F � ( � ′

6
) = G(y6),

|G(t(y6))| = 2, |FG( � ( � 6))/G| = 1, |F � ( � 6)| = 4,
FG( � ( � 7)) = F � ( � 7) ∪ F � ( � ′

7
) = G(y7),

|G(t(y7))| = 2, |FG( � ( � 7))/G| = 1, |F � ( � 7)| = 4,
FG( � ( � 10)) = F � ( � 10) ∪ F � ( � ′

10
) = G(y10),

|G(t(y10))| = 2, |FG( � ( � 10))/G| = 1, |F � ( � 10)| = 4,
y′

10 = [(1112)(2222)],

F � ( � 8) = G(y8),
|G(t(y8))| = 1, |FG( � ( � 8))/G| = 1, |F � ( � 8)| = 8.

direct product structure for F � ( � 4):

F � ( � 4) = Xγ1
∪ Xγ2

∪ Xγ3
∪ Xγ4

= G � ( � 4)(y4),
Xγ1

= {y4}, Xγ2
= {y4,2}, Xγ3

= {y4,3}, Xγ4
= {y4,4},

|Γ| = 4, |Λ| = 1,
|Xγ1

∩ G � ( � 4)(y4)| = |{y4}| = 1,
y4,2 = [(1112)(2211)],
y4,3 = [(1211)(2112)],
y4,4 = [(1212)(2111)].
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direct product structure for F � ( � 6): same as model 12/13/14.
direct product structure for F � ( � 7): same as model 12/3/4.
direct product structure for F � ( � 10):

F � ( � 10) = Xγ1
∪ Xγ2

∪ Xγ3
∪ Xγ4

= G � ( � 10)(y10),
Xγ1

= {y10}, Xγ2
= {y10,2}, Xγ3

= {y10,3}, Xγ4
= {y10,4},

|Γ| = 4, |Λ| = 1,
|Xγ1

∩ G � ( � 10)(y10)| = |{y10}| = 1,
y10,2 = [(1121)(2211)],
y10,3 = [(1211)(2121)],
y10,4 = [(1221)(2111)].

direct product structure for F � ( � 8):

F � ( � 8) = Xγ1
∪ Xγ2

∪ Xγ3
∪ Xγ4

∪ Xγ5
∪ Xγ6

∪ Xγ7
∪ Xγ8

= G � ( � 8)(y8),
Xγ1

= {y8}, Xγ2
= {y8,2}, Xγ3

= {y8,3}, Xγ4
= {y8,4},

Xγ5
= {y8,5}, Xγ6

= {y8,6}, Xγ7
= {y8,7}, Xγ8

= {y8,8},
|Γ| = 8, |Λ| = 1,

|Xγ1
∩ G � ( � 8)(y8)| = |{y8}| = 1,
y8,2 = [(1112)(2221)],
y8,3 = [(1121)(2212)],
y8,4 = [(1122)(2211)],
y8,5 = [(1211)(2122)],
y8,6 = [(1212)(2121)],
y8,7 = [(1221)(2112)],
y8,8 = [(1222)(2111)].

minimal basis for F � ( � 4),F � ( � 6),F � ( � 7),F � ( � 10): 16 kinds of 3 moves, respectively.
minimal basis for F � ( � 8): 88−2 = 262144 kinds of 7 moves.
orbit graphs for F � ( � 4),F � ( � 6),F � ( � 7),F � ( � 10): 3 kinds of dispensable orbit graphs, respec-
tively (same as model 12/13/14).
invariant minimal basis for F � ( � 4),F � ( � 6),F � ( � 7),F � ( � 10): 3 kinds of 4 moves, respec-
tively (same as model 12/13/14).
orbit graphs for F � ( � 8): 7 kinds of dispensable orbit graphs,

Eγ2
= {(Xγ1

, Xγ2
), (Xγ3

, Xγ4
), (Xγ5

, Xγ6
), (Xγ7

, Xγ8
)},

Eγ3
= {(Xγ1

, Xγ3
), (Xγ2

, Xγ4
), (Xγ5

, Xγ7
), (Xγ6

, Xγ8
)},

Eγ4
= {(Xγ1

, Xγ4
), (Xγ2

, Xγ3
), (Xγ5

, Xγ8
), (Xγ6

, Xγ7
)},

Eγ5
= {(Xγ1

, Xγ5
), (Xγ2

, Xγ6
), (Xγ3

, Xγ7
), (Xγ4

, Xγ8
)},

Eγ6
= {(Xγ1

, Xγ6
), (Xγ2

, Xγ5
), (Xγ3

, Xγ8
), (Xγ4

, Xγ7
)},

Eγ7
= {(Xγ1

, Xγ7
), (Xγ2

, Xγ8
), (Xγ3

, Xγ5
), (Xγ4

, Xγ6
)},

Eγ8
= {(Xγ1

, Xγ8
), (Xγ2

, Xγ7
), (Xγ3

, Xγ6
), (Xγ4

, Xγ5
)},

which correspond to Bγ2
, . . . ,Bγ8

, respectively.
invariant minimal basis for F � ( � 8): 7 kinds of 12 moves,

{Bγ2
,Bγ3

,Bγ4
}, {Bγ2

,Bγ5
,Bγ6

}, {Bγ2
,Bγ7

,Bγ8
}, {Bγ3

,Bγ5
,Bγ7

},
{Bγ3

,Bγ6
,Bγ8

}, {Bγ4
,Bγ5

,Bγ8
}, {Bγ4

,Bγ6
,Bγ7

}.
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5 Discussion

In this paper we define an invariant minimal Markov basis and derive its basic characteristics.
Of course, we can construct an invariant Markov basis from any Markov basis as the union
of all orbits of the basis elements. However, even if we start with a minimal Markov basis,
the union of all orbits of the basis elements is not necessarily an invariant minimal basis. For
example, consider again the complete independence model of the three-way case of Example
11. A set of moves

{x8 − x′
8, x8 − x′′

8, x8 − x′′′
8 }

connects the four elements x8, x
′
8, x

′′
8, x

′′′
8 into a tree, and thus is a minimal basis elements for

{x8, x
′
8, x

′′
8, x

′′′
8 }. However, it is seen that the union of the orbits of these three moves contains

6 moves, and hence not minimal invariant. From these considerations, structure of an invariant
minimal Markov basis is important.

Theorem 1 states how to construct an invariant minimal Markov basis. This theorem is an
extension of Theorem 1 of Takemura and Aoki (2003). To construct a minimal Markov basis, we
can add basis elements step by step from low degree, by considering all reference sets as stated
in Theorem 1 of Takemura and Aoki (2003). On the other hand, to construct an invariant
minimal Markov basis, we have to add the orbit of moves step by step from low degree. Similar
to the construction of a minimal Markov basis, it is difficult to construct an invariant minimal
Markov basis by applying Theorem 1 directly. But if a minimal Markov basis is available,
we can construct an invariant minimal Markov basis relatively easily, by considering all the
reference sets one by one, which is covered by the dispensable moves in the minimal Markov
basis. The results of Section 4 is obtained in such a way.

It seems also difficult to give a simple necessary and sufficient conditions on D1, . . . , Dr

such that an invariant minimal Markov basis is unique. It is of interest to derive conditions
such that an invariant minimal Markov basis is unique even if a minimal Markov basis is not
unique. As stated in Section 3, such an example we have found so far is the obvious one-way
contingency table, except for the peculiar case of the Hardy-Weinberg model.
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