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Abstract

This paper deals with the break minimization problem of sports schedul-
ing. The problem is to find a stadium assignment that minimizes the
total number of breaks under a given round-robin tournament sched-
ule. We show that the problem can be formulated as MAX RES CUT
and MAX 2SAT. We also apply Goemans and Williamson’s approxi-
mation algorithm based on positive semidefinite programming relax-
ation. Our computational experiments show that the approximation
algorithm finds good solutions in practical computational time.

Keywords: sports scheduling, round-robin tournament, positive
semidefinite programming, approximation algorithm, MAX RES CUT,
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1 Introduction

During the last two decades, there has been considerable advance in the
area of automated sports timetabling. Schedules of several kinds of sports
were discussed in papers [1, 2, 3, 5, 6, 14, 34], and most of the schedules
are round-robin tournaments. Recently, many algorithms for constructing
round-robin tournaments have been reported, which are based on a variety
of optimization techniques: constraint programming [4, 18, 20, 21, 22, 25,
35], simulated annealing [41], tabu search [7, 19, 42], SAT solver [43], and
integer programming [15, 30]. The mathematical structure of the scheduling
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problem of round-robin tournaments is also discussed in several papers [8,
9, 10, 11, 27, 28, 32, 33, 36, 37, 39, 40].

Some authors proposed to consider a round-robin tournament schedule
without a stadium assignment that obeys various constraints and to find a
stadium assignment that minimizes the number of breaks [12, 31, 38]. Such
a problem is called the “break minimization problem,” which is concerned
in this paper. We show that the problem can be formulated as MAX RES
CUT and MAX 2SAT, and apply Goemans and Williamson’s approximation
algorithm [17] based on positive semidefinite programming relaxation. Our
computational experiments show that the approximation algorithm finds
good solutions in practical computational time.

In the next section, we introduce the break minimization problem in de-
tail. Section 3 describes formulations of the break minimization problem as
MAX RES CUT and MAX 2SAT. In Section 4, we report some computa-
tional experiments. Finally, we state a conclusion and related open problems
in Section 5.

2 Break Minimization Problem

In the rest of this paper, we consider a round-robin tournament consisting
of 2n teams, and denote the set of teams by N = {1, 2, . . . , 2n} and the set
of slots by S = {1, 2, . . . , 2n− 1}. In a round-robin tournament, each team
plays against every other team once. It is a well-known fact that, for any
positive integer n, there is at least one round-robin tournament.

We describe a possible round-robin tournament by a matrix T , called
a tournament chart , whose rows and columns are indexed by N and S,
respectively. The cell of T indexed by (i, s) ∈ N × S, denoted by tis ∈ N ,
represents the opponent of team i at slot s. Thus, a matrix T corresponds
to a round-robin tournament if and only if T satisfies the following:
(1) for each team i ∈ N , the i-th row of T is a permutation of N \ {i};
(2) for any (i, s) ∈ N × S, ti′s = i where i′ = tis.
Figure 1(a) shows an example of a tournament chart of 8 teams.

In this paper, we assume that each game is held at the home of one
of the teams playing. If the game between i and j is played at the home
of i, the game is called a home-game for i and an away-game for j. We
describe a stadium assignment A by a digraph (N, A) satisfying that for
any pair of vertices (teams) {i, j}, exactly one of the two ordered pairs
(i, j) and (j, i) is a directed arc in A (the corresponding concept in graph
theory is called a “tournament graph.”) When A contains the arc (i, j),
then the game between i and j is held at the home of j. Given a pair of a
tournament chart T and a stadium assignment A, we say that the cell (i, s)
is a home-game (away-game) if the game between i and tis is held at the
home of i (tis).
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1 2 3 4 5 6 7
1 8 5 2 3 4 6 7
2 6 7 1 8 3 5 4
3 7 6 8 1 2 4 5
4 5 8 7 6 1 3 2
5 4 1 6 7 8 2 3
6 2 3 5 4 7 1 8
7 3 2 4 5 6 8 1
8 1 4 3 2 5 7 6

(a)

1 2 3 4 5 6 7
1 A H A H A H A
2 H A H A A H A
3 H A H A H H A
4 A A H A H A H
5 H A H A H A H
6 A H A H H A H
7 A H A H A A H
8 H H A H A H A

(b)

Figure 1: Tournament chart of 8 teams and one of its optimal assignment

In sports scheduling, it is considered undesirable if a team plays two
consecutive games either both at home or both at away. If team i has two
home-games (two away-games) at slots s−1 and s, we say that i has an HH-
break (AA-break) at s. If team i has either HH-break or AA-break at slot s,
we simply say that i has a break at s. Given a tournament chart T , the break
minimization problem is to find a stadium assignment that minimizes the
total number of breaks. Figure 1(b) shows an optimal assignment, which
has six breaks, with respect to the tournament chart of Figure 1(a).
To the best of our knowledge, the complexity status of the break minimiza-
tion problem remains open. In the recent paper [12], Elf et al. conjectured
NP-hardness of the problem.

It is well-known that for any tournament chart T , the number of breaks is
greater than or equal to 2n−2, where 2n is the number of teams. In addition,
for any positive integer n, there is at least one pair of a tournament chart
and a stadium assignment such that the number of breaks attains the lower
bound 2n− 2 (see de Werra [8] for example).

For any stadium assignment corresponding to a tournament chart, the
number of away-games is equal to the number of home-games in each slot.
Thus, it is easy to see that for each slot s, the number of HH-breaks at s is
equal to the number of AA-breaks at the same slot. It directly implies that
the break minimization problem is essentially equivalent to the problem that
minimizes the number of AA-breaks (HH-breaks).

3 Formulations as MAX RES CUT and MAX 2SAT

First, we formulate the break minimization problem as MAX RES CUT.
Given a tournament chart T , we introduce two undirected graphs G1, G2

as follows. Both G1 and G2 have a vertex set V = N × S. The graph G1

has an edge set E1
def.= {{u, v} : ∃(i, s) ∈ N × (S \ {1}), u = (i, s− 1), v =
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(i, s)}. Each edge in G1 corresponds to a pair of consecutive cells in a row
of the tournament chart. The graph G2 has an edge set E2

def.= {{u, v} :
∃(i, s) ∈ N × S, u = (i, s), v = (tis, s)}. Here we note that each edge in E2

corresponds to a game. Given a vertex subset V ′ ⊆ V , the set of edges
δi(V ′) def.= {{u, v} ∈ Ei : u ∈ V ′, v ∈ V \ V ′} is called the cut set with
respect to V ′ on the graph Gi (i ∈ {1, 2}).

Let A be a stadium assignment and V ′ ⊆ V be the set of vertices
(cells of the given tournament chart T ) corresponding to home games with
respect to A. It is obvious that δ2(V ′) = E2. Additionally, an edge
{(i, s − 1), (i, s)} ∈ E1 is not contained in the cut set δ1(V ′) if and only
if team i has a break at slot s. Then it is easy to see that the break
minimization problem is to find a vertex subset V ′ ⊆ V that minimizes
|E1 \ δ1(V ′)| = 2n(2n− 2)− |δ1(V ′)| under the condition that δ2(V ′) = E2.
The maximization version of the problem is

P1: max{|δ1(V ′)| : V ′ ⊆ V, δ2(V ′) = E2}.

Problem P1 is a special case of MAX RES CUT discussed by Goemans
and Williamson [17]. We can apply their approximation algorithm based
on positive semidefinite programming to Problem P1 and its approximation
ratio is known to be 0.87856.

The idea of the above formulation also appeared in the paper [12] by
Elf et al. In addition, they transformed the problem to MAX CUT with
negative edge weights by eliminating the constraint δ2(V ′) = E2. When we
apply Goemans and Williamson’s algorithm to an instance of MAX CUT
with negative edge weights, the proposed approximation ratio 0.87856 is not
guaranteed (see the original paper [17] for detail).

Next, we formulate the break minimization problem as a special case
of MAX 2SAT. For each vertex v = (i, s) ∈ V , we introduce a Boolean
variable xis. Given a tournament chart T and a stadium assignment A,
we set xis = TRUE if and only if the cell (i, s) is a home-game with respect
to A. Then it is clear that for any edge {(i, s), (j, s)} ∈ E2, the equation
¬xis = xjs holds. Additionally, team i has an AA-break at slot s if and
only if the clause xi(s−1)∨xis is FALSE. As described in the previous section,
the break minimization problem is essentially equivalent to the problem
that minimizes the number of AA-beaks. Thus, the break minimization
problem is to find a true-false assignment that minimizes the number of
unsatisfied clauses in the set {(xi(s−1) ∨xis) : {(i, s− 1), (i, s)} ∈ E1} under
the conditions that ¬xis = xit (∀{(i, s), (i, t)} ∈ E2). The maximization
version of the above problem is

P2: max

{
|E′| :

E′ ⊆ E1, xu ∨ xv = TRUE (∀{u, v} ∈ E′),
¬xu = xv (∀{u, v} ∈ E2), xu ∈ {TRUE, FALSE} (∀u ∈ V )

}
.
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Table 1: Approximation ratios for MAX 2SAT

ratio authors year paper
0.87856 Goemans and Williamson 1995 [17]
0.931 Feige and Goemans 1995 [13]
0.935 Matuura and Matsui 2003 [26]
0.940 Lewin, Livnat and Zwick 2002 [24]

By eliminating one variable for each constraint ¬xu = xv in Problem P2,
we obtain an instance of MAX 2SAT. Goemans and Williamson [17] also
proposed an approximation algorithm for MAX 2SAT and its approximation
ratio is 0.87856. Table 1 shows a list of papers on approximation algorithms
for MAX 2SAT.

It is not hard to see that when we apply the approximation algorithm
for MAX 2SAT proposed by Goemans and Williamson to Problem P2, the
practical procedure is equivalent to that obtained by applying the approxi-
mation algorithm for MAX RES CUT proposed by Goemans and Williamson
to Problem P1. In the next section, we show some results of computational
experiments with Goemans and Williamson’s algorithm. We do not im-
plement the other algorithms proposed in the papers [13, 26, 24] because
it is impractical in our case. For example, when the number of teams is
greater than or equal to 12, the number of constraints becomes more than
one million. More precisely, with the algorithms in [13, 26, 24], the number
of variables and that of constraints are O(n4) and O(n6), respectively.

4 Computational Experiments

In this section, we report the results of computational experiments that
show the efficiency of our procedure. In the following, we regard the break
minimization problem as the maximization problem instead. Accordingly,
the objective function of the problem to be maximized is the number of
“non-break edges in E1,” not that of breaks.

First, we randomly created one tournament chart for each size of 2n =
16, 18, . . . , 26, 30, 40. Then, we applied Goemans and Williamson’s algo-
rithm and generated 2000 stadium assignments for each tournament chart
by executing the hyperplane separation procedure 2000 times (see [17] for
detail). Here we note that Goemans and Williamson’s algorithm is a Monte-
Carlo type randomized algorithm and therefore generated solutions depend
on an employed random number generator. All computations were per-
formed on SUN Ultraspark 5.4 Workstation (CPU: 900 MHz, RAM: 2 GB).
We used SDPA 5.0 [16] to solve positive semidefinite programming prob-
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Table 2: Results of Experiments

#teams #non-breaks diff. average time (s) IP time (s)
16 192 0 0.967 3.1 34
18 248 0 0.955 6.0 207
20 312 2 0.951 10.4 1346
22 382 2 0.954 17.6 7802
24 458 4 0.955 30.6 109024
26 536 4–6∗ 0.949< 49.6 259200<
30 720 — — 117 N/A
40 1306 — — 670 N/A

#teams: the number of teams;
#non-breaks: the objective value of the best solution obtained by our procedure;
diff.: the difference between #non-breaks and the optimal value obtained by integer
programming;
average: the average of approximation ratios of generated 2000 solutions (should
be larger than 0.878);
time: computational time;
IP time: computational time for solving the integer programming problem.
∗Note: In the 26 teams instance, integer programming did not terminate within
three days. The best objective value and upper bound obtained are 540 and 543.8,
respectively. For larger instances, computations of integer programming did not
terminate within reasonable computational times.

lems, and implemented the code for the hyperplane separation procedure
in C. In order to evaluate the quality of the obtained solutions, we solved
the same maximization problems by using integer programming with ILOG
CPLEX 7.0 [23]. We formulated the maximizing problems as integer pro-
gramming problems in the same manner as Trick’s paper [38].

Table 2 shows that our approach produced very good solutions quickly.
In 16 and 18 team instances, optimal solutions are obtained. In 20 and 22
teams instances, the differences are only two. (Note that the number of
non-breaks is always even.) In the 26 teams instance, integer programming
did not terminate within 3 days. The best objective value and upper bound
obtained by integer programming are 540 and 543.8, respectively. Thus, the
difference from the objective value we obtained is 4 or 6. If the optimal value
is 540 (542), the average is 0.9527 (0.9492). The averages of approximation
ratios of generated solutions, which should be theoretically larger than 0.878,
is about 0.95 in every instance (when it was solved by integer programming).
The computational time of each instance is quite short. Furthermore, our
method can be applied to larger instances, such as 40 teams, which has much
larger size ever considered in papers [12, 31, 38]. It should be noted that
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their emphasis is placed on getting an optimal solution, whereas our aim is
to generate better solutions quickly.

5 Conclusion

We proposed positive semidefinite programming based approaches to the
break minimization problem. Our computational experiments showed that
Goemans and Williamson’s algorithm is highly effective in terms of both
quality of the solutions and computational time.

There are some open problems on the break minimization problems.

1. What is the computational complexity of the break minimization prob-
lem?

2. Is there any correspondence between computational time to obtain an
optimal solution and the optimal value?

For the first question, Elf et al. [12] conjectured that this problem is NP-
hard. To the best of our knowledge, this problem is still open. For the
second one, Elf et. al [12] reported that, with both their algorithm and
Trick’s integer programming approach [38], computational times decrease
when the optimal number of breaks becomes smaller. Recently, we proposed
a polynomial time algorithm to determine whether the optimal value of a
given instance of the break minimization problem is less than the number
of teams [29].
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