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Abstract
In finite mixture of location-scale distributions maximum likelihood estimator

does not exist because of the unboundedness of the likelihood function when the
scale parameter of some mixture component approaches zero. In order to study
the strong consistency of maximum likelihood estimator, we consider the case that
the scale parameters of the component distributions are restricted from below by
cn, where {cn} is a sequence of positive real numbers which tends to zero as the
sample size n increases. We prove that under mild regularity conditions maximum
likelihood estimator is strongly consistent if the scale parameters are restricted from
below by cn = exp(−nd), 0 < d < 1.

1 Introduction

In some finite mixture distributions maximum likelihood estimator does not exist. Let us
consider the following example. Denote a normal mixture distribution with M components
and parameter θ = (α1, µ1, σ

2
1, . . . , αM , µM , σ2

M) by

f(x; θ) =
M∑

m=1

αmφm(x; µm, σ2
m),

where αm (m = 1, . . . , M) are nonnegative real numbers that sum to one and φm(x; µm, σ2
m)

are normal densities. Let x1, . . . , xn denote a random sample of size n ≥ 2 from the density
f(x; θ0), where θ0 is the true parameter. The log likelihood function is

n∑
i=1

log f(xi; θ) =
n∑

i=1

log

{
M∑

m=1

αmφm(xi; µm, σ2
m)

}
.
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If we set µ1 = x1, then the likelihood tends to infinity as σ2
1 → 0. Thus maximum

likelihood estimator does not exist.
But when we restrict σm ≥ c (m = 1, . . . , M) by some positive real constant c, we can

avoid the divergence of the likelihood. Furthermore, it can be shown that the maximum
likelihood estimator is strongly consistent under the restriction.

On the other hand, the smaller σ2
1 is, the less contribution φ1(x; µ1, σ

2
1) makes to the

likelihood at x2, . . . , xn. Therefore an interesting question here is whether we can decrease
the bound c = cn to zero with the sample size n and yet guarantee the strong consistency
of the maximum likelihood estimator. If this is possible, the further question is how fast
cn can decrease to zero. This question is similar to the (so far open) problem stated
in Hathaway(1985) [1], which treats mixtures of normal distributions with constraints
imposed on the ratios of variances while our restriction is imposed on variances themselves.
See also a discussion in section 3.8.1 of McLachlan and Peel(2000) [3].

In the above example, the normality of the component distributions is not essential
and the same difficulty exists for finite mixture of general location-scale distributions such
as mixtures of uniform distributions. Let bm (m = 1, . . . , M) denote the scale parameters
of the component distributions and consider the restriction bm ≥ cn (m = 1, . . . , M).
Then a question of interest here is whether we can decrease the bound cn to zero.

For the case of mixture of uniform distributions, in Tanaka and Takemura [2] we
proved the the maximum likelihood estimator is strongly consistent if cn = exp(−nd),
0 < d < 1. Here d can be arbitrarily close to 1 but fixed. In this paper, we prove that the
same result holds for general finite mixture of location-scale distributions under very mild
regularity conditions (assumptions 1–4 below) on the component densities. As discussed
in section 5 the normal density satisfies the regularity conditions and our result implies
that MLE is strongly consistent for the normal mixture if σm ≥ cn = exp(−nd), 0 < d < 1,
m = 1, . . . , M .

After establishing some relevant lemmas, the proof of this paper follows the same line
of arguments as in Tanaka and Takemura [2]. However compared to the case of uniform
mixtures, the proof for the general case in this paper is much longer and more subtle with
many additional constants we have to keep track of. Therefore in this paper we repeat
the arguments in Tanaka and Takemura [2] and give a self-contained proof of the strong
consistency of MLE for the general case.

The organization of the paper is as follows. In section 2 we summarize some pre-
liminary results. In section 3 we state our main results in theorems 4 and 5. Section
4 is devoted to the proof of theorems and lemmas. Finally in section 5 we give some
discussions.

2



2 Preliminaries on identifiability of mixture distribu-

tions, strong consistency and regularity conditions

A mixture of M densities with parameter θ = (α1, a1, b1, . . . , αM , aM , bM) is defined by

f(x; θ) ≡
M∑

m=1

αmfm(x; am, bm),

where αm, m = 1, . . . , M , called the mixing weights, are nonnegative real numbers that
sum to one and fm(x; am, bm), called the components of the mixture, are location-scale
densities with location parameter am and scale parameter bm. Remark that fm(x; am, bm)
may even belong to different families each other. For example, f1(x; a1, b1) is a normal
density, f2(x; a2, b2) is a t-density, f3(x; a3, b3) is a uniform density, etc. Let Θ denote the
parameter space. For convenience, we write (am, bm) as ηm.

In general, a parametric family of distributions is identifiable if different values of
parameter designate different distributions. In mixtures of distributions, different param-
eters may designate the same distribution. For example, if α1 = 0, then for all parameters
which differ only in η1, we have the same distribution. Thus mixtures of distributions are
not identifiable. Therefore we have to carefully define strong consistency of estimator.
The following definition is essentially the same as Redner’s(1981) [5]. We assume that the
parameter space Θ is a subset of Euclidean space and dist(θ, θ′) denotes the Euclidean
distance between θ, θ′ ∈ Θ. Furthermore we define

dist(U, V ) ≡ inf
θ∈U

inf
θ′∈V

dist(θ, θ′)

for U, V ⊂ Θ.

Definition 1. (strongly consistent estimator)
Let Θ0 denote the set of true parameters

Θ0 ≡ {θ ∈ Θ | f(x; θ) = f(x; θ0) a.e. x},
where θ0 is one of parameters designating the true distribution, and let

Θ(θ̂) ≡ {θ ∈ Θ | f(x; θ) = f(x; θ̂) a.e. x}.
An estimator θ̂n is strongly consistent if

Prob
(

lim
n→∞

dist(Θ(θ̂n), Θ0) = 0
)

= 1.

Next, we give regularity conditions for strong consistency of maximum likelihood es-
timator.

Assumption 1. There exist real constants v0, v1 > 0 and β > 1 such that

fm(x; am = 0, bm = 1) ≤ min{v0 , v1 · |x|−β} (1)

for all m.
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This assumption means that fm (m = 1, . . . , M) are bounded and their tails decrease
to zero faster than or equal to |x|−β, which is a very mild condition.

The following three regularity conditions are standard conditions assumed in discussing
strong consistency of MLE. Let Γ denote any compact subset of Θ.

Assumption 2. For θ ∈ Θ and any positive real number r, let

f(x; θ, r) ≡ sup
dist(θ′,θ)≤r

f(x; θ′).

For each θ ∈ Γ and sufficiently small r, f(x; θ, r) is measurable.

Assumption 3. For each θ ∈ Γ, if limn→∞ θn = θ, then limn→∞ f(x; θn) = f(x; θ) except
on a set which is a null set and does not depend on the sequence {θn}∞n=1.

Assumption 4.
∫
|log f(x; θ0)| f(x; θ0)dx < ∞. (2)

The next theorem can be proved in the same way as in Wald(1949)[6], Redner(1981)
[5].

Theorem 1. Suppose that assumptions 2, 3 and 4 are satisfied. Let S be any closed
subset of Γ not intersecting Θ0. Then

Prob

(
lim

n→∞
supθ∈S f(x1; θ)× · · · × f(xn; θ)

f(x1; θ0)× · · · × f(xn; θ0)
= 0

)
= 1 .

The following theorem has been proved by Wald(1949) [6].

Theorem 2. (Wald(1949) [6]) Let θ̃n be any function of the observations x1, . . . , xn such
that

∀n,

n∏
i=1

f(xi; θ̃n)

f(xi; θ0)
≥ δ > 0,

then θ̃n is strongly consistent in the sense of definition 1.

Assume that Γ contains the true parameter. If assumptions 2, 3 and 4 are satisfied,
then it is readily verified by theorems 1 and 2 that the maximum likelihood estimator
restricted to Γ is strongly consistent.

We also state Okamoto’s inequality, which will be used in our proof in section 4.3.

Theorem 3. (Okamoto(1958) [4]) Let Z be a random variable following a binomial dis-
tribution Bin(n, p). Then for δ > 0

Prob

(
Z

n
− p ≥ δ

)
< exp (−2nδ2). (3)
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3 Main results

Let I (K) = {i1, i2, . . . , iK} be a subset of {1, 2, . . . ,M} with K elements. Let

GI (K) ≡ {
∑

m∈I (K)

αmfm(x; ηm) |
∑

m∈I (K)

αm ≤ 1 , αm ≥ 0}

which is a set of subprobability measures consisting of less than or equal to K compo-
nents. Because fm(x; am, bm), (m = 1, . . . , K), may belong to different families each other,
GI (K) is not necessarily equal to G{1,2,...,K}. However for notational simplicity and without
essential loss of generality, in the following we consider only {1, 2, . . . , K} as a subset of
{1, 2, . . . , M} with K elements by replacing i1 = 1, i2 = 2, . . . , and write G{1,2,...,K} simply
as GK .

Let

A(K) = {(α1, . . . , αK) ∈ RK |
K∑

m=1

αm ≤ 1 , αm ≥ 0} , (0 ≤ K ≤ M)

and let Ωm be the parameter space of the m-th component. Then the parameter space of
subprobability measures consisting of less than or equal to K components can be written
as Θ(K) = A(K) ×∏K

m=1 Ωm.
Let E0[·] denote the expectation under θ0. The following theorem is essential to our

argument and it is of some independent interest.

Theorem 4. Suppose that assumptions 1–4 are satisfied and the true model can be repre-
sented only by the model which consists of M components. Then there exist real constants
λ, κ > 0 such that

E0 [log {g + κ}] + λ < E0[log f(x; θ0)] (4)

for all g ∈ GL , (L ≤ M − 1).

We now state the main theorem of this paper.

Theorem 5. Suppose that assumptions 1–4 are satisfied and the true model can be rep-
resented only by the model which consists of M components. Let c0 > 0 and 0 < d < 1.
If cn = c0 · exp(−nd) and

Θn ≡ {θ ∈ Θ | bm ≥ cn , (m = 1, . . . , M)},
then the maximum likelihood estimator restricted to Θn is strongly consistent.

4 Proofs

In this section, we prove theorems stated in section 3. The organization of this section is
as follows. First in subsection 4.1 we prove theorem 4 which is used to prove theorem 5.
Next we prove two lemmas in subsection 4.2. Those two lemmas are also used to prove
theorem 5 and can be described separately from the proof of theorem 5. Finally we prove
theorem 5 in subsection 4.3.
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4.1 Proof of the theorem 4

We prove theorem 4 by contradiction. Suppose that (4) does not hold. Then for any
λ, κ > 0, there exists g ∈ GL such that

E0[log (g + κ)] + λ ≥ E0[log f(x; θ0)].

Here, let {λn}, {κn} be positive sequences which decrease to zero. Then for each λn, κn >
0, there exists gn ∈ GL such that

E0[log (gn + κn)] + λn ≥ E0[log f(x; θ0)].

It follows that

lim inf
n→∞

E0[log (gn + κn)] + λn ≥ E0[log f(x; θ0)]. (5)

Now gn can be written as

gn =
L∑

m=1

α(n)
m fm(x; a(n)

m , b(n)
m ).

Let

a′(n)
m ≡ arctan (a(n)

m ), b′(n)
m ≡ arctan (b(n)

m ).

Then {α(n)
1 , a′(n)

1 , b′(n)
1 , . . . , α

(n)
L , a′(n)

L , b′(n)
L }∞n=1 are regarded as a sequence in the following

compact set.

0 ≤ αm ≤ 1 ,

L∑
m=1

αm ≤ 1,

−π

2
≤ a′(n)

m ≤ π

2
, 0 ≤ b′(n)

m ≤ π

2
. (6)

Therefore there exists a subsequence of {α(n)
1 , a′(n)

1 , b′(n)
1 , . . . , α

(n)
L , a′(n)

L , b′(n)
L }∞n=1 that con-

verges to a point in the set (6). For notational simplicity and without loss of generality, we
replace the original sequence with this subsequence, because (5) holds for this subsequence
as well. Furthermore we reorder components by asymptotic behavior of their parameters.
First, we choose components such that b′(n)

m → 0 , and order them as {1, . . . , K0
b } for

simplicity. Second, from the remainder, we choose components such that b′(n)
m → 1/2,

and order them as {K0
b + 1, . . . , K∞

b }. Third, from the remainder, we choose components

such that |a′(n)
m | → 1/2, and order them as {K∞

b + 1, . . . , K∞
a }. Finally, we order the

components that remain after this procedure as {K∞
a + 1, . . . , L}. Let

g∞(x) =
L∑

m=K∞
a +1

α(∞)
m fm(x; a(∞)

m , b(∞)
m ) ∈ GL′ , (L′ = L−K∞

a ),
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where (α
(∞)
m a

(∞)
m , b

(∞)
m ) = limn→∞(α

(n)
m , a

(n)
m , b

(n)
m ) is finite for m > K∞

a . By considering the

sequence {α(n)
m , a

(n)
m , b

(n)
m }∞n=n0

where n0 is sufficiently large, and replacing n by n − n0 if
necessary, we can assume without loss of generality that there exist sufficiently small real
constants κ0 > 0 and c0 > 0 such that

E0[log{f(x; θ0)}]− E0 [log {g∞ + κ0}] > 0 ,
κ0

4
<

v0

c0(M + 1)
,

b(n)
m < c0 , (1 ≤ m ≤ K0

b ) ,∀n,

b(n)
m >

4Mv0

κ0

, (K0
b + 1 ≤ m ≤ K∞

b ) ,∀n,

c0 ≤ b(n)
m ≤ 4Mv0

κ0

, (K∞
b + 1 ≤ m ≤ L), ∀n.

(7)

From assumption 1, fm(x; am, bm) is bounded by a step function

fm(x; am, bm) ≤ 1[am−ν(bm),am+ν(bm))(x) · v(bm) +
κ0

4M
,

where ν(bm) and v(bm) are defined as

ν(bm) ≡
(

4Mv1

κ0

) 1
β

(bm)(
β−1

β ) ,

v(bm) ≡ v0

bm

.

See figure 1. Hence, from (7), following inequality holds.

x

κ0/4M

v(bm)

ν(bm)−ν(bm)

Figure 1: Each component is bounded by step function.

L∑
m=1

α(n)
m fm(x; a(n)

m , b(n)
m ) ≤

L∑
m=1

fm(x; a(n)
m , b(n)

m )
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≤
L∑

m=1

1
[a

(n)
m −ν(b

(n)
m ),a

(n)
m +ν(b

(n)
m ))

(x) · v(b(n)
m ) +

κ0

4
. (8)

Let J(θ(n)) ≡ ⋃K0
b

m=1[a
(n)
m − ν(b

(n)
m ), a

(n)
m + ν(b

(n)
m )). Then for x ∈ J(θ(n)) the terms on the

right hand side of (8) can be written as

1J(θ(n))(x) ·
{

L∑
m=1

1
[a

(n)
m −ν(b

(n)
m ),a

(n)
m +ν(b

(n)
m ))

(x) · v(b(n)
m ) +

κ0

4

}
=

T (θ(n))∑
t=1

H(Jt(θ
(n))) ·1Jt(θ(n))(x),

where Jt(θ
(n)), (t = 1, . . . , T (θ(n))), are disjoint intervals, [a

(n)
m −ν(b

(n)
m ), a

(n)
m +ν(b

(n)
m )) , (m =

1, . . . , K0
b ), are unions of some of Jt(θ

(n))’s and H(Jt(θ
(n))) is defined by

H(Jt(θ
(n))) =

L∑
m=1

1
[a

(n)
m −ν(b

(n)
m ),a

(n)
m +ν(b

(n)
m ))

(x) · v(b(n)
m ) +

κ0

4
, (x ∈ Jt(θ

(n))) (9)

for each Jt(θ
(n)). Note that the total number T (θ(n)) of Jt(θ

(n))’s satisfies T (θ(n)) ≤ 2M ,

because the change of the height can only occur at a
(n)
m − ν(b

(n)
m ) or a

(n)
m + ν(b

(n)
m ). Let

W (Jt(θ
(n))) denote the length of Jt(θ

(n)). For convenience we determine the order of
J1(θ

(n)), . . . , JT (θ(n))(θ
(n)) such that

H(J1(θ
(n))) ≤ H(J2(θ

(n))) ≤ . . . ≤ H(JT (θ(n))(θ
(n))).

From the considerations above we have

E0

[
log

{
L∑

m=1

α(n)
m fm(x; a(n)

m , b(n)
m ) + κn

}
+ λn

]

= E0

[
1J(θ(n))(x) · log

{
L∑

m=1

α(n)
m fm(x; a(n)

m , b(n)
m ) + κn

}]

+E0

[
1R\J(θ(n))(x) · log

{
L∑

m=1

α(n)
m fm(x; a(n)

m , b(n)
m ) + κn

}]
+ λn

≤
∫

1J(θ(n))(x) · log





T (θ(n))∑
t=1

H(Jt(θ
(n))) · 1Jt(θ(n))(x) + κn



f(x; θ0)dx

+

∫
1R\J(θ(n))(x) · log





L∑

m=K0
b +1

α(n)
m fm(x; a(n)

m , b(n)
m ) +

κ0

4
+ κn



f(x; θ0)dx + λn.

(10)

Now we evaluate the first term on the right hand side of (10). From (7) we have

H(Jt(θ
(n)))− κ0

4
> H(Jt(θ

(n)))− v0

c0(M + 1)
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> H(Jt(θ
(n)))− H(Jt(θ

(n)))

M + 1
=

M ·H(Jt(θ
(n)))

M + 1
.

In (9) at any x ∈ Jt(θ
(n)), H(Jt(θ

(n))) − κ0/4 consists of at most M components. Thus
there exists at least one component such that

v(b(n)
m ) ≥ 1

M
·
(
H(Jt(θ

(n)))− κ0

4

)
≥ H(Jt(θ

(n)))

M + 1
.

Therefore we obtain

ν(b(n)
m ) =

(
4Mv1

κ0

) 1
β

(b(n)
m )(

β−1
β )

=

(
4Mv1

κ0

) 1
β

(
v0

v(b
(n)
m )

)(β−1
β )

≤
(

4Mv1

κ0

) 1
β

(
v0(M + 1)

H(Jt(θ(n)))

)(β−1
β )

.

From this and W (Jt(θ
(n))) ≤ 2ν(b

(n)
m ), it follows that

lim
n→∞

W (Jt(θ
(n))) · log {H(Jt(θ

(n)))} = 0.

Let

u0 ≡ sup
x

f(x; θ0).

Then we have

∫
1J(θ(n))(x) · log





T (θ(n))∑
t=1

H(Jt(θ
(n))) · 1Jt(θ(n))(x) + κn



f(x; θ0)dx

≤
T (θ(n))∑

t=1

W (J(θ(n))) · log
{
H(Jt(θ

(n))) + κn

} · u0

→ 0 , (n →∞) . (11)

Next we evaluate the second term on the right hand side of (10). Let

A(n) ≡ min
K∞

b +1≤m≤K∞
a

{
min {|a(n)

m + ν(b(n)
m )|, |a(n)

m − ν(b(n)
m )|}} .

Then the following inequality holds.

∫
1R\J(θ(n))(x) · log





L∑

m=K0
b +1

α(n)
m fm(x; a(n)

m , b(n)
m ) +

κ0

4
+ κn



f(x; θ0)dx

9



=

∫
1R\J(θ(n))(x) · log





K∞
b∑

m=K0
b +1

α(n)
m fm(x; a(n)

m , b(n)
m ) +

K∞
a∑

m=K∞
b +1

α(n)
m fm(x; a(n)

m , b(n)
m )

+
L∑

m=K∞
a +1

α(n)
m fm(x; a(n)

m , b(n)
m ) +

κ0

4
+ κn



f(x; θ0)dx

≤
∫

1R\J(θ(n))(x) · log





K∞
a∑

m=K∞
b +1

α(n)
m fm(x; a(n)

m , b(n)
m )

+
L∑

m=K∞
a +1

α(n)
m fm(x; a(n)

m , b(n)
m ) +

κ0

2
+ κn



f(x; θ0)dx

≤
∫

1[−A(n),A(n)]\J(θ(n))(x) · log





L∑
m=K∞

a +1

α(n)
m fm(x; a(n)

m , b(n)
m ) +

3κ0

4
+ κn



f(x; θ0)dx

+

∫
1{(−∞,−A(n))

S
(A(n),∞)}\J(θ(n))(x) · log





K∞
a∑

m=K∞
b +1

α(n)
m fm(x; a(n)

m , b(n)
m )

+
L∑

m=K∞
a +1

α(n)
m fm(x; a(n)

m , b(n)
m ) +

κ0

2
+ κn



f(x; θ0)dx. (12)

By bounded convergence theorem, we obtain

∫
1[−A(n),A(n)]\J(θ(n))(x) · log





L∑
m=K∞

a +1

α(n)
m fm(x; a(n)

m , b(n)
m ) +

3κ0

4
+ κn



f(x; θ0)dx

→
∫

log
{

g∞ +
κ0

2

}
f(x; θ0)dx, (13)

and

∫
1{(−∞,−A(n))

S
(A(n),∞)}\J(θ(n))(x) · log





K∞
a∑

m=K∞
b +1

α(n)
m fm(x; a(n)

m , b(n)
m )

+
L∑

m=K∞
a +1

α(n)
m fm(x; a(n)

m , b(n)
m ) +

κ0

2
+ κn



f(x; θ0)dx

≤
{

M · v(c0) +
κ0

2
+ κn

}
·
∫

1{(−∞,−A(n))
S

(A(n),∞)}f(x; θ0)dx

→ 0. (14)

10



From (10), (11), (12), (13), (14), we have

E0[log{f(x; θ0)}] ≤ lim sup
n→∞

E0[log (gn + κn)] + λn ≤ E0

[
log

{
g∞ +

3κ0

4

}]
.

This is a contradiction to (7). This completes the proof of theorem 4.

4.2 Some lemmas

Here we present two lemmas which are used to prove the main theorem. Before stating
the lemmas we bound the true density f(x; θ0) from above. Write

θ0 = (α01, a01, b01, . . . , α0M , a0M , b0M).

Let u0 ≡ supx f(x; θ0). From assumption 1

u0 ≤
M∑

m=1

α0m
v0

b0m

.

Now let |ᾱ| ≡ max(|a01|, . . . , |a0M |). Then for |x| ≥ 2|ᾱ|
|x− a0m|−β ≤ (|x| − |ᾱ|)−β ≤ 2β|x|−β , (m = 1, . . . , M).

Therefore for |x| ≥ 2|ᾱ|

f(x; θ0) ≤ |x|−β2βv1

M∑
m=1

α0mbβ−1
0m .

Let

u1 = max(u0 · (2|ᾱ|)β, 2βv1

M∑
m=1

α0mbβ−1
0m )

then

f(x; θ0) ≤ min {u0, u1 · |x|−β}, ∀x ∈ R. (15)

Now we state and prove two lemmas. For θ̄ ∈ Θ(K), g(x; θ̄) ∈ GK\GK−1 and any
positive real number ρ, let

g(x; θ̄, ρ) ≡ sup
dist(θ̄′,θ̄)≤ρ

g(x; θ̄′) = sup
dist(θ̄′,θ̄)≤ρ

K∑
m=1

αmf(x; ηm).

Lemma 1. Let Γ(K) , (0 ≤ K ≤ M) , denote any compact subset of Θ(K). For any real
constant κ ≥ 0 and any point θ̄ ∈ Γ(K), the following equality holds.

lim
ρ→0

E0[log{g(x; θ̄, ρ) + κ}] = E0[log{g(x; θ̄) + κ}] (16)
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Proof: We treat the case of κ > 0. The case of κ = 0 is almost the same as the proof
of Lemma 2 in Wald(1949) [6].

From assumption 3 we have

lim
ρ→0

log{g(x; θ̄, ρ) + κ} = log{g(x; θ̄) + κ} a.e.

Now Γ(K) is compact and κ > 0. Hence by assumption 1, log{g(x; θ̄, ρ) + κ} is bounded.
Therefore

lim
ρ→0

E0[log{g(x; θ̄, ρ) + κ}] = E0[log{g(x; θ̄) + κ}]

by bounded convergence theorem.

Lemma 2. For any real constant A0 > 0 and ζ > 0, define

An ≡ A0 · n
2+ζ
β−1 .

Let x1, . . . , xn denote a random sample of size n from f(x; θ0) and let

xn,1 ≡ min {x1, . . . , xn}
xn,n ≡ max {x1, . . . , xn}.

Then

Prob (xn,1 < −An or xn,n > An i.o.) = 0 .

Proof: If we show

∞∑
n=1

Prob (xn,1 < −An or xn,n > An) < ∞,

then by Borel-Cantelli lemma, lemma 2 follows. Since

Prob (xn,1 < −An or xn,n > An) ≤ Prob (xn,1 < −An) + Prob (xn,n > An) ,

it suffices to show that

∞∑
n=1

Prob (xn,1 < −An) < ∞,

∞∑
n=1

Prob (xn,n > An) < ∞.

12



Let F0(x) denotes the distribution function of f(x; θ0). Then we have

Prob (xn,1 < −An) = 1− (1− F0(−An))n,

Prob (xn,n > An) = 1− (F0(An))n,

and

F0(−An) ≤
∫ −An

−∞
u1 · |x|−βdx =

u1

β − 1
· (An)−β+1,

1− F0(An) ≤
∫ ∞

An

u1 · |x|−βdx =
u1

β − 1
· (An)−β+1.

By replacing n by n− n0 with a sufficiently large n0 if necessary, we can assume without
loss of generality that

u1A
−β+1
0

β − 1

(
n

2+ζ
β−1

)−β+1

< 1.

Then

log {(1− F0(−An))n} ≥ log

{(
1− u1

β − 1
· (An)−β+1

)n}

= log

{(
1− u1A

−β+1
0

β − 1

(
n

2+ζ
β−1

)−β+1
)n}

.

Let u2 ≡ u1A
−β+1
0 /(β − 1) and we have

|log (1− F0(−An))n| ≤
∣∣∣log

(
1− u2

n2+ζ

)n∣∣∣

=
u2

n1+ζ

∣∣∣∣∣log
(
1− u2

n2+ζ

)n2+ζ

u2

∣∣∣∣∣
= O(n−(1+ζ)).

Hence there exists a sufficiently large N and u3 > 0 such that

|log (1− F0(−An))n| ≤ u3

n1+ ζ
2

for all n > N . This and (1− F0(−An))n ≤ 1 imply that for n > N

log {(1− F0(−An))n} ≥ − u3

n1+ ζ
2

.

Hence by 1− e−y ≤ y, we have for n > N

Prob(xn,1 < −An) = 1− (1− F0(−An))n ≤ 1− exp

(
− u3

n1+ ζ
2

)
≤ u3

n1+ ζ
2

.
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Therefore we obtain
∑
n>N

Prob(xn,1 < −An) =
∑
n>N

1− (1− F0(−An))n ≤
∑

n

u3

n1+ ζ
2

< ∞.

The case of Prob(xn,n > An) is also proved by the same argument.

From the proof of the lemma 2 we obtain the following property

Prob (xn,1 < −An or xn,n > An) ≤ Prob (xn,1 < −An) + Prob (xn,n > An)

≤ 2u3

n1+ ζ
2

(17)

for all sufficiently large n.

4.3 Proof of the main theorem

From now on we follow the line of the proof in Tanaka and Takemura [2], although the
details of the proof here is much more complicated. For κ, λ satisfying (4), let κ0, λ0 be
real constants such that 0 < κ0 ≤ κ , 0 < λ0 ≤ λ and

B ≡ 4Mv0

κ0

> max {b01, . . . , b0M}.

Note that κ0, λ0 also satisfy (4). Because {cn} is decreasing to zero, by replacing c0 by
some cn if necessary, we can assume without loss of generality that c0 is sufficiently small
to satisfy the following conditions.

v(c0)
β−1

β > e,

c0 < min {b01, . . . , b0M},
3M · u0 · 2ν(c0) · | log κ0| < λ0

8
, (18)

12M · u0 ·
(

4Mv1

κ0

) 1
β

· (v0 · (M + 1))
β−1

β ·
(

1

v(c0)

)β−1
β

· log {v(c0)} <
λ0

4
, (19)

κ0

4
<

v(c0)

M + 1
. (20)

where

ν(c0) ≡
(

4Mv1

κ0

) 1
β

(c0)
(β−1

β ),

v(c0) ≡ v0

c0

.

For any set V ⊂ R, let P0(V ) denote the probability of V under the true density

P0(V ) ≡
∫

V

f(x; θ0)dx .
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Let A0 > 0 be a positive constant which satisfy

P0(A0) · log

(
Mv(c0) + κ0

κ0

)
<

λ0

8
, (21)

where
A0 ≡ (−∞,−A0] ∪ [A0,∞).

Let

An ≡ A0 · n
2+ζ
β−1

as in lemma 2. Define

Θ′
n ≡ {θ ∈ Θ | ∃m s.t. cn ≤ bm ≤ c0 or |am| > A0 + ν(c0)}

and

Γ0 ≡ {θ ∈ Θ | c0 ≤ bm ≤ B , |am| ≤ A0 + ν(c0), (m = 1, . . . ,M) } .

Note that Θ0 ⊂ Γ0.
In view of theorems 1, 2, for the strong consistency of MLE on Θn, it suffices to prove

that

lim
n→∞

supθ∈S∪Θ′n

∏n
i=1 f(xi; θ)∏n

i=1 f(xi; θ0)
= 0, a.e.

for all closed S ⊂ Γ0 not intersecting Θ0. Note that for all S and {xi}n
i=1,

sup
θ∈S∪Θ′n

n∏
i=1

f(xi; θ) = max

{
sup
θ∈S

n∏
i=1

f(xi; θ) , sup
θ∈Θ′n

n∏
i=1

f(xi; θ)

}
.

Furthermore

lim
n→∞

supθ∈S

∏n
i=1 f(xi; θ)∏n

i=1 f(xi; θ0)
= 0, a.e.

holds by theorem 1. Therefore it suffices to prove

lim
n→∞

supθ∈Θ′n

∏n
i=1 f(xi; θ)∏n

i=1 f(xi; θ0)
= 0, a.e. (22)

Let θ ∈ Θ′
n. Let K ≡ K(θ) ≥ 1 be the number of components which satisfy bm ≤ c0

and L ≡ L(θ) ≥ K(θ) + 1 be the number of components which satisfy bm ≤ B. Without
loss of generality, we can set b1 ≤ b2 ≤ . . . ≤ bK ≤ c0 < bK+1 ≤ . . . ≤ bL ≤ B < bL+1 ≤
. . . ≤ bM . Let

K = K (K,L) ≡ {m ∈ {K + 1, . . . , L} | |am| ≤ A0 + ν(c0)} (23)

and
K ′ = K ′(K,L) = {K + 1, . . . , L}\K .
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Let |K |, |K ′| denote the number of element in K , K ′. Let

Θ′
n,K ≡ {θ ∈ Θ′

n | |am| > A0 + ν(c0) , (m ∈ K ′) ,

cn ≤ b1 ≤ . . . ≤ bK ≤ c0 , B ≤ bL+1 ≤ . . . ≤ bM}. (24)

As above, it suffices to prove that for each K

lim
n→∞

supθ∈Θ′n,K

∏n
i=1 f(xi; θ)∏n

i=1 f(xi; θ0)
= 0, a.e. (25)

We fix K, L and K = K (K, L) from now on. Define Θ̄K by

Θ̄K ≡ {(αm1 , am1 , bm1 , . . . , αm|K | , am|K | , bm|K |) ∈ R3|K | | mi ∈ K , (i = 1, . . . , |K |),
∑

mi∈K

αmi
≤ 1 , αmi

≥ 0}

and for θ̄ ∈ Θ̄K , define

f̄(x; θ̄) ≡
∑

m∈K

αmfm(x; ηm) ,

f̄(x; θ̄, ρ) ≡ sup
dist(θ̄,θ̄′)≤ρ

f̄(x; θ̄′) .

Note that f̄(x; θ̄) is a subprobability measure.

Lemma 3. Let B(θ̄, ρ(θ̄)) denote the open ball with center θ̄ and radius ρ(θ̄). Then Θ̄K

can be covered by a finite number of balls B(θ̄(1), ρ(θ̄(1))), . . . , B(θ̄(S), ρ(θ̄(S))) such that

E0[log {f̄(x; θ̄(s), ρ(θ̄(s))) + κ0}] + λ0 < E0[log {f(x; θ0)}] , s = 1, . . . , S, (26)

.

Proof: From lemma 1 we have

lim
ρ→0

E0

[
log {f̄(x; θ̄, ρ) + κ0}

]
= E0

[
log {f̄(x; θ̄) + κ0}

]
.

For each θ̄ ∈ Θ̄K

E0

[
log

{
f̄(x; θ̄) + κ0

}]
+ λ0 < E0[log f(x; θ0)]

holds. Therefore for each θ̄ ∈ Θ̄K , there exists a radius ρ(θ̄) > 0 such that

E0[log {f̄(x; θ̄, ρ(θ̄)) + κ0}] + λ0 < E0[log {f(x; θ0)}]. (27)

Since

Θ̄K ⊂
⋃

θ∈Θ̄K

B(θ̄, ρ(θ̄)) (28)
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and the compactness of Θ̄K , there exists a finite number of balls B(θ̄(1), ρ(θ̄(1))), . . . ,
B(θ̄(S), ρ(θ̄(S))) which cover Θ̄K .

Define

Θ′
n,K ,s ≡ {θ ∈ Θ | (αm1 , am1 , bm1 , . . . , αm|K | , am|K | , bm|K |) ∈ B(θ̄(s), ρ(θ̄(s))) ,

(m1, . . . , m|K | ∈ K )}.
We now cover Θ′

n,K by Θ′
n,K ,1, . . . , Θ

′
n,K ,S :

Θ′
n,K =

S⋃
s=1

Θ′
n,K ,s .

Again it suffices to prove that for each s , (s = 1, . . . , S),

lim
n→∞

supθ∈Θ′n,K ,s

∏n
i=1 f(xi; θ)∏n

i=1 f(xi; θ0)
= 0, a.e. (29)

We fix s in addition to K from now on. Because

lim
n→∞

1

n

n∑
i=1

log f(xi; θ0) = E0[log f(x; θ0)], a.e.

(29) is implied by

lim sup
n→∞

1

n
sup

θ∈Θ′n,K ,s

n∑
i=1

log f(xi; θ) < E0[log f(x; θ0)], a.e. (30)

Therefore it suffices to prove (30), which is a new intermediate goal of our proof hereafter.
As discussed in subsection 4.1, from assumption 1, each component is bounded above

by a step function

fm(x; am, bm) ≤ 1[am−ν(bm),am+ν(bm))v(bm) +
κ0

4M
.

Then we have

K∑
m=1

αmfm(x; am, bm) ≤
K∑

m=1

1[am−ν(bm),am+ν(bm))v(bm) +
κ0

4
. (31)

Let J(θ) ≡ ⋃K
m=1[am − ν(bm), am + ν(bm)). We now prove the following lemma.

Lemma 4. Let Rn(V ) denote the number of observations which belong to a set V ⊂ R.
Then for θ ∈ Θ′

n,K ,s

1

n

n∑
i=1

log f(xi; θ) ≤ 1

n

n∑
i=1

log
{
f̄(xi; θ̄

(s), ρ(θ̄(s))) + κ0

}
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+
1

n
Rn(A0) · log

(
Mv(c0) + κ0

κ0

)

+
1

n
Rn(J(θ)) ·

{
− log

(κ0

4

)}

+
1

n

∑

xi∈J(θ)

log f(xi; θ) . (32)

Proof: For x 6∈ J(θ), f(x; θ) ≤ ∑M
m=K+1 αmfm(x; ηm) + κ0/4. holds. Therefore

1

n

n∑
i=1

log f(xi; θ) ≤ 1

n

∑

xi∈J(θ)

log f(xi; θ) +
1

n

∑

xi 6∈J(θ)

log

{
M∑

m=K+1

αmfm(xi; ηm) +
κ0

4

}

=
1

n

n∑
i=1

log

{
M∑

m=K+1

αmfm(xi; ηm) +
κ0

4

}

+
1

n

∑

xi∈J(θ)

[
log f(xi; θ)− log

{
M∑

m=K+1

αmfm(xi; ηm) +
κ0

4

}]

≤ 1

n

n∑
i=1

log

{
L∑

m=K+1

αmfm(xi; ηm) +
κ0

2

}

+
1

n

∑

xi∈J(θ)

log f(xi; θ)− 1

n
Rn(J(θ)) · log

(κ0

4

)
.

For x /∈ A0 ∑

m∈K ′
αmfm(x; ηm) ≤ κ0

4
.

Therefore we obtain

1

n

n∑
i=1

log

{
L∑

m=K+1

αmfm(xi; ηm) +
κ0

2

}

=
1

n

∑

xi /∈A0

log

{
L∑

m=K+1

αmfm(xi; ηm) +
κ0

2

}
+

1

n

∑

xi∈A0

log

{
L∑

m=K+1

αmfm(xi; ηm) +
κ0

2

}

≤ 1

n

∑

xi /∈A0

log

{ ∑

m∈K

αmfm(xi; ηm) + κ0

}
+

1

n

∑

xi∈A0

log

{
L∑

m=K+1

αmfm(xi; ηm) + κ0

}

=
1

n

n∑
i=1

log

{ ∑

m∈K

αmfm(xi; ηm) + κ0

}

+
1

n

∑

xi∈A0

[
log

{
L∑

m=K+1

αmfm(xi; ηm) + κ0

}
− log

{ ∑

m∈K

αmfm(xi; ηm) + κ0

}]
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≤ 1

n

n∑
i=1

log

{ ∑

m∈K

αmfm(xi; ηm) + κ0

}
+

1

n

∑

xi∈A0

[log {Mv(c0) + κ0} − log κ0]

≤ 1

n

n∑
i=1

log
{
f̄(xi; θ̄

(s), ρ(θ̄(s))) + κ0

}
+

1

n
Rn(A0) · log

(
Mv(c0) + κ0

κ0

)
.

We want to bound the terms on the right hand side of (32) from above. The first term
and the second term are easy. In fact by lemma 3 and the strong law of large numbers
we have

lim
n→∞

1

n

n∑
i=1

log
{
f̄(xi; θ̄

(s), ρ(θ̄(s))) + κ0

}
< E0[log f(x; θ0)]− λ0, a.e. (33)

for the first term. Furthermore by (21) and the strong law of large numbers we have

lim
n→∞

Rn(A0) · log

(
Mv(c0) + κ0

κ0

)
<

λ0

8
, a.e. (34)

for the second term. Next we consider the third term. We prove the following lemma.

Lemma 5.

lim sup
n→∞

sup
θ∈Θ′n,K ,s

1

n
Rn(J(θ)) ≤ 3M · u · 2ν(c0), a.e.

Proof: Let ε > 0 be arbitrarily fixed and let J
(n)
0 ≡ [−An, An]. We divide J

(n)
0 from −An

I
(n)
1 (c0)

2ν(c0)

I
(n)
kn(c0)(c0)

2ν(c0)
x

An−An

Figure 2: Division of J
(n)
0 by short intervals of length 2ν(c0).

to An by short intervals of length 2ν(c0). In right end of the intervals of J
(n)
0 , overlap

of two short intervals of length 2ν(c0) is allowed and the right end of a short interval

coincides with the right end of J
(n)
0 . See Figure 2. Let kn(c0) be the number of short

intervals and let I
(n)
1 (c0), . . . , I

(n)
kn(c0)(c0) be the divided short intervals. Then we have

kn(c0) ≤ 2An

2ν(c0)
+ 1 =

An

ν(c0)
+ 1 =

A0 · n
2+ζ
β−1

ν(c0)
+ 1 . (35)
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Note that any interval in J
(n)
0 of length 2ν(c0) is covered by at most 3 small intervals from

{I(n)
1 (c0), . . . , I

(n)
kn(c0)(c0)}. Now consider J(θ) =

⋃K
m=1[am − ν(bm), am + ν(bm)). Since

[am − ν(bm), am + ν(bm)) , (m = 1, . . . , K) , are intervals of length less than or equal to
2ν(c0), J(θ) is covered by at most 3M short intervals. Then

sup
θ∈Θ′n,K ,s

1

n
Rn(J(θ))− 3M · u · 2ν(c0) > ε

⇒ {xn,1 < −An or xn,n > An}
or

{1 ≤ ∃k ≤ kn(c0) ,
1

n
Rn(Ik(c0))− u0 · 2ν(c0) >

ε

3M
} . (36)

By lemma 2,
∑

n Prob(xn,1 < −An or xn,n > An) < ∞ and the first event on the right
hand side of (36) can be ignored. We only need to consider the second event. We will use
the same logic in the proofs of lemmas 6 and 7 below. Then

Prob

(
sup

θ∈Θ′n,K ,s

1

n
Rn(J(θ))− 3M · u0 · 2ν(c0) > ε

)

≤
kn(c0)∑

k=1

Prob

(
1

n
Rn(Ik(c0))− u0 · 2ν(c0) >

ε

3M

)
.

Since

P0(Ik(c0)) ≤ u0 · 2ν(c0), (k = 1, . . . , kn(θ)),

Rn(V ) ∼ Bin(n, P0(V )) and from (3), we obtain

Prob

(
1

n
Rn(Ik(c0))− u · 2ν(c0) >

ε

3M

)

≤ Prob

(
1

n
Rn(Ik(c0))− P0(Ik(c0)) >

ε

3M

)

≤ exp

(
−2nε2

9M2

)
.

Therefore

Prob

(
sup

θ∈Θ′n,K ,s

1

n
Rn(J(θ))− 3M · u0 · 2ν(c0) > ε

)

≤
(

A0 · n
2+ζ
β−1

ν(c0)
+ 1

)
· exp

(
−2nε2

9M2

)
.

When we sum this over n, the resulting series on the right converges. Hence by Borel-
Cantelli, we have

Prob

(
sup

θ∈Θ′n,K ,s

1

n
Rn(J(θ))− 3M · u0 · 2ν(c0) > ε i.o.

)
= 0.
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Because ε > 0 was arbitrary, we obtain

lim sup
n→∞

sup
θ∈Θ′n,K ,s

1

n
Rn(J(θ)) ≤ 3M · u0 · 2ν(c0), a.e.

By this lemma and (18) we have

lim sup
n→∞

sup
θ∈Θ′n,K ,s

1

n
Rn(J(θ)) ·

(
− log

κ0

4

)
≤ 3M · u0 · 2ν(c0) ·

(
− log

κ0

4

)
<

λ0

8
a.e. (37)

This bounds the third term on the right hand side of (32) from above.
Finally we bound the fourth term on the right hand side of (32) from above. This is

the most difficult part of our proof.
We reuse the same argument as in section 4.1. From (31) we have

1J(θ)(x) ·
M∑

m=1

αmfm(x; am, bm) ≤ 1J(θ)(x) ·
{

M∑
m=1

1[am−ν(bm),am+ν(bm)) · v(bm) +
κ0

4

}
. (38)

For x ∈ J(θ), the right hand side of (38) can be written as

1J(θ)(x) ·
{

M∑
m=1

1[am−ν(bm),am+ν(bm))(x) · v(bm) +
κ0

4

}
=

T (θ)∑
t=1

H(Jt(θ)) · 1Jt(θ)(x),

where Jt(θ) , (t = 1, . . . , T (θ)), are disjoint intervals, [am − ν(bm), am + ν(bm)) , (m =
1, . . . , K), are represented by unions of some of Jt(θ)’s and H(Jt(θ)) satisfies

H(Jt(θ)) =
M∑

m=1

1[am−ν(bm),am+ν(bm))(x) · v(bm) +
κ0

4
, (x ∈ Jt(θ)).

Note that T (θ) ≤ 2M . Let W (Jt(θ)) denote the length of Jt(θ). For convenience we
determine the order of t such that

H(J1(θ)) ≤ H(J2(θ)) ≤ . . . ≤ H(JT (θ)(θ)) .

We now classify the intervals Jt(θ), t = 1, . . . , T (θ), by the height H(Jt(θ)). Define c′n
by

c′n = c0 · exp (−n1/4)

and define τn(θ)

τn(θ) ≡ max{t ∈ {1, . . . , T} | H(Jt(θ)) ≤ Mv(c′n)} (39)
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where v(c′n) ≡ v0/c
′
n. Then the fourth term on the right hand side of (32) is written as

1

n

∑

xi∈J(θ)

log f(xi; θ) ≤
T (θ)∑
t=1

1

n

∑

xi∈Jt(θ)

log H(Jt(θ))

=
1

n

T (θ)∑
t=1

Rn(Jt(θ)) · log H(Jt(θ))

=
1

n

τn(θ)∑
t=1

Rn(Jt(θ)) · log H(Jt(θ))

+
1

n

T (θ)∑

t=τn(θ)+1

Rn(Jt(θ)) · log H(Jt(θ)). (40)

From (20) we have

H(Jt(θ))− κ0/4 > H(Jt(θ))− v0

c0(M + 1)
> H(Jt(θ))− H(Jt(θ))

M + 1
=

M ·H(Jt(θ))

M + 1
.

At any point on Jt(θ
(n)), H(Jt(θ

(n))) − κ0/4 consists of only at most M components.
Therefore there exists at least one component such that

v(bm) ≥ 1

M
·
(
H(Jt(θ))− κ0

4

)
≥ H(Jt(θ))

(M + 1)

and we obtain

ν(bm) =

(
4Mv1

κ0

) 1
β

(bm)(β−1
β

)

=

(
4Mv1

κ0

) 1
β

(
v0

v(bm)

)(β−1
β

)

≤
(

4Mv1

κ0

) 1
β

(
v0(M + 1)

H(Jt(θ))

)(β−1
β

)

.

Let

v2 ≡ 2 ·
(

4Mv1

κ0

) 1
β

· (v0(M + 1))(β−1
β

) ,

β̃ ≡ β − 1

β
> 0.

From W (Jt(θ)) ≤ 2ν(bm), it follows that

W (Jt(θ)) ≤ 2ν(bm) ≤ v2 ·
(

1

H(Jt(θ))

)β̃

. (41)
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Furthermore define

ξ(y) ≡ v2 ·
(

1

y

)β̃

, (y > 0) .

From (19), and noting that log y/yβ̃ is decreasing in yβ̃ ≥ e, we have

3 ·
τn(θ)∑
t=1

u0 · ξ(H(Jt(θ))) · log H(Jt(θ)) ≤ 3 · 2M · u0 · v2 ·
(

1

v(c0)

)β̃

· log {v(c0)} <
λ0

4
,

3 ·
T (θ)∑

t=τn(θ)+1

2

n
log H(Jt(θ)) ≤ 3 · 2M · 2

n
· log {M · v(cn)} → 0. (42)

Now suppose that the following inequality holds.

lim sup
n→∞

sup
θ∈Θ′n,K ,s




T (θ)∑
t=1

1

n
Rn(Jt(θ)) log H(Jt(θ))

− 3





τn(θ)∑
t=1

u0 · ξ(H(Jt(θ))) · log H(Jt(θ)) +

T (θ)∑

t=τn(θ)+1

2

n
log H(Jt(θ))






 ≤ 0, a.e.

(43)

Then from (40) and (42), the fourth term on the right hand side of (32) is bounded from
above as

lim sup
n→∞

1

n
sup

θ∈Θ′n,K ,s

∑

xi∈J(θ)

log f(xi; θ) ≤ λ0

4
a.e. (44)

Combining (33), (34), (37) and (44) we obtain

lim sup
n→∞

sup
θ∈Θ′n,K ,s

1

n

n∑
i=1

log f(xi; θ) ≤ (E0[log f(x; θ0)]− λ0) +
λ0

8
+

λ0

8
+

λ0

4

≤ E0[log f(x; θ0)]− λ0

2
, a.e.

and (30) is satisfied. Therefore it suffices to prove (43), which is a new goal of our proof.
We now consider further finite covering of Θ′

n,K ,s. Define

Θ′
n,K ,s,T,τ ≡ {θ ∈ Θ′

n,K ,s | T (θ) = T , τn(Θ) = τ} .

Then

sup
θ∈Θ′n,K ,s




T (θ)∑
t=1

1

n
Rn(Jt(θ)) · log H(Jt(θ))
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− 3





τn(θ)∑
t=1

u0 · ξ(H(Jt(θ))) · log H(Jt(θ)) +

T (θ)∑

t=τn(θ)+1

2

n
log H(Jt(θ))








≤ max
T=1,...,2M

max
τ=1,...,T

[

sup
θ∈Θ′n,K ,s,T,τ

{
τ∑

t=1

1

n
Rn(Jt(θ)) · log H(Jt(θ))− 3

τ∑
t=1

u0 · ξ(H(Jt(θ))) · log H(Jt(θ))

}

+ sup
θ∈Θ′n,K ,s,T,τ

{
T∑

t=τ+1

1

n
Rn(Jt(θ)) · log H(Jt(θ))− 3

T∑
t=τ+1

2

n
log H(Jt(θ))

}]
.

(45)

Suppose that the following inequalities hold for all T and τ .

lim sup
n→∞

sup
θ∈Θ′n,K ,s,T,τ

[
τ∑

t=1

1

n
Rn(Jt(θ)) · log H(Jt(θ))

−3
τ∑

t=1

u0 · ξ(H(Jt(θ))) · log H(Jt(θ))

]
≤ 0, a.e. (46)

lim sup
n→∞

sup
θ∈Θ′n,K ,s,T,τ

[
T∑

t=τ+1

1

n
Rn(Jt(θ)) · log H(Jt(θ))− 3

T∑
t=τ+1

2

n
log H(Jt(θ))

]
≤ 0, a.e.

(47)

Then (43) is derived from (45), (46), (47). Therefore it suffices to prove (46) and (47),
which are the final goals of our proof. We state (46) and (47) as two lemmas and give
their proofs.

Lemma 6.

lim sup
n→∞

sup
θ∈Θ′n,K ,s,T,τ

[
T∑

t=τ+1

1

n
Rn(Jt(θ)) · log H(Jt(θ))− 3

T∑
t=τ+1

2

n
log H(Jt(θ))

]
≤ 0 a.e.

Proof: Let δ > 0 be any fixed positive real constant and let a′t(θ) denote the middle
point of Jt(θ). Here, we consider the probability of the event that

sup
θ∈Θ′n,K ,s,T,τ

[
T∑

t=τ+1

1

n
Rn(Jt(θ)) · log H(Jt(θ))− 3

T∑
t=τ+1

2

n
log H(Jt(θ))

]
> 2Mδ. (48)

Since H(Jt(θ)) > Mv(c′n) holds for t > τ , we obtain by (41)

W (Jt(θ)) ≤ v2 ·
(

1

Mv(c′n)

)β̃

= v2 ·
(

c0

Mv0

)β̃

· exp (−β̃ · n1/4).
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Let

v3 ≡ v2 ·
(

c0

Mv0

)β̃

wn ≡ v3

2
· exp (−β̃ · n1/4).

Noting that for t > τ , the length of Jt(θ) is less than or equal to 2wn, the following
relation holds.

The event (48) occurs.

⇒ sup
θ∈Θ′n,K ,s,T,τ

[
T∑

t=τ+1

max

{
0,

(
1

n
Rn([a′t(θ)− wn, a′t(θ) + wn])

−3 · 2

n

)}
· log (Mv(cn))

]
> 2Mδ

⇒ ∃θ ∈ Θ′
n,K ,s,T,τ ,∃t > τ

max

{
0,

(
1

n
Rn([a′t(θ)− wn, a′t(θ) + wn])− 3 · 2

n

)}
· log (Mv(cn)) > δ

⇒ ∃θ ∈ Θ′
n,K ,s,T,τ ,∃t > τ

Rn([a′t(θ)− wn, a
′
t(θ) + wn]) ≥ 6

⇒ sup
−∞<a′<∞

Rn([a′ − wn, a′ + wn]) ≥ 6 . (49)

Below, we consider the probability of the event that (49) occurs. We divide J
(n)
0 =

[−An, An] from −An to An by short intervals of length 2wn as in the proof of lemma 5.
Let k(wn) be the number of short intervals and let I1(wn), . . . , Ik(wn)(wn) be the divided
short intervals. Then we have

k(c′n) ≤ 2An

2wn

+ 1 =
A0 · n

2+ζ
β−1

ν(c0)
+ 1 . (50)

Since any interval in J0 of length 2wn is covered by at most 3 small intervals from
I1(wn), . . . , Ik(wn)(wn) and from lemma 2,

sup
−∞<a′<∞

Rn([a′ − wn, a
′ + wn]) ≥ 6 ⇒ 1 ≤ ∃k ≤ k(wn) , Rn(Ik(wn)) ≥ 2 .

Note that Rn(Ik(wn)) ∼ Bin(n, P0(Ik(wn))) and P0(Ik(wn)) ≤ 2wnu0. Therefore from
(50) we have

k(wn)∑

k=1

Prob (Rn(Ik(wn)) ≥ 2)

≤
(

An

wn

+ 1

)
·
{

max
1≤k≤k(wn)

Prob(Rn(Ik(wn)) ≥ 2)

}
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≤
(

An

wn

+ 1

) n∑

k=2

(
n
k

)
(2wnu0)

k(1− 2wnu0)
n−k

≤
(

An

wn

+ 1

) n∑

k=2

nk

k!
(2wnu0)

k ≤
(

An

wn

+ 1

)
(2nwnu0)

2

n∑

k=0

1

k!
(2nwnu0)

k

≤
(

An

wn

+ 1

)
(2nwnu0)

2 exp (2nwnu0) .

When we sum this over n, resulting series on the right converges. Hence by Borel-Cantelli
and the fact that δ > 0 was arbitrary, we obtain

lim sup
n→∞

sup
θ∈Θ′n,K ,s,T,τ

[
T∑

t=τ+1

1

n
Rn(Jt(θ)) · log H(Jt(θ))− 3

T∑
t=τ+1

2

n
log H(Jt(θ))

]
≤ 0 a.e.

Finally we prove (46).

Lemma 7.

lim sup
n→∞

sup
θ∈Θ′n,K ,s,T,τ

[
τ∑

t=1

1

n
Rn(Jt(θ)) · log H(Jt(θ))

−3
τ∑

t=1

u0 · ξ(H(Jt(θ))) · log H(Jt(θ))

]
≤ 0 a.e.

Proof: Let δ > 0 be any fixed positive real constant and let

hn ≡ δ

12
{u0 · log (Mv(c′n))}−1

. (51)

Since v(c0) ≤ H(Jt(θ)) ≤ Mv(c′n), we have ξ(Mv(c′n)) ≤ ξ(H(Jt(θ))) ≤ ξ(v(c0)). We
divide the interval [ξ(Mv(c′n)), ξ(v(c0))] from ξ(v(c0)) to ξ(Mv(c′n)) , by short intervals
of length hn. In the left end ξ(Mv(c′n)) of the interval [ξ(Mv(c′n)), ξ(v(c0))], overlap of
two short intervals of length hn is allowed and the left end of a short interval is equal to
ξ(Mv(c′n)). Let ln be the number of short intervals of length hn and define w

(n)
l by

2w
(n)
l ≡

{
ξ(v(c0))− (l − 1)hn, 1 ≤ l ≤ ln,

ξ(Mv(c′n)), l = ln + 1.

Then we have

ln ≤ ξ(v(c0))

hn

+ 1 . (52)
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Let

ψ(y) = ξ−1(y) =

(
v2

y

)1/β̃

, (y > 0) ,

where ξ−1(·) is the inverse function of ξ(·). Next we consider the probability of the event
that

sup
θ∈Θ′n,K ,s,T,τ

[
τ∑

t=1

1

n
Rn(Jt(θ)) · log H(Jt(θ))

−3
τ∑

t=1

u0 · ξ(H(Jt(θ))) · log H(Jt(θ))

]
> 2Mδ. (53)

For this event the following relation holds.

The event (53) occurs.

⇒ ∃θ ∈ Θ′
n,K ,s,T,τ

1 ≤ ∃l(1), . . . , ∃l(τ) ≤ ln s.t.

ψ(2w
(n)
l(1)) ≤ H(J1(θ)) ≤ ψ(2w

(n)
l(1)+1), . . . , ψ(2w

(n)
l(τ)) ≤ H(Jτ (θ)) ≤ ψ(2w

(n)
l(τ)+1),

τ∑
t=1

max

{
0,

(
1

n
Rn([a′t(θ)− w

(n)
l(t), a

′
t(θ) + w

(n)
l(t)])

−3u0 · 2w(n)
l(t)+1

)}
· log {ψ(2w

(n)
l(t)+1)} > 2Mδ

⇒ ∃θ ∈ Θ′
n,K ,s,T,τ , 1 ≤ ∃t ≤ τ

1 ≤ ∃l(t) ≤ ln s.t.

ψ(2w
(n)
l(t)) ≤ H(Jt(θ)) ≤ ψ(2w

(n)
l(t)+1),

max

{
0,

(
1

n
Rn([a′t(θ)− w

(n)
l(t), a

′
t(θ) + w

(n)
l(t)])

−3u0 · 2w(n)
l(t)+1

)}
· log {ψ(2w

(n)
l(t)+1)} > δ

⇒ 1 ≤ ∃l ≤ ln s.t.

max

{
0, sup
−∞<a′<∞

(
1

n
Rn([a′ − w

(n)
l , a′ + w

(n)
l ])

−3u0 · 2w(n)
l+1

)}
· log {ψ(2w

(n)
l+1)} > δ

⇒ 1 ≤ ∃l ≤ ln s.t.

sup
−∞<a′<∞

{(
1

n
Rn([a′ − w

(n)
l , a′ + w

(n)
l ])− 3u0 · 2w(n)

l

)
· log {ψ(2w

(n)
l+1)}

+ 3u0 · (2w(n)
l − 2w

(n)
l+1) · log {ψ(2w

(n)
l+1)}

}
> δ (54)

Then from (51) and lemma 2 the following relation holds.

The event (54) occurs.
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⇒ 1 ≤ ∃l ≤ ln ,

sup
−∞<a′<∞

1

n

(
Rn([a′ − w

(n)
l , a′ + w

(n)
l ])− 3u0 · 2w(n)

l

)
· log {ψ(2w

(n)
l+1)} >

δ

2

⇒ 1 ≤ ∃l ≤ ln ,

sup
−An<a′<An

1

n

(
Rn([a′ − w

(n)
l , a′ + w

(n)
l ])− 3u0 · 2w(n)

l

)
· log {ψ(2w

(n)
l+1)} >

δ

2

(55)

Below, we consider the probability of the event that (55) occurs. We divide J
(n)
0 from

−An to An by short intervals of length 2w
(n)
l as in the proof of lemma 5. Let k(w

(n)
l )

be the number of short intervals and let I1(w
(n)
l ), . . . , I

k(w
(n)
l )

(w
(n)
l ) be the divided short

intervals. Then we have

k(w
(n)
l ) ≤ 2An

2w
(n)
l

+ 1 . (56)

Since any interval in J0 of length 2b
(n)
l is covered by at most 3 small intervals from

{I1(w
(n)
l ), . . . , I

k(w
(n)
l )

(w
(n)
l )}, we have

sup
−An≤a′≤An

(
1

n
Rn([a′ − w

(n)
l , a′ + w

(n)
l ])− 3u0 · 2w(n)

l

)
>

δ

2

(
log {ψ(2w

(n)
l(t)+1)}

)−1

⇒ max
k=1,...,k(w

(n)
l )

(
1

n
Rn(Ik(w

(n)
l ))− u0 · 2w(n)

l

)
>

1

3
· δ

2

(
log {ψ(2w

(n)
l(t)+1)}

)−1

. (57)

Note that Rn(Ik(w
(n)
l )) ∼ Bin(n, P0(Ik(w

(n)
l ))) and P0(Ik(w

(n)
l )) ≤ u0 · 2w(n)

l . Therefore
from (3) and (56) we have

Prob

(
max

k=1,...,k(w
(n)
l )

1

n

(
Rn(Ik(w

(n)
l ))− u0 · 2w(n)

l

)
>

1

3
· δ

2

{
log (ψ(2w

(n)
l(t)+1))

}−1
)

≤
(

2An

2w
(n)
l

+ M

)
· exp

[
−2n · δ2

36

{
log (ψ(2w

(n)
l(t)+1))

}−2
]

≤
(

An

ξ(Mv(c′n))
+ M

)
· exp

[
−2n · δ2

36
{log (Mv(c′n))}−2

]
. (58)

From (52), (54), (55), (57), and (58) we obtain

ln∑

l=1

Prob

(
sup

−An<a′<An

1

n

(
Rn([a′ − w

(n)
l , a′ + w

(n)
l ])− 3u0 · 2w(n)

l

)
· log {ψ(2w

(n)
l+1)} >

δ

2

)

≤
(

ξ(v(c0))

hn

+ 1

)
·
(

An

ξ(Mv(c′n))
+ M

)
· exp

[
−2n · δ2

36
{log (Mv(c′n))}−2

]
(59)
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When we sum this over n, the resulting series on the right converges. Hence by Borel-
Cantelli and the fact that δ > 0 is arbitrary, we have

lim sup
n→∞

sup
θ∈Θ′n,K ,s,T,τ

[
τ∑

t=1

1

n
Rn(Jt(θ)) · log H(Jt(θ))

−3
τ∑

t=1

u0 · ξ(H(Jt(θ))) · log H(Jt(θ))

]
≤ 0 a.e.

This completes the proof of theorem 5.

5 Discussions

In this paper we consider the strong consistency of the maximum likelihood estimator
for mixtures of location-scale distributions. We treat the case that the scale parameters
of the component distributions are restricted from below by cn = exp(−nd), 0 < d < 1,
and give the regularity conditions for the strong consistency of the maximum likelihood
estimator.

As in the case of the uniform mixture, it is readily verified that if cn decreases to
zero faster than exp(−n), then the consistency of the maximum likelihood estimator fails.
Therefore the rate of cn = exp(−nd), 0 < d < 1, obtained in this paper is almost the
lower bound of the order of cn which maintains the consistency.

Although we treat the univariate case in this paper, it is clear that the result obtained
in this paper can be extended to the multivariate case under the condition that compo-
nents are bounded and their tails decrease to zero fast enough if the minimum singular
values of the scale matrices of the components are restricted from below by cn.

Finally let us consider some sufficient conditions for the regularity conditions. For
η ∈ Ωm and any positive real number r, let

fm(x; η, r) ≡ sup
dist(η′,η)≤r

fm(x; η′).

Let Ω̃m be any compact subset of Ωm. Consider the following two conditions.

Assumption 5. For each ηm ∈ Ω̃m and sufficiently small r, fm(x; ηm, r) is measurable.

Assumption 6. For each ηm ∈ Ω̃m, if limn→∞ η
(n)
m = ηm, then limn→∞ fm(x; η

(n)
m ) =

fm(x; ηm) for all x.

If assumptions 5, 6 hold, then it is easily verified that assumptions 2, 3 hold. Thus
assumptions 1, 4, 5, 6 are sufficient conditions for regularity conditions and assumptions
5, 6 are checked more easily. For example, finite mixture density which consists of normal
density, t-density and uniform density on an open interval satisfies assumptions 1, 4, 5, 6.
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