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Abstract

Let P be a subset of 2-dimensional integer lattice points P =
{1, 2, . . . , m} × {1, 2, . . . , n} ⊆ Z2. We consider the graph GP with
vertex set P satisfying that two vertices in P are adjacent if and only
if Euclidean distance between the pair is less than or equal to

√
2.

Given a non-negative vertex weight vector w ∈ ZP
+, a multicoloring of

(GP , w) is an assignment of colors to P such that each vertex v ∈ P
admits w(v) colors and every adjacent pair of two vertices does not
share a common color.

We show the NP-completeness of the problem to determine the
existence of a multicoloring of (GP , w) with strictly less than (4/3)ω
colors where ω denotes the weight of a maximum weight clique. We
also propose an O(mn) time approximation algorithm for multicoloring
(GP , w). Our algorithm finds a multicoloring with at most (4/3)ω + 4
colors

Our algorithm based on the property that when n = 3, we can find
a multicoloring of (GP , w) with ω colors easily, since an undirected
graph associated with (GP , w) becomes a perfect graph.

1 Supported by Superrobust Computation Project of the 21st Century COE Program
“Information Science and Technology Strategic Core.”
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1 Introduction

Given a pair of positive integers m and n, P denotes the subset of 2-
dimensional integer lattice points defined by

P
def.= {1, 2, . . . ,m} × {1, 2, . . . , n} ⊆ Z2.

Let GP be an undirected graph with vertex set P satisfying that two vertices
are adjacent if and only if Euclidean distance between the pair is less than or
equal to

√
2. Given a non-negative vertex weights w ∈ ZP

+, the pair (GP ,w)
is called a weighted lattice graph with diagonals and abbreviated by WLGD.

Given an undirected graph H and a non-negative integer vertex weight
w′ of H, a multicoloring of (H,w′) is an assignment of colors to vertices of
H such that each vertex v admits w′(v) colors and every adjacent pair of two
vertices does not share a common color. A multicoloring problem on (H,w′)
finds a multicoloring of (H,w′) which minimizes the required number of
colors. The multicoloring problem is also known as weighted coloring [2],
minimum integer weighted coloring [7] or w-coloring [6]. A vertex subset
V ′ of an undirected graph is called a clique if every pair of vertices in V ′

are adjacent. The weight of a clique is the sum total of all the weights of
vertices in the clique. We denote the weight of a maximum weight clique in
(H,w′) by ω(H,w′). It is clear that for any multicoloring of (H,w′), the
required number of colors is greater than or equal to ω(H,w′).

In this paper, we study a fundamental class of graphs: lattice graphs
with diagonals GP . We show the NP-completeness of the problem to de-
termine the existence a multicoloring of (GP ,w) with strictly less than
(4/3)ω(GP ,w) colors. We also propose an O(mn) time algorithm for mul-
ticoloring (GP ,w) with at most (4/3)ω(GP ,w) + 4 colors.

The multicoloring problem has been studied in several context. On tri-
angular lattice graphs it corresponds to the radio channel (frequency) as-
signment problem. McDiarmid and Reed [5] showed that the multicoloring
problem on triangular lattice graphs is NP-hard. Some authors [5, 6] inde-
pendently gave approximation algorithms for this problem. In case that a
given graph H is a square lattice graph (without diagonal) and/or a hexag-
onal lattice graph, the graph becomes bipartite and so we can obtain an
optimal multicoloring of (H,w′) in polynomial time (see [5] for example).
Halldórsson and Kortsarz [3] studied planar graphs and partial k-trees. For
both classes, they gave a polynomial time approximation scheme (PTAS)
for variations of multicoloring problem with min-sum objectives. These ob-
jectives appear in the context of multiprocessor task scheduling.

There is a natural graph H(w′) associated with a pair (H,w′) as above,
obtained by replacing each vertex v of H by a complete graph on w′(v) ver-
tices. Multicolorings of the pair (H,w′) correspond to usual vertex colorings
of the graph H(w′), and the multicoloring number of (H,w′) is equivalent
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to the coloring number of H(w′). Here we note that the input size of the
graph H(w′) is bounded by a pseudo polynomial of that of (H,w′) in gen-
eral. We also show that when n = 3, we can exactly solve the multicoloring
problem on (GP ,w) in O(m) time. It based on the property that the asso-
ciated graph GP (w) becomes a perfect graph. For (general) perfect graphs,
Grötschel, Lovász, and Schrijver [2] gave a polynomial time exact algorithm
for the coloring problem. Their algorithm based on the ellipsoid method.

2 Approximation Algorithm

In this section, we propose a linear time approximation algorithm for mul-
ticoloring a WLGD (GP ,w). For any vertex (x, y) ∈ P, we denote the
corresponding vertex weight by w(x, y).

Theorem 1 There exists an O(mn) time algorithm for finding a multicol-
oring of (GP ,w) which uses at most (4/3)ω(G,w) + 4 colors.

Before giving a proof of Theorem 1, let us consider a well-solvable case.

Lemma 1 When P = {1, . . . ,m} × {1, 2, 3}, there exists an O(m) time
(exact) algorithm for multicoloring (GP ,w) with ω(GP ,w) colors.

Proof: In the following, we express a multicoloring by an assignment of
integers c : P → 2Z+ such that [∀v ∈ P, w(v) = |c(v)|] and [for every
adjacent pair of vertices v,w ∈ P , c(v) ∩ c(w) = ∅ ]. We describe an O(m)
time algorithm explicitly.

First, we compute ω(GP ,w) in O(m) time. For each odd number x ∈
{1, . . . ,m}, we set

c(x, 1) = {i ∈ Z : w(x, 2) < i ≤ w(x, 2) + w(x, 1)},
c(x, 2) = {i ∈ Z : 1 ≤ i ≤ w(x, 2)},
c(x, 3) = {i ∈ Z : w(x, 2) < i ≤ w(x, 2) + w(x, 3)},

and for each even number x ∈ {1, . . . ,m}, we set

c(x, 1) = {i ∈ Z : ω(G,w) − w(x, 2) ≥ i > ω(G,w) − w(x, 2) − w(x, 1)},
c(x, 2) = {i ∈ Z : ω(G,w) ≥ i > ω(G,w) − w(x, 2)},
c(x, 3) = {i ∈ Z : ω(G,w) − w(x, 2) ≥ i > ω(G,w) − w(x, 2) − w(x, 3)}.

Obviously, the above procedure requires O(m) time.
It remains to show that every adjacent pair of two vertices does not share

a common color. First, assume on the contrary that the edge between (x, 1)
and (x + 1, 1) violates the condition, i.e., c(x, 1) ∩ c(x + 1, 1) 
= ∅. It follows
that w(x, 1) + w(x, 2) + w(x + 1, 1) + w(x + 1, 2) > ω(GP ,w). Since the set
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of four vertices {(x, 1), (x, 2), (x + 1, 1), (x + 1, 2)} forms a clique of GP , it
is a contradiction. For other edges, the correctness is proved analogously.

From Lemma 1, the following result is now immediate.

Corollary 1 If P = {1, . . . ,m} × {1, 2, 3}, the undirected graph GP (w)
associated with (GP ,w) is perfect.

Proof: Every vertex induced subgraph G′ of GP (w) is associated with a
WLGD (GP ,w′), satisfying that w′(v) denotes the number of vertices in G′

corresponding to the vertex v.

In case that every vertex weight is a multiple of 3, there exists a simple
(4/3)-approximation algorithm. In the following, we describe an outline of
the algorithm. First, we construct four vertex weights w′

k for k ∈ {0, 1, 2, 3}
by setting

w′
k(x, y) =

{
0, y = k (mod 4),
w(x, y)/3, otherwise.

Next, we exactly solve four multicoloring problems defined on four WLGDs
(GP ,w′

k) (k ∈ {0, 1, 2, 3}) and obtain four multicolorings. We can solve the
problems independently by applying the procedure in the proof of Lemma 1
(we will describe later in detail). Here we assume that four multicolorings
use mutually disjoint sets of colors. Lastly, we output the direct sum of four
multicolorings. It is clear that maxi∈{0,1,2,3} ω(GP ,w′

i) ≤ (1/3)ω(GP ,w).
Thus, the obtained multicoloring uses at most (4/3)ω(GP ,w) colors.

In the following, we consider the general case and describe a proof of
Theorem 1.
Proof of Theorem 1: For each k ∈ {0, 1, 2, 3}, we introduce a partition
{Ak, Bk, Ck,Dk} of P defined as follows:

Ak = {(x, y) ∈ P : y = k (mod 4)},
Bk = {(x, y) ∈ P : y = k + 2 (mod 4)},
Ck = {(x, y) ∈ P : y = k + 1 (mod 4), x is odd}

∪{(x, y) ∈ P : y = k + 3 (mod 4), x is even},
Dk = {(x, y) ∈ P : y = k + 1 (mod 4), x is even}

∪{(x, y) ∈ P : y = k + 3 (mod 4), x is odd}.

Then we construct vertex weights wk for k ∈ {0, 1, 2, 3} by the following
procedure. We put the weight of every vertex in Ak to 0. For each vertex
(x, y) ∈ Bk, we set wk(x, y) = �w(x, y)/3. If (x, y) ∈ Ck, we set

wk(x, y) =

{
�w(x, y)/3, w(x, y) = 0 (mod 3),
�w(x, y)/3 + 1, w(x, y) ∈ {1, 2} (mod 3),
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and in case that (x, y) ∈ Dk, we set

wk(x, y) =

{
�w(x, y)/3, w(x, y) ∈ {0, 1} (mod 3),
�w(x, y)/3 + 1, w(x, y) = 2 (mod 3).

Clearly from the definition, the equality w = w0 + w1 + w2 + w3 holds.
For each WLGD (GP ,wk) (k ∈ {0, 1, 2, 3}), we delete all the vertices

in Ak and decompose the graph into O(n) connected components. Then
each connected component satisfies the condition in Lemma 1 and so the
procedure in the proof of Lemma 1 finds a multicoloring of (GP ,wk) using
ω(GP ,wk) colors in O(mn) time. Here we assume that four multicolorings
use mutually disjoint sets of colors. Then the direct sum of four multicoloring
becomes a multicoloring of original WLGD (GP ,w).

Lastly, we show that the algorithm finds a multicoloring with at most
(4/3)ω(GP ,w)+4 colors. We only need to show the inequality ω(GP ,wk) ≤
(1/3)ω(GP ,w) + 1 for all k ∈ {0, 1, 2, 3}. Let V ′ be a clique of GP and
V ′′

k
def.= {(x, y) ∈ V ′ : wk(x, y) = �w(x, y)/3 + 1}. The definition of weights

wk directly implies that |V ′′
k | ≤ 2, since |V ′ ∩ Ck| ≤ 1 and |V ′ ∩ Dk| ≤ 1.

We denote the weight of the clique V ′ with respect to wk or w by wk(V ′) or
w(V ′), respectively. If V ′′

k = ∅, we have done. When |V ′′
k | = 1, the inequality

w(V ′) ≥ 3(wk(V ′)−1) = 3wk(V ′)−3 holds. In case that |V ′′
k | = 2, |V ′∩Ck| =

|V ′ ∩Dk| = 1 and so we have w(V ′) ≥ 3(wk(V ′)− 2) + 1 + 2 = 3wk(V ′)− 3.
Thus we have the desired result.

3 Hardness Result

In this section, we discuss the hardness of our problem.

Theorem 2 Given a WLGD (GP ,w), it is NP-complete to determine whether
(GP ,w) is multicolorable with strictly less than (4/3)ω(GP ,w) colors or not.

Proof: It is known to be NP-complete to determine the 3-colorability of a
given planar graph H with each vertex degree is either 3 or 4 (see [1] e.g.).
We show a procedure to construct a WLGD (GP ,w) such that (GP ,w) is
3-multicolorable if and only if H is 3-colorable. In the following, We identify
a WLGD (GP ,w) with the n×m integer matrix w ∈ Zn×m

+ such that rows
and columns are indexed by {1, 2, . . . , n} and {1, 2, . . . ,m} respectively.

First, we introduce 3 special WLGDs defined by the following matrices:

L0 =




0 0 1 0 0
0 2 0 2 0
1 0 0 0 1
0 2 0 2 0
0 0 1 0 0


 , L1 =




0 0 1 0 0 0 0 0 0 0 0
0 2 0 2 0 0 0 0 0 0 0
1 0 0 0 1 2 1 2 1 2 1
0 2 0 2 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0


 , L2 =




0 0 0 1 0 0 0
0 0 2 0 2 0 0
1 1 0 0 1 0 1
0 0 0 0 0 2 0
0 0 0 0 0 0 0


 .

The four elements of L0 indexed by {(1, 3), (3, 1), (3, 5), (5, 3)} are the “con-
tact points” of L0. Observe that in any 3-multicoloring of L0, all the contact
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points must have the same color. Similarly, four elements of L1 indexed
by {(1, 3), (3, 1), (5, 3), (3, 11)} are the “contact points” such that in any 3-
multicoloring of L1, the contact points must have the same color. The “con-
tact pair” of L2 indexed by {(3, 1), (3, 7)} satisfies that in any 3-multicoloring
of L2, the contact points have different colors.

Next, we embed the planar graph H (with each vertex degree is either
3 or 4) on the x–y plain and obtain a plain graph H ′ such that (1) H ′ is
a subdivision of H (H ′ is homeomorphic to H), (2) every vertex of H ′ is
an integer lattice point in {1, 2, . . . ,m′} × {1, 2, . . . , n′}, (3) every edge of
H ′ is either a vertical or horizontal edge with unit length, and (4) m′ and
n′ are bounded by a polynomial of the number of vertices of H. For each
edge of H ′, we insert 9 vertices and obtain a finer subdivision H ′′ of H ′.
We put P = {1, 2, . . . , 10m′} × {1, 2, . . . , 10n′} and construct GP (a lattice
graph with diagonals) from P . It is easy to see that H ′′ is a subgraph of
GP . Since there is a linear time algorithm for finding a planar embedding of
a given graph or deciding that it is not planar [4], the computational effort
of the above procedure is obviously bounded by a polynomial of the number
of vertices in H.

Lastly, we construct the vertex weights w of GP as follows. Initially, we
put all the vertex weights to 0. For each vertex v of H ′′ whose degree is
greater than 2, we replace the weights of vertices in GP whose (Euclidean)
distances from v is less than or equal to 2

√
2 by matrix L0. For each edge

e in the original graph H, there exists a corresponding path Pe in H ′′. We
denote the path Pe by a sequence of vertices (v0, v1, . . . , v10k). Then we re-
place the weights of vertices near the vertices in the subpath (v2, v3, . . . , v8)
with the matrix L2 or its rotated image satisfying that {v2, v8} becomes
the contact pair of L2. Here we note that the copies of L0 and L2 share
five vertices. In case k ≥ 2, we apply the following. For every k′ ∈
{1, 2, . . . , k − 1}, we replace the weights of vertices near the vertices in the
subpath (v10k′−2, v10k′−1, . . . , v10k′+8) by a copy of L1 or its rotated image
satisfying that v10k′−2 corresponds to one of the elements of L1 indexed by
(1,3),(3,1),(5,3) and v10k′+8 corresponds to the element indexed by (3,11).
Similarly to the above, consecutive pair of matrices shares five elements.

From the definitions of L0, L1, L2, it is obvious that the WLGD (GP ,w)
defined above satisfies ω(GP ,w) = 3. The above procedure directly im-
plies that the given graph H is 3-colorable if and only if (GP ,w) is 3-
multicolorable. Thus, NP-completeness of the original problem implies that
it is NP-complete to determine whether a given WLGD (GP ,w) is multi-
colorable with strictly less than (4/3)w(GP ,w) colors.
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