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Abstract

We propose a computational theory of internal-state estimation for
others, which is the basis of information processing in human com-
munication. To estimate internal states of the other equivalent to
the self, we have to deal with two substantial difficulties, restriction of
the estimator’s parameter dimension and conversion between objective
and subjective information. The proposed computational theory that
solves both difficulties is based on self-observation principle. Learning
the dynamics of the self provides prior knowledge of the dynamics of
the other, which reduces the restriction of the parameter dimension;
learning the association between the subjective state for the self and
the objective observation of the self provides a mechanism for conver-
sion between objective observation of the other and subjective infor-
mation to the other. In this paper, we formalize communication in a
framework of dynamics-estimation problems, and describe the two dif-
ficulties and our proposal on the framework. We also discuss relations
of our proposal to evolutional psychology and neuroscience.
Keywords: communication, computational theory, model estimation,
mirror neuron, self-observation
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1 Introduction

The mechanism of human communication is an outstanding issue of informa-
tion science. Not only human beings, but monkeys and dogs do their own
communication each other. In advanced communication, new movements
emerge, such as tactics, cooperation and cultures. However, modern com-
puters cannot do that. Only in a programmed manner, they communicate
with other computers, let alone with humans.

Recent development of technology are overcoming technical issues, such
as the lack of “humanity” in computers, which have been said to prevent
computers from communication. Rapid improvements are seen in synthesis
and analysis of face expression, generation and recognition of vocal dialogue,
and so on. Some latest studies oriented to human communication uses a
body of humanoid robot [IOIK03, AHP+00]. Nevertheless, we still have
found no way to provide advanced communication that causes emergence of
new movements.

We can expect for improvement of the brain science to reveal information-
processing mechanism of communication in the brain. However, without a
breakthrough theory, the brain science will not show much improvement.
Even if we investigate all the synaptic connections within the brain, we can-
not see how the brain performs communication. Experiments in cognitive
science and neuroscience can only look for evidence of existing theories; they
cannot elucidate a wholly-unknown mechanism.

The required is a computational theory that underlies communication.
A computational theory is a basic framework for the research of brain
information-processing, which states the purpose and requirements of com-
munication and the input/output of the information processing for the com-
munication [Mar82, Kaw96]. Based on a computational theory, we can pro-
pose several algorithms that satisfy the purpose and requirements. Then we
can use the proposed algorithms for implementation on computers, as well
as for hypotheses required for the research in the brain science.

An existing computational theory of communication states that commu-
nication consists of interactions through the estimation of other’s internal
states [Kuj97]. However, up to our knowledge, nobody has found an algo-
rithm that satisfies the theory. This fact suggests some incompleteness of
the theory, in other words, the theory may lack some key factors that are
essential to solve difficulties in actual algorithms. If this is the case, we need
a new computational theory, which contains the key factors in addition to
the original theory.

In this article, we investigate the existing computational theory of com-
munication within the framework of dynamics-estimation problem, and point
out that the theory are prevented from realization by two difficulties, the
limit of parameter dimensions of the estimator and the conversion between
subjective information and objective information. As a way to solve the dif-
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ficulties, we propose a new computational theory based on self-observation
principle, in which the dynamics model, which is learned through objective
observation of the self, is applied to the other for estimation of the other’s
internal states. We also discuss the proposed theory within the scope of
related scientific domains, and argue the self-learning dynamics model has
relation to the human self-consciousness and mirror neurons.

2 Communication as dynamics estimation

In this section, we formalize the computational theory of communication in
a framework of dynamics-estimation problem.

2.1 Existing computational theory of communication

In this section, we provide our definition of communication, to avoid ambi-
guity of the meaning. We also introduce an existing computational theory
of communication.

In this article, we focus on communication, which is “an information-
based interaction between fellows of the same kind, which have been devel-
oped for surviving natural selection”. We exclude actions which have no
direct benefit for survival or reproduction, such as simple observation and
imitation. This is because we have no way to verify algorithms that perform
these actions. We also exclude automatic actions based on instincts because
our focus is the mechanism of information processing in the brain.

Existing studies have shown that the estimation of the other’s internal
state is a prominent information processing involved in the communication
[Kuj97]. Here we define the internal state as a set of elements, which is not
observable from one’s external world but affects his action, e.g. emotion,
desire, intention, and knowledge.

If one’s colleagues helps him, he can survive better than he alone does.
To promote the help, he needs to appeal to his colleagues to take more ac-
tions for his benefit; this is the purpose of the communication. However, to
do this, he must know which appealing cause the colleagues to help him the
appealing requires. In other words, prior to the appealing actions, he needs
to predict the colleagues’ action under various condition. Such an action
prediction is required in the information processing of the communication.
Furthermore, since the colleague’s action is hardly predictable from observ-
able information, he needs to estimate the colleagues’ internal states, prior
to the action prediction.

For example, it may be difficult to predict one’s future action based only
on his externally-observable state (a skinny man is walking unsteadily). If,
however, we are able to estimate his internal states (hungry and looking for
food), the estimation helps us to predict his future action (when he finds
some food, he will eat it). Such prediction helps our actions for survival (we
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can hide our food) as wells as interactions that changes his internal states
(giving food to him will cure his hunger and make him happy).

In advanced communications, internal states are estimated recursively,
i.e. “estimating ‘how he estimates my internal state’ as a part of his internal
state”. For example, chimpanzees show deceiving actions [PW78]; a chim-
panzee pretended to see distance as if some danger is approaching, expecting
for the action to distract another chimpanzee’s attention from scolding him.
Recursive estimation, which underlies such an action, also plays a crucial
role in human communication.

Despite its importance, it is largely unknown how the human brain per-
forms estimation of the other’s internal states. One reason is the lack of
computational studies. For any information processing of a human, it is dif-
ficult to find its correspondence in the brain, if we don’t know what kinds of
information representations and algorithms can provide the process. Com-
putational studies try to construct the representations and algorithms, so
that we can use them as hypotheses of the mechanism in the brain.

To study in this methodology, we need a computational theory, which is
a common basis of the algorithms, such as the purpose of the calculation and
the structure of input/output. In this study, we define the computational
theory of communication as the following.

1. Improve the actor’s possibility of survival and reproduction through
action selection. (This includes the actor’s selection of action that
causes others’ action beneficial to the actor).

2. Estimate actions of the other, who is an equivalent to the self, for
achieving (1).

3. Estimate the other’s internal states and relation between internal states
and environments/actions, for achieving (2).

The remaining of this article pursues a principle of algorithms that con-
forms this computational theory.

2.2 Dynamics-estimation framework

The estimation of unobservable parameters involves the estimation of several
components. We present the framework of dynamics-estimation problem to
identify the components.

Let x(t) ∈ S be a state of a target at time t. The dynamics of the
target, the structure of the state change according to the environment and
time, can be denoted as the following, using the input a(t) of time t and a
state-transition map f .
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x(t + 1) = f(x(t), a(t)) (1)

However, we have no way to observe the current state x(t) directly.
Instead, we can observe the output y(t), which is determined from x(t) and
an output map g.

y(t) = g(x(t)) (2)

Suppose we want to predict the future output of the target, y(t+1), y(t+
2), · · · using only inputs a(1), a(2), · · · and past outputs y(1), y(2), · · · , y(t).
For better prediction, a predictor needs to calculate the estimation of the
current state x̂(t) ∈ Ŝ as well as the estimation of the target dynamics, f̂
and ĝ. This is a dynamics-estimation problem (Figure 1).

If the target dynamics (f and g) are known to the estimator, the problem
is reduced to the estimation of the current state, which is generally easy. In
a case either f or g is only known, the predictor has to estimate the other
map, which makes the problem more difficult.

However, the problem gets extremely difficult if both f and g are un-
known. Since there is no clue for the original state space S, the estimator
has to provide a reconstruction of the state space Ŝ, in which a state estima-
tion x̂ is placed. Generally, in a deterministic system with constant input,
the reconstruction is not guaranteed unless the dimension of Ŝ is larger than
the twice of the dimension of the original state space S (embedding theorem
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[AIYK00]). The increase of the dimension of Ŝ multiplies the number of
parameters of the estimated maps f̂ and ĝ, and as a result, the estimation
becomes less feasible. Conversely, partial information on f or g may help
the estimation through the reduction of the dimension of Ŝ.

2.3 Communication as dynamics estimation

We can regard the estimation process of the other’s internal states as an
extension of the dynamics-estimation framework to a non-stationary system.
Although the communicating two are equivalent, we focus one of them as
a dynamics estimator, which we call as the self. We call the target of the
self’s estimation as the other.

Figure 2 illustrates this framework. In this case, the self is an estimator
of the other’s internal dynamics as well as a dynamical system being esti-
mated by the other. To represent this relation, the other’s dynamics model,
f̂2 and ĝ2, should be a part of the self’s internal state, x1, and be con-
structed by the model learner M in the state-transition map f1. Since the
other also constructs the dynamics model of the self, the whole framework
becomes symmetric. We can also see fractal structure if the self estimates
the dynamics model of the self in the other’s internal state.

Note that the self cannot obtain the other’s precise input a2 and output
y2. The self can obtain them only in an indirect way, through the input
to the self a1. This problem is discussed later at Section 4. Until then,
we temporarily use the symbols with primes a′

2, y′
2 to denote indirect and

partial information.
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3 Difficulties on parameter dimension

In this section, we describe one of the two difficulties involved in the estima-
tion of the other’s internal states; the difficulty on the estimator’s parameter
dimension.

3.1 Limit of parameter dimension

In the previous section, we have shown that the estimation of the other’s
internal states can be regarded as a dynamics-estimation problem.

However, the brain of animals has been performing dynamics estimation
from ancient days, irrelevant of communication. Feedback control of mus-
cle movement and construction of environment map are good examples of
prediction of state change in the external world. In such prediction, the
brain estimates non-observable states and its transition/output maps to re-
solve complex relation between input and output. Researchers are trying to
reproduce this estimation in a computational model [WK98].

Then, can the estimation of the other’s internal states, the basis of com-
munication, be realized an extended, complicated version of this dynamics
estimation? It seems that, in the area of computational communication
study, there exists an implicit consensus that the answer is ‘yes’.

We, however, claim that it is ‘no’. This is because the other, who is
equivalently complex to the self, is too complex to be estimated. An indi-
vidual, such as a human being, has a large dimension of internal states and
complex dynamics. Moreover, an estimator needs extra dimensions for the
reconstruction of the state space. It is very difficult to estimate all of the
target’s dynamics, the state-transition map f̂2, the output map ĝ2, and the
current state x̂2, using solely the external observation of the target.

Theoretically, it is still possible to estimate the dynamics with a mass of
observation data. However, the estimator’s parameter dimension needs to be
far larger than the dimension of the target’s internal state. In other words,
if the estimator’s parameter dimension is fixed, he can estimate only a very
simple target, whose dimension is substantially lower than the estimator; a
more complex target beyond the ‘limit of the dimension’ cannot be estimated
with sufficient precision. To provide advanced estimation, such as recursive
estimation, it is necessary to estimate the internal state of the target, who
is equivalently complex to the estimator. It is apparent that the dimension
of such a target goes beyond the ‘limit of the dimension’ and that the target
cannot be estimated solely by external observation.

Even a human being has a very limited capacity for the prediction prob-
lem involving dynamics estimation of hidden parameters. It is very unlikely
that the capacity beyond human being is mandatory for communication.
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3.2 Clue for estimating dynamics

The described difficulty is caused by the restriction that all the dynamics
is estimated only from observation. As discussed in Section 2.2, we may be
able to solve this difficulty if we have some partial information of dynamics,
such as state space, transition map and output map.

One naive idea is that the partial information is innately given to the
brain. That is, the human brain has a priori structure of basic information
processing that extracts one’s internal states from its external observation.
It is probable that the brain has innate knowledge and reactions for primitive
elements, including face expression and tone of voice.

However, the idea seems to be insufficient for describing communication.
A human being learns a large part of knowledge, including knowledge about
himself, after his birth. It is unlikely that the human being innately possesses
all knowledge of the other, and complex processing like recursive estimation.
In fact, psychologists have evidence of the age-dependent development of ‘the
theory of mind’ in human children [BC95].

We need some description of learning the dynamics. In other words, the
brain needs some source of learning data, in addition to the observation of
others.

3.3 Solution using the self

Our proposal is that one’s brain learns the other’s dynamics from his own
dynamics (Figure 3). That is, the self adopts an assumption that the other
obeys similar dynamics to the self’s own one. If the assumption is true,
the brain can obtain rough estimation of the other’s internal states. Small
difference can be learned after that.

The followings are some advantages of this proposal.
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• The proposal is compliant to the computational theory of communi-
cation, that is, the estimation of internal state of the other, who is
equivalent to the self. Under the theory, the above assumption is ful-
filled because the other’s dynamics is equivalent to the self’s. It can be
seen as the most natural realization of the constraint of equivalency.

• The self can obtain much information for the self’s dynamics than the
other’s. The self can observe his own internal states, such as emotion
and desire, as well as his externally non-observable input, such as the
sense of pain and touch. Using a dynamics model constructed from
this abundant information, it is much easier to estimate internal states
of the other.

• Increase of state space dimension can be suppressed. The brain need
not reconstruct internal state space from scratch if it uses information
of internal states and transition maps in the self. In addition, the
knowledge of the structure of internal state space makes the learning
of output map much easier.

The following example illustrates this idea in a scene of human commu-
nication. A person (the self) sees another person (the other) accidentally
bumping his hand to a table and bleeding. The self has already learned, from
his own experience, associations between the input and the state change
(bumping hand causes pain), and associations between the observation and
the internal state (bleeding hand is painful). Using the learned knowledge,
the self estimates the internal state of the other from the observation of
the other and his environment (He bumped his hand and is bleeding, so he
would be painful). Combined with action decision, the self can work on the
other (apply ointment to the wound), and change the internal state (relieve
the pain and make him happy).

Note that one’s dynamics model does not necessarily reflect himself per-
fectly. It is known that the framework of observing/learning self involves
substantial difficulty for representing the complexity of the self within itself
[Rös98]. However, in this study, the self-learning is used just for providing
a ‘seed’ of dynamics model for the estimation of the other’s internal state.
Thus the adequate level of approximated dynamics model of the self’s dy-
namics is sufficient for that purpose.

4 Difficulties on conversion between subjective and
objective information

This section describes another difficulty, the conversion between subjective
and objective information.. The other’s internal state cannot be estimated
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merely by using the dynamics of the self, because the input of the dynam-
ics, the other’s subjective information, needs to be reconstructed from the
observed information of the self. However, the reconstruction of subjective
input is in the same class of difficulty as the estimation of internal state
is. We argue that a naive self-application principle cannot escape from the
necessity of subjective input reconstruction, and propose a solution, a self-
observation principle.

4.1 Self-application principle

One method, which naively realizes the proposal of the previous section, is
to apply the action rule of oneself for the prediction of the other’s action.
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We call this method as self-application principle.
Figure 4 illustrates this principle. One’s brain projects (copies) his own

state-transition map f1 and output map g1 to the corresponding maps in
the dynamics model, f̂ and ĝ, respectively. After that, the brain uses the
dynamics model to obtain an estimation of the other’s internal state x̂ and
a prediction of the other’s output ŷ.

The problem of this principle lies in the difference of stances between
the self and the other. One can only observe objective information of the
other; we denote such objective information by attached asterisk, a∗

2. This
information is incompatible to the input of the map f̂ , which is copied from
the state-transition map of the self. The compatible, required input a′

2 is
the input the self would receive if the self were on the stance of the other,
that is, information of subjective input. To bridge this difference, the brain
requires a conversion process Va, which converts a∗

2 into a′
2.

The same applies for the output. Although the predicted output of the
dynamics model ŷ′

2 is subjective, we need to know how that matters to
the self, i.e. the objective information of the output ŷ∗

2. Thus a conversion
process Vy, which converts ŷ′

2 to ŷ∗
2, is required.

We claim that this conversion process between objective and subjective
information is the second difficulty in the computational theory of commu-
nication. Contrary to our intuition, the conversion is not a trivial process,
because the two types of information representation are in totally differ-
ent modes. As for the sense of vision, the other’s visual sight needs to be
obtained from the self’s sight through a complex calculation of viewpoint
conversion. Almost all the sense of touch and pain needs to be reconstructed
from other senses, such as visual and auditory sense.

For example, suppose that the self saw the other accidentally bumped
his hand against a table. If the self puts himself in the position of the
other, the self can imagine the bump causes surprise in his emotion. In the
self-application principle, the rule is applied to the other to estimate the
other’s surprise. However, to do that, the self has to be able to convert the
self’s sight into the other’s subjective sight of the table and the hand, and
reconstruct the sense of pain from the sight; otherwise, he cannot put himself
in the position of the other. Such a complex conversion and reconstruction
is unlikely to be acquired from only the observation of the others, let alone
to be innate knowledge of human beings.

In other words, the estimation of the other’s subjective input is as diffi-
cult as the estimation of the other’s internal state. The other’s internal state
is private, and the other’s subjective input is also private; knowledge of pri-
vate process, f̂ and ĝ, doesn’t create a way to reach privates from public
information. We claim that the self-application principle does nothing more
than displacing the problem of internal-state estimation into the problem of
subjectivity-objectivity conversion, and does not solve the problem.
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4.2 Self-observation method

In this study, we propose a self-observation principle, which resolves this
problem. This is done by constructing a dynamics model from the objective
observation of the self, and then applying the dynamics model for the other’s
estimation of his action.

Figure 5 illustrates this principle. The state of the self x contains a
dynamics model f̂∗ and ĝ∗. The dynamics model is different from that of
the self-application principle in a point that the dynamics model directly
handles objectively observed information.

In the model-learning stage (Figure 5 (a)), a model learner M learns dy-
namics of a∗

1 and y∗
1 , which are the objective observation of the input/output
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of the self. This learning is easy because the actual internal state of the self
x1 can be used as a teacher data for the internal state of the model x̂.

Once the self has learned the dynamics model (f̂∗, ĝ∗), the self can apply
the model to the observation of the other (Figure 5 (b)). The dynamics
model processes a∗

2, the objective observation of the other’s input, and pro-
duces x̂, the estimation of the other’s internal state, and y∗

2 , the prediction
of the objective observation of the other’s output.

For example, the self firstly learns the fact “Bumping hand causes pain”
from the self’s own experience. The self’s dynamics model learns objective
observation of the experience, e.g. the sight of hand movement, bumping
sound, allo-centric (objective space) arrangements of the table and the hand,
and their relation to the pain in the self’s internal state. After that, observ-
ing the other bumping his hand to a table, the self estimates the other feels
pain from the observation, such as the sight of the other’s hand movement,
bumping sound, and allocentric locations of the table and the other’s hand.

Note that these observations are almost useless in determining the self’s
action. To avoid bumping hand again, the self only needs to learn rela-
tions among ego-centric (subjective space) arrangements of the table, mus-
cle movements of arm, and the resulting pain. However, such subjective
information is not enough for estimation of the other’s internal states; to
do that, the self need to relate objective observation to the self’s subjective
information and internal state.

4.3 Discussion

The proposed self-observation principle, which is apparently complicated, is
actually simpler than the self-application principle. One reason is the re-
duction of the elements to be calculated due to the elimination of conversion
between subjectivity and objectivity, Va and Vy.

Moreover, the idea underlying the self-application principle, ‘applying
the self’s dynamics to the other’ is implicitly involved in the self-observation
principle. The mechanism that transcripts the self’s dynamics into dynamics
model is provided as model learner M in the self-observation principle, un-
like simple projection in the self-application principle. In this viewpoint, the
self-observation principle can be regarded as a variant of the self-application
principle, which solves the problem of reconstruction of subjective informa-
tion.

Another advantage of the self-observation principle is its ability to learn
the other’s dynamics, using the same model learner M as the self’s dynamics.
As for the self-application principle, it is not a straightforward work to design
the learner; when some prediction goes wrong, the learner needs to choose
whether map, Va or f̂ , is to be corrected. That is not the case in the self-
observation principle, where the two maps are united into f̂∗.
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4.4 New computational theory

The proposed self-observation principle solves the two difficulties in the esti-
mation of the other’s internal states, the limit of the estimator’s parameter
dimension and the conversion between subjective and objective information.
However, the principle is so general that a number of algorithms can fulfill
the principle. Of course, they have to solve many practical difficulties.

To promote studies of these algorithms, we can integrate the proposed
principle into a new computational theory. Although the existing compu-
tational theory (Section 2.1) is so incomplete that we can hardly find an
algorithm that solves the difficulties, the new computational theory, which
clarifies the difficulties and approaches, will enable us to study new algo-
rithms. Then, the new algorithms can lead us to develop a new artificial
intelligence as well as help us hypothesize the function of the brain.

Thus, we here propose a new computational theory, which integrates the
self-observation principle. The theory is the following, in addition to the
original theory shown in Section 2.1:

4. Construct a dynamics model, which is applicable to the other, through
objective observation of the actor himself, for achieving (3) (estimation
of the other’s internal states).

Of course, we do not deny possibilities of an alternative computational
theory of communication. There may be another way to solve the limit of
estimator’s parameter dimension; the original computational theory ‘esti-
mation of the other’s internal state’, which we have used as a basis, may
need some modification. We hope that our proposed principle leads us to a
deeper discussion of the computational studies of communication, including
alternative theories.

5 Related studies

The self-observation principle is very simple but related to various research
domains. This section describes the relations.

5.1 Psychology

The idea of “Self-observation for a tool to estimate the other’s internal” has
been proposed in 1970s by an evolutional psychologist, Nicholas Humphrey
[Hum80, Hum84]. However, his thesis was a purely theoretical hypothesis,
which describes the origin of the self-consciousness through a Darwinian
process of evolution. His specification for which part of the self should be
observed was somewhat vague.
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We argue that our study can be regarded as an improvement to Humphrey’s
theory on these points. Through the formalization of the communication
process, we stated the effectiveness of the self-observing principle to solve
the difficulties in communication, and the requirement of the observation as
creating associations between the self’s subjective state and objective obser-
vation. Moreover, by defining the principle as a new computational theory,
our study can be said to migrate Humphrey’s theory into new scientific
domains, such as the neuroscience and artificial intelligence.

Baron-Cohen claims that, in his book of the theory of mind based on
autism study [BC95], Humphrey’s hypothesis corresponds to the self-application
principle, which contradicts the dissociation of symptoms in autism patients.
After that, he briefly suggests that a different principle based on introspec-
tion (which resembles the self-observation principle) will match the disso-
ciation. Although we regard that Humphrey’s hypothesis covers both the
self-application and self-observation principles, it is interesting to see the
study of autism supports the advantage of the self-observation principle
over the self-application principle.

5.2 Computational neuroscience

Most communication studies in computational neuroscience do not match
with the self-observation principle. Kawato et al. discusses communication
model as an extension of their model of dynamics interaction [KDH01], but
the discussion lacks the presupposition of equivalence between the self and
the other. Samejima et al. [SKDK02] proposed a learning model accelerated
with imitation, but their model implicitly assumes identical representation
for both subjective and objective information.
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To the best of our knowledge, no study constructs a model based on
Humphrey’s hypothesis or a similar framework. This would be because the
requirements and the principles for the estimation of the other’s internal
states have not been declared as a computational theory. We hope that our
proposal promotes the future studies of communication in computational
neuroscience.

In a different context from communication, Tani proposes a construc-
tivist approach for the study of the self and consciousness [Tan98]. However,
in this study, an individual is placed alone in an environment, and does not
consider interactions between individuals, let alone the estimation of the
other’s internal state.

5.3 Experimental neuroscience

Based on the self-observation principle, we can suggest a new role of mirror
neurons [DFF+92, GFFR96]. A mirror neuron is a neuron that becomes
active in a certain action (e.g. grasping an object) as well as in observing
another performing the same action. The mirror neurons are in premotor
area of the monkey brain, and it is supposed in the Broca’s area of the
human brain [RFGF96]. The mirror neurons are said to be related to the
ability of communication and language, but the detail is unknown.

Rizzolatti et al. proposed a hypothesis that a mirror neuron serves as a
commander of an action as well as the recognizer of the action (Figure 6(a)).
However, the mechanism of association is unknown. In addition, they say
that the response of the mirror neuron to the observation of the action is
usually suppressed, without reasonable discussion of the suppression mech-
anism.

In contrast, the self-observation principle suggests a role of mirror neuron
as show in Figure 6 (b). The process shown in Section 3.3 describes the
development of mirror neuron very well. A neuron in the dynamics model
learns the self’s action, and after that, applied to the other’s action; as a
result, the neuron begins to act as a mirror neuron. Moreover, such a neuron
requires no suppression mechanism because it does not directly trigger the
action.

Oztop and Arbib offer a hypothesis that the basic functionality of the
grasping mirror system is to elaborate the appropriate feedback for opposition-
space-based control of manual grasping of an object. They say that, given
this functionality, action understanding in the mirror system may be seen
as an exaptation gained by generalizing from one’s own hand to another’s
hand. Since this hypothesis matches the self-observation principle, we can
suggest that such a feedback mechanism is also the evolutional origin of
self-observation mechanism in the human communication.
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5.4 Artificial intelligence

Existing strategic algorithms, e.g. chess-playing programs, are based on the
prediction of the opponent’s action. Most existing algorithms, such as the
alpha-beta algorithm [Ish89], assume that the opponent evaluates and selects
an action in the same way as the algorithm does. This can be regarded
as a sort of the self-application principle. The self-application principle
is appropriate for this sort of strategic algorithms because the symmetry
of the rule makes it easy to design the viewpoint translator. However, it
is possible to design a new strategic algorithm based on self-observation
principle; a program based on such an algorithm would be possible to learn
the opponent’s characteristics through games and adapt the strategy.

6 Conclusion

We investigated the existing computational theory of communication, i.e.
estimation of the other’s internal states. We pointed out that the estimation
is prevented from two difficulties, limit of estimator’s parameter dimension
and reconstruction of subjective information for others. Our proposal for
solving the difficulties is the self-observation principle: one observes himself
objectively to learn a dynamics model, which is then applied to others.
Since the dynamics model learns association between the internal state of
the self and objective observation of the self, the self can use the model
to estimate the internal state of the other from objective observation of the
other. Through clarifying the target and purpose of the learning process and
integrating the self-observation principle into a computational theory, this
study has opened the way for the constructive study of the communication.
We also discussed the relation of our proposal to other research domains,
including self-consciousness and a mirror neuron system.
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