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Abstract. The break minimization problem is to find a home-away
assignment that minimizes the number of breaks for a given schedule
of a round-robin tournament. In a recent paper, Elf et al. conjectured
that this minimization problem is solvable in polynomial time if the
optimal value of a given instance is less than the number of teams of the
instance. We prove their conjecture affirmatively by showing that the
decision problem we propose, which is related to the break minimization
problem, is solvable in polynomial time. Our approach is to transform an
instance of our decision problem into a collection of instances of 2SAT.
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1 Introduction

Sports scheduling is a significant topic of automated timetabling. Recently, a
number of papers about sports scheduling have been published [1, 3–7, 9–14, 16–40],
and most of them considered scheduling of a round-robin tournament.

In this paper, we consider a round-robin tournament with a home-away as-
signment. There are mainly two approaches to construct a schedule of such a
tournament. One approach is to decide a home-away assignment of games first,
then assign opponents [34, 27, 21]. The other is to fix opponents of games first
and then set a home-away assignment [28, 35, 14, 26].

When we construct a schedule according to the latter method, we often en-
counter the problem to find a home-away assignment that minimizes the number
of breaks for a fixed schedule without a home-away assignment. This problem
is called the “break minimization problem.” Although some enumerative algo-
rithms, such as integer programming and constraint programming, are effective
for solving this minimization problem, few theoretical results are already known.
In this paper, we investigate the break minimization problem, and propose a
†Supported by Superrobust Computation Project of the 21st Century COE Program
“Information Science and Technology Strategic Core.”
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polynomial time algorithm to find a home-away assignment of which the num-
ber of breaks is less than the number of teams, if it exists. Our results give the
answer to the question raised in the recent paper [14] by Elf et al.

This paper consists of four sections, including this introduction. In the next
section, we define the break minimization problem, and introduce a decision
problem that is related to the break minimization problem. In Section 3, we
propose a polynomial time algorithm to solve the decision problem. Finally, we
conclude in Section 4.

2 Break Minimization

We consider a round-robin tournament of 2n teams with 2n − 1 slots, and de-
note the set of teams by N = {1, 2, . . . , 2n} and and that of slots by S =
{1, 2, . . . , 2n− 1}. Figure 1 is an example of a schedule of six teams. In a round-
robin tournament, each team plays one game in each slot, and plays every other
team once.

In this paper, we assume that:
(1) each team has its home;
(2) each game is held at the home of one of the teams playing.
In a schedule, each game with ‘@’ means that the game is held at the home of
the opponent, while without ‘@’ means that the game is held at the home of the
team corresponding to the row. For example, in Fig. 1, team 4 plays team 2 at
the home of team 2 in slot 3.

If a team plays two games either both at their home or both at away in slots s
and s+1, we say that the team has a break at slot s+1. In this paper, a break is
expressed with an underline at a slot where a break occurs. For instance, in Fig. 1,
team 5 has consecutive away-games in slots 4 and 5, and we say that team 5 has
a break at slot 5. In total, the schedule of Fig. 1 has six breaks. Generally, an
organizer of a tournament does not prefer a schedule with many breaks. Thus,
given a schedule without a home-away assignment, we are interested in finding
a home-away assignment with as few breaks as possible.

Here we introduce some terms for a formal definition of the break minimiza-
tion problem. We describe a possible round-robin tournament by a matrix C,

1 2 3 4 5 (slot)
1 : @6 @3 @5 2 @4
2 : @5 6 4 @1 3
3 : 4 1 @6 5 @2
4 : @3 5 @2 6 1
5 : 2 @4 1 @3 @6
6 : 1 @2 3 @4 5

(team)

Fig. 1. Schedule of six teams, with six breaks.
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1 2 3 4 5

1 : 6 3 5 2 4
2 : 5 6 4 1 3
3 : 4 1 6 5 2
4 : 3 5 2 6 1
5 : 2 4 1 3 6
6 : 1 2 3 4 5

Fig. 2. Tournament chart of six teams.

called a tournament chart, whose rows and columns are indexed by N and S,
respectively. The entry of C indexed by (i, r) ∈ N × S, denoted by ci,r ∈ N ,
represents the opponent of team i at slot r. A matrix C corresponds to a feasible
round-robin tournament if and only if C satisfies the following:

(1) for each team i ∈ N , the i-th row of C is a permutation of N \ {i};
(2) for any (i, r) ∈ N × S, ci′,r = i where i′ = ci,r.

Given a tournament chart C, an (N×S)-matrix T = (ti,r) is called a home-away
table corresponding to C if and only if

(1) each entry of T is either H or A, and
(2) ∀(i, r) ∈ N × S, {ti,r, ti′,r} = {H,A} where i′ = ci,r.

A tournament chart has many corresponding home-away tables. A pair of a
tournament chart C and a corresponding home-away table T , denoted by (C, T ),
is called a timetable.

The break minimization problem is defined as follows.

Break Minimization Problem (P0)
Input: A tournament chart C of 2n teams.
Output: A home-away table T corresponding to C that minimizes the number
of breaks of the timetable (C, T ).

The tournament chart of Fig. 2 is an input of the break minimization problem.
Although the timetable of Fig. 1 is a feasible solution of the instance, it is not
optimal. The timetable of Fig. 3 is an optimal solution, with four breaks. Figure 4
is the home-away table corresponding to the timetable of Fig. 3.

1 2 3 4 5

1 : @6 3 @5 2 @4
2 : @5 6 4 @1 3
3 : 4 @1 @6 5 @2
4 : @3 5 @2 6 1
5 : 2 @4 1 @3 @6
6 : 1 @2 3 @4 5

Fig. 3. Optimal timetable corresponding to Fig. 2.
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1 2 3 4 5

1 : A H A H A
2 : A H H A H
3 : H A A H A
4 : A H A H H
5 : H A H A A
6 : H A H A H

Fig. 4. Home-Away Table corresponding to Fig. 3.

There are some previous results on the break minimization problem. Régin
solved this problem with constraint programming [28], and Trick used integer
programming [35]. We proposed an approximation algorithm based on positive
semidefinite programming relaxation [26]. Elf et al. formulated this problem as
MAX CUT on a certain kind of graphs [14], and conjectured that the break
minimization problem is NP-hard. However, the complexity status of the break
minimization problem is not yet determined.

The following theorem is a well-known fact in sports scheduling.

Theorem 1 (de Werra [10]). In any timetable of 2n teams, the number of
breaks is greater than or equal to 2n− 2.

Here we also note that every timetable has even number of breaks. When the
number of breaks is less than the number of teams, the number of breaks is equal
to 2n− 2.

By Theorem 1, 2n − 2 is a lower bound of the break minimization problem
of 2n teams. Hence, if we find a home-away table that attains the lower bound,
the solution is optimal. Thus, it is an interesting problem to decide whether
a given tournament chart has a corresponding home-away table of which the
number of breaks is equal to the lower bound. In addition, Elf et al. [14] reported
that the instances of break minimization problem were solved very quickly with
their algorithm when the instances had optimal solutions that attain the lower
bound. They conjectured that the break minimization problem can be solved in
polynomial time if a given instance of 2n teams has the optimal value 2n− 2.

In the next section, we prove their conjecture affirmatively by showing that
the following problem can be solved in polynomial time.

Decision Problem (P1)

Input: A tournament chart C of 2n teams.
Output: A home-away table T satisfying that

(1) T is a home-away table corresponding to C, and
(2) the timetable (C, T ) has 2n− 2 breaks,

if it exists; else say none exists.



Round-Robin Tournaments with a Small Number of Breaks 5

3 Reduction to 2SAT

The problem k-SAT is described as follows:

Given n Boolean variables x1, x2, . . . , xn, and m clauses C1, C2, . . . , Cm

each consisting of up to k literals (either a Boolean variable xi or its
negation ¬xi);
Find a true-false assignment to the variables x1, x2, . . . xn such that all
clauses are satisfied if it exists, else say none exists.

It is a well-known fact that 2SAT can be solved in polynomial time [15, 2], while
3SAT (and more) is NP-complete [8]. In this section, we state that the decision
problem P1 can be reduced into 2n instances of 2SAT and therefore solvable in
polynomial time.

The following property is also well-known in sports scheduling.

Theorem 2 (de Werra [10]). If a timetable of 2n teams has 2n − 2 breaks,
then exactly two teams has no break and others have exactly one break.

From the above, it is natural to consider the following subproblems P1k (k =
1, 2, . . . , 2n) related to Problem P1.

Decision Problem (P1k)
Input: A tournament chart C of 2n teams.
Output: A home-away table T satisfying that

(1) T is a home-away table corresponding to C,
(2) the timetable (C, T ) has 2n− 2 breaks, and
(3) the k-th row of T is (H, A, H, A, . . . , H),

if it exists; else say none exists.

By Theorem 2, Problem P1 is feasible if and only if at least one of those sub-
problems P11, P12, . . . , and P12n is feasible.

In the following, we formulate Problem P1k as an instance of 2SAT. We rep-
resent a given tournament chart C by using the notation sij (i 6= j) that shows
the slot when the game between teams i and j is held. Note that sij = sji. By
Condition (3) of Problem P1k, the home-away assignment of all the slots of
team k is fixed. Accordingly, for each team i ∈ N \ {k}, the home-away assign-
ment of slot ski is also determined. In the following, we introduce a temporary
home-away table T k = (tki,r) whose rows and columns are indexed by N and S,
respectively. The temporary home-away table T k satisfies that:
(1) k-th row of T k is (H, A, H,A, . . . , H);
(2) ∀i ∈ N \ {k}, if ski is even, then i-th row of T k satisfies that

(tki,ski
, tki,ski+1, . . . , t

k
i,2n−1, t

k
i,1, t

k
i,2, . . . , t

k
i,ski−1) = (H, A, H,A, . . . , H);

(3) ∀i ∈ N \ {k}, if ski is odd, then i-th row of T k satisfies that

(tki,ski
, tki,ski+1, . . . , t

k
i,2n−1, t

k
i,1, t

k
i,2, . . . , t

k
i,ski−1) = (A, H, A,H, . . . , A).
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It should be noted that the temporary assignment is uniquely determined, and
is inconsistent to a given tournament chart unless 2n = 2.

We introduce Boolean variables xi,r ((i, r) ∈ N \{k}×S). Assume that Prob-
lem P1k has a solution (a home-away table) T ∗. We represent the home-away
table T ∗ by the following true-false assignment x∗i,r ∈ {TRUE, FALSE} ((i, r) ∈
N \ {k} × S) defined by

x∗i,r =
{
TRUE (t∗i,r = tki,r),
FALSE (t∗i,r 6= tki,r).

Then, the true-false assignment satisfies the following three properties.
(a) For each team i ∈ N \ {k}, x∗i,ski

= TRUE.
(b) Since T ∗ is consistent to the given tournament chart, for any pair of distinct
teams i, j ∈ N \ {k},

[tki,sij
6= tkj,sij

=⇒ x∗i,sij
= x∗j,sij

] and [tki,sij
= tkj,sij

=⇒ x∗i,sij
6= x∗j,sij

].

(c) Since each team i ∈ N \{k} has at most one break, the values of the variables

(x∗i,ski
, x∗i,ski+1, . . . , x∗i,2n−1, x∗i,1, . . . , x∗i,ski−1)

is equal to one of the following:
(TRUE, TRUE, . . . , TRUE, TRUE), (TRUE, TRUE, . . . , TRUE, FALSE),
(TRUE, TRUE, . . . , FALSE, FALSE), . . . , (TRUE, FALSE, . . . , FALSE, FALSE).
It is easy to see that Property (c) is equivalent to the condition that for any
team i ∈ N \ {k}, all the clauses (x∗i,ski

∨ ¬x∗i,ski+1), (x∗i,ski+1 ∨ ¬x∗i,ski+2), . . . ,
(x∗i,2n−1 ∨ ¬x∗i,1), (x

∗
i,1 ∨ ¬x∗i,2), . . . , (x∗i,ski−2 ∨ ¬x∗i,ski−1) are satisfied.

Now we formulate Problem P1k as 2SAT.

Satisfiability Problem (2SATk)
Input: A tournament chart C of 2n teams.
Output: A true-false assignment xi,r ∈ {TRUE, FALSE} ((i, r) ∈ N \ {k} × S)
satisfying the conditions that

(a) xi,ski
= TRUE (i ∈ N \ {k}),

(b1) xi,sij = xj,sij ({i, j} ⊆ N \ {k}, tki,sij
6= tkj,sij

),
(b2) xi,sij 6= xj,sij ({i, j} ⊆ N \ {k}, tki,sij

= tkj,sij
),

(c) (xi,ski
∨ ¬xi,ski+1) = (xi,ski+1 ∨ ¬xi,ski+2)

= · · · = (xi,2n−1 ∨ ¬xi,1) = (xi,1 ∨ ¬xi,2)
= · · · = (xi,ski−2 ∨ ¬xi,ski−1) = TRUE (i ∈ N \ {k})

if it exists; else say none exists.

If we have a true-false assignment x′i,r ∈ {TRUE, FALSE} ((i, r) ∈ N \ {k} × S)
satisfying all the above conditions, we can construct a home-away table T ′ =
(t′i,r) satisfying that the k-th row of T ′ is (H,A, H, A, . . . , H) and for any i ∈
N \ {k},

t′i,r =





tki,r (x′i,r = TRUE),
A (x′i,r = FALSE and tki,r = H),
H (x′i,r = FALSE and tki,r = A).
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From Conditions (a,b1,b2), it is clear that the home-away table T ′ is consistent
to the given tournament chart C. Condition (c) implies that for each team, the
number of breaks is at most one. Since team k has no break, the total number
of breaks is equal to 2n− 2.

Conversely, we already saw that if we have a home-away table T ∗ satisfying
all the conditions of Problem P1k, we can construct a true-false assignment x∗i,r
satisfying Conditions (a,b1,b2,c).

Each of the problems 2SAT1, 2SAT2, . . . , and 2SAT2n is a special case of
2SAT and therefore solvable in polynomial time. Consequently, Problem P1 is
solvable in polynomial time.

4 Conclusion

In this paper, we considered the break minimization problem of a round-robin
tournament, and proposed a related decision problem. We showed that, by re-
duction to 2SAT, there is a polynomial time algorithm for finding a home-away
assignment of which the number of breaks is less than the number of teams, if it
exists. Our results gave the answer to the question raised in a recent paper [14]
by Elf et al.

We also have the following problem.

Decision Problem (P2)

Input: A tournament chart C of 2n teams.
Output: A home-away table T satisfying that

(1) T is a home-away table corresponding to C,
(2) the timetable (C, T ) satisfies that each team has exactly one break.

if it exists; else say none exists.

A timetable satisfying Condition (2) of Problem P2 is called “equitable,”
and sometimes it is preferred to a timetable with 2n − 2 breaks. With a few
modifications to the proposed procedure, we can show that Problem P2 is also
solvable in polynomial time.
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