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General Frequency Domain Specifications

T. lwasaki and S.Harh

November 4, 2003

Abstract

This paper considers a robust control synthesis problem for uncertain linear systems to meet design spec-
ifications given in terms of multiple frequency domain inequalities in (semi)finite ranges. In this paper, we
restrict our attention to static (gain feedback) controllers. We will develop a new multiplier method that al-
lows for reduction of synthesis conditions to linear matrix inequality problems. We study conditions under
which the reduction is exact (nonconservative) in the single-objective nominal setting. Although the multi-
plier method is conservative in the general setting of multi-objective robust control, numerical design examples
demonstrate the utility of the method for the state feedback case.

1 Introduction

Design specifications for practical control synthesis are often given in terms of frequency domain inequalities
(FDIs). Most state space approaches to such design problems rely on the Kalman-Yakubovich-Popov (KYP)
lemma [1], [2] that converts an FDI to a linear matrix inequality (LMI) which is numerically tractable. While
the standard KYP lemma characterizes FDIs in the entire frequency range, practical requirements are usuall
described by multiple FDIs in (semi)finite ranges; e.g., small sensitivity in a low frequency range and control
roll-off in a high frequency range. Hence some sort of “adaptors,” such as the weighting functions, have been
used to fit the requirements into the KYP framework. However, the design iterations to search for the right
weighting functions can be tedious and time consuming, and the controller complexity (order) tends to increase
with the complexity of the weighting functions.

The objective of this paper is to develop a state space design theory that is capable of directly treating multiple
FDI specifications in various frequency ranges without introducing weighting functions. To our knowledge, this
problem has not been addressed in the literature. Our approach is based on the generalized Kalman-Yakubovicl
Popov (GKYP) lemma [3]—[5], recently developed by the authors, that provides an LMI characterization of FDIs
in (semi)finite frequency ranges. We will first give a dual version of the GKYP lemma which is more suitable
than the primal for feedback synthesis. A multiplier method is then developed to render the synthesis conditions
convex through a simple change of variable, in the static gain feedback setting. We discuss cases where th
multiplier method is nonconservative for the single-objective nominal design. The method is extended, with
some conservatism, for the multi-objective robust control synthesis for systems with polytopic uncertainties.
Design examples will demonstrate applicability of our results.
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TDepartment of Information Physics and Computing, Graduate School of Information Science and Engineering, The University of
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We use the following notation. For a matri¥, its transpose, complex conjugate transpose, the Moore-
Penrose inverse, and the null space are denotéd by *, MT, andN (M), respectively. The Hermitian part of
asquare matrid/ is denoted byle (M) := M +M*. For a Hermitian matrix)/ > (>)0 andM < (<)0 denote
positive (semi)definiteness and negative (semi)definiteness. The simpsthnds for the set of x n Hermitian
matrices. The subscriptwill be omitted ifn = 2. For matricesb andP, ® ® P means their Kronecker product.
ForG € €™ andIl € H,,,,, afunctiono : €"*™ x H,,+,, — H,, is defined by

o[ ¢ ]uf €],

Given a positive integey, let Z, be the set of positive integers upgpi.e.,Z, :={1, 2, ..., ¢ }.

2 Problem statement and formulation

2.1 Problem statement
Consider the plant’(\) described by

AT A B1 B2 x
z = Cl D11 D12 w (1)
Yy Co Dy 0 u

with a static gain feedback control= Ky where\ is the frequency variables for continuous-time and for
discrete-time cases), andt) € R", w(t) € R™, u(t) € R™, z(t) € R™, andy(t) € R™. Denote by

G (M) x K the closed-loop transfer function fromto z. The control synthesis problem of our interest is, given
ITe H,, +, and®, ¥ € H, find a stabilizing feedback gaii such that

c((GIN*xK)*TI) <0 VA& AP, 0. (2)
where
A(®, V) :={AeC|o(\®)=0, c(\,T)>0} (3)

andA := A if A isbounded and\ := A U {oo} if unbounded.

For clarity of exposition, we shall restrict our attention to this single-objective nominal control problem in the
main body of our theoretical developments. However, we will later discuss extensions to a more general problem
where there are multiple FDI constraints of the above form as well as some uncertainty in the plant model.

2.2 Problem formulation viaadual GKYP lemma
Consider a transfer function
G(A\)=C(M —A)"'B+D, ()

whereA € €"*", D € ¢"=*"™. The GKYP lemma in[3] provides a characterization of the FBG()), IT) < 0
forall A € A(®, ¥). The following result provides a dual version of the GKYP lemma.

Theorem 1 Let®, ¥ € H, II € H,,, 1., andG(\) in (4) be given and considex(®T, ¥7) defined by (3).
Suppose\ represents curves on the complex plane Ariéis no eigenvalues ifh. The following statements are
equivalent.



() o(G(\)*, ) < 0holds for all\ € A(®T, ¥T).
(il) There existP = P* and@ = Q* > 0 such that

PRIP+T®Q 0

N 0 II

(5)

]N*<o, N::[M I}T, M::lA B]

C D
whereT is the permutation matrix such that

[ My My Mg My T = [ My Ms My M, ] (6)
for arbitrary matrices\f,, M,, M3, andM, with column dimensions, n,, n, andn,, respectively.

Proof. Define

G.(\) :=G(\")* = B*(\[ - A")"'C* + D*.
Noting that the identity

o\, @) =a(\*, ")

holds for any\ € € and® € H, we see that
(
& o(Gy(
& 0(Gi(A\),I) <0 VA" € A(DT,TT)
< 0(Gi(N\),II) <0 VAe AP, V).
From the result in [3], we readily obtain the result. n

With the result of Theorem 1, and ignoring the stability requirement for the moment, a synthesis problem
may be formulated as the search for the paramépers 0, P, and K satisfying (5) withM defined to be the
state space matrices 6f\) » K as follows:

M = A+ BKC @)
| A B By
B [Cl Dn]—’—[Dlz}K[CQ DQl}'
The resulting condition is not convex due to the product terms between the parafetgrsand K. In the

next section, we shall develop a multiplier method to re-parametrize the condition so that the problem becomes
convex. Throughout the paper, we will assume thhgas full row rank without loss of generality.

3 Synthesiswith nullspacefilling multiplier

3.1 Basicidea

By the Finsler’'s theorem [6], condition (5) is equivalent to the existence of a multiplisuch that

PRIP+U®RQ 0], s
T . H]T <HelM]W. (8)



Note that (5) holds if and only if the left hand side (LHS) of (8) is negative definite on the range spaet 61 *.
The role of the multipliedV is to fill the orthogonal subspace, the nullspacébi I |, so that the LHS with this
modification becomes negative definite as in (8). The synthesis problem now is to caphpute P, W and K
satisfying condition (8). This is still a nonconvex problem due to the product term betivesa )V .

To make the problem tractable, we shall restrict the class of multipliéte be

W(C,R):={CWR+ (I -CIC)V |W e €™, det(W) #0, V e ¢nre)xCntnuin)y gy

whereR € @ *(2ntnwtn:) is 3 matrix to be specified later. In this case, the product term can be made linear in
terms of the new variablg := KW as follows:

MW = (A+ BKC)(C'WR+ (I - C'C)V) = AW + BKR.

Thus, the synthesis equation (8) becomes an LMI in terms of the paramgtéts)V, and/XC. Moreover, the
above change of variable is invertible and the feedback gain can be foulid=byCI/ —1.

We now turn our attention to the choice Bf We would like to specifyk so that the restrictiony € W(C, R)
can be made without introducing conservatism. The following theorem gives a characterization &f andh
summarizes the synthesis LMI.

Theorem 2 Let R € @v*2ntmwtn:) & & € H, 11 € H,, 1., P,Q € H,, and the system in (1) be given.
The following statements are equivalent.

(i) There exist a feedback gaiki and a real scalat > 0 such that conditions (5) and

S(TXT* — pR*R)S* < 0 (10)

o moa _[eePrveQ o
s=| 0] o= 70 g

are satisfied whera1 is defined in (7).

(i) There exist matrice®V € W (C, R), andK such that

POPLTRQ 0] .. W
Tl 0 H]T <HelAW+B/CR]'

If (i) holds, a gain in (i) can be given bi( := KW ~1.

Proof. Consider (8) withV € W(C, R). By the projection lemma, there exidtssatisfying this condition if and
only if
STX(ST)* <He JWRS*, J:= l _OI 1 ,

where we noted that the null space%fs equal to the range space of

—I
l Iy ] (I-cre).

Again by the projection lemma, there exitssatisfying the above inequality if and only if two conditions

N (T (ST)X(STY'N(J*) <0, N(RS*)*(ST)X(ST)*N'(RS*) < 0
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hold. The first condition is directly equivalent to (5) and the second condition is equivalent, through the Finsler's
theorem, to the existence of a scalasuch that

(ST)X(ST)* < u(RS™)*(RS™)
which is exactly the same as (10). [

The nullspace filling multiplier introduced above may be considered as a generalization of the multipliers
developed by de Oliveira, Bernussou, Geromel, and others, for robust stability analysis of systems with polytopic
uncertainties [7]-[12]. The main advantage of this type of formulation is that there is no product term between
the system paramete(s, B,C) and the “Lyapunov” parametefs, @)). An implication is that one can easily
obtain vertex-type results for robust control analysis as well as synthesis. Moreover, the formulation is also useful
for multi-objective control as we discuss later.

The condition in statement (ii) of Theorem 2 is given in terms of LMIs and hence can be numerically solved
by semidefinite programming. Here, we note that the nonsingularity constraifiterW (C, R) can be ignored
when solving the LMIs because a perturbation argument applies due to the strictness of the LMI.

We see that statement (ii) givesudficient condition for existence ok satisfying (5), regardless of the choice
of R. Moreover, the condition is algtecessary if R is chosen to satisfy (10). It can be verified that a particular
choice:

R=c|[1 -m"],

satisfies (10) for a sufficiently large > 0, providedP, @, and K solve (5). This means that an appropriate
R exists whenever the original synthesis problem is feasible. However, the above chéide nbt practical
because it depends on the unknown controller parameter. It would be useful if we could $pafysatisfies
(10) for arbitrary choices of Q > 0, P, and K. This may not always be possible, but can be done for certain
cases as shown in the next section.

3.2 Specific cases for exact synthesis

We shall specialize Theorem 2 for some specific cas€sanid give particular choices @t that lead to LMI
synthesis conditions which are nonconservative. To this end, let us introduce the following:

Assumption 1
(a) A represents curves on the complex plane, &nd active inA in the sense thak (¢ 7, UT) # A(P7,0).
(b) Atleastn, eigenvalues ofl are negative.

The first part of Item (a) is a natural condition within the framework of our control specifications expressed in
terms of restricted frequency inequalities. The second part means that the frequency ramge the entirgw

axis nor the unit circle, but a partial segment (or segments) of it. (See [4] for details.) Item (b) is a necessary
condition for feasibility of the control synthesis problem and hence can be imposed without loss of generality.

Corollary 1 (Full Information) Let ®, ¥ € H, Il € H,, 1., P,Q € H,, and the system in (1) be given.
Suppos&) > 0 and Assumption 1 hold, and consider the full information case

CZ[CQ Dm}:[.

Then there exists a feedback ga&insatisfying (5) if and only if statement (ii) in Theorem 2 holds, provides
chosen as follows. LeV e @ (2ntrwtnz)x(n+n:) ha g fyll column rank matrix such that* X N' < 0 for all P



and@ > 0. Then defineR to be a full row rank matrix witm,, rows such thakR7T'N = 0. In particular, one such
N is given by

_ N1 0 _ pIn *
N_[O N2]’ Nl_[an . N3IIN, < 0

wherer := [p ¢]* € €?is suchthat*®r = 0 andr*¥r < 0, and the column dimension éf, isn.. Existence
of suchr and N, is guaranteed by Assumption 1.

Proof. In the full information case = I), the matrix.S is nonsingular and hence condition (10) becomes
TXT* < pR*R, or equivalently,X < u(RT)*(RT). There existg: satisfying this inequality if and only if
N*X N < 0whereN is the null space oRT'. Finally, to verify that the giverV satisfiesV *X N < 0, it suffices

to note that

pl | pl
[q[] (cI>®P+\If®Q)[q[

] = (r*®r)P + (r*¥r)Q < 0

holds for anyP and@Q = Q* > 0. n

Corollary 1 gives an exact solution to the full information synthesis problem with an FDI in a bounded
frequency range. If the FDI specification is given for the entire frequency range (i.e., the second condition in
Assumption 1(a) is violated), Corollary 1 can be modified as follows. First note that the parapeser be
set to zero without loss of generality, and the paramg&t@nay be required to be positive definite to enforce a
stability constraint. We can then specify an appropriatey choosing- so thatr *®r is negative and modifying
N accordingly.

Corollary 2 (State Feedback) Let &, ¥ ¢ H, II € H,,,+,,, P,Q € H,, and the system in (1) be given.
Suppos&) > 0 and Assumption 1 hold, and consider the state feedback case

[02 Dm}:[ln 0]. (11)
Suppose further that:
®;;, =0, Uy, <0, oDj,I)<0. (12)

Then there exists a feedback gdinsatisfying (5) if and only if statement (ii) in Theorem 2 holds, provided we
choose

Ri=[0, 0 I, 0]
whereR is partitioned so that the numbers of columnsare ,,, n, andn, from left to right.
Proof. Note that the null space @?S* is given by[ 0 I,,1,. |*. Hence there exists satisfying (10) if and only

if the lower right(n + n,) x (n + n.) block matrix of(ST) X (ST * is negative definite. It can be verified using
the Schur complement that this condition is satisfied if and only if

d1P+V¥q1Q <0, U(D*,H) < 0.
The result now follows from Theorem 2. -

The conditions in (12) are satisfied when the control specifications are given in terms of a continuous-time
(®1; = 0), bounded frequencyl(;; < 0) inequality condition that holds at infinite frequeney(D *, II) < 0).
The last condition is met if, for instanc&)1; = 0 and the origin is included in the feasible domain defined by
the set ofG such thatr(G*, 1) < 0.



3.3 Heuristicsfor general state feedback synthesis

In this section, we will consider the general state feedback case and develop some potentially conservative bu
reasonable choices fét. First note that, for the state feedback case where (11) holds, condition (10) is equivalent
to

I, 0 0 0
So(TXT* — uR*R)S: <0, S,:=| 0 By I, 0
0 Dy 0 I,

becauses™ andS; share the same range space. Léte the null space akS; and partition it as follows:
NRS)=L=[1L;i L Lj ],

where the row dimensions @f;, Ly, andLs aren, n, andn,, respectively, and the column dimension is greater
than or equal te + n,. Then condition (10) can be written as

L, "] B o B, 0] Lo
If we can choose a full column-rank mattixsatisfying this conditionR can always be found so th&f(RS ) =
L, and for suchR there exists: such that (10) holds.

However, as noted above, it is difficult in general to finduch that the condition holds for @ and@ > 0.
A heuristic, but reasonable choice bfmay be given by

Ly

L *
lLi} (¢®P+\IJ®Q){L2 +

Lll 0 Lll e (ann L22 c (annz
L = L21 L22 ) L21 c (DTLX’VL7 L = (D?’LzXTL;
0 ng ) 3 )

where the submatrices éfare chosen to satisfy
Ly | L1 Lo |'[ Bi 0 B 0] [ La
PP+ U ® <0, IT <0
[Lm]( Q)le} [nglan 11 [Dn 11 [L32]
forall P and@ > 0. We claim that this is “reasonable” because the the uppemleftn and lower right
n, x n, block matrices of the left hand side of (13) are both negative definite, which are necessary conditions for
existence of: satisfying (10). Although these are not sufficient in general, this approach allows us to ¢hoose

that is independent aP and(@.
To be specific, let us impose Assumption 1. Then we can choose

L11 . pI L P r*or = 0,
l Lo ] - l g |” " g rUr<o, (14)
so that the first inequality is satisfied for ayand@ > 0. The matrices. 55 and L3, satisfying the second

inequality exist adl hasn . negative eigenvalues, providédsi has full column rank. In particular, ety and
L35 be such that

Loy " Loy Loy € Crexn=,
. Il = 0 .
l Lz 1 l ] ST Ipear

Then we have

L22 = (BD*(EQQ — Dﬁf/gg), ng = f/gg. (15)



To computeR, first determinel, through (14) and (15). Then find from the null space of. *. We now have a
systematic method for determining a reasondble

As an example, consider the case of continuous-time, small gain condition in the low frequency range. In this
case,L and the corresponding can be chosen as

I, 0
L=|0 —(DuB)* |, R=[0 0 I, (DuB}"]. (16)
0 I,

For the continuous-time, small gain condition in the high frequency range, we have

0 0
L=|1, —(DuB)* |, R:[In 00 0]. (17)
0 I,

We will later illustrate applicability of the heuristic choicesB®fpresented here through numerical design exam-
ples.

4 Extensions

4.1 Multi-objective, robust control
We consider the following problem: Finel such that
o((Gr(A) * K)", 1) <0 VA€ A(P, Uy) (18)

holds for allk € Z, where eaclt7;(\) is a given plant, and®, ¥, II;,) defines a frequency domain specifica-
tion to be achieved for the closed-loop systém(A) x K. The plantG;(\) may represent a vertex of a set of
uncertain systems for robust control, or a plant with a selected disturbance-performanee £).ehannel for
multi-objective control. The following result can be obtained from Theorem 2 in a straightforward manner, and
hence its proof is omitted.

Corollary 3 Let Ry, € @w*@ntmetn:) ¢, 0, e H, II; € H,, ,,., and system&,(\) as in (1) be given
wherek € Z,. There exists a static feedback gdinsuch that the frequency domain specifications (18) are
satisfied for allk € Z, if there exist scalare, > 0 and matrices?, = P, Qr = Q; > 0, W, € W(Cy, Ry),
and such that allW,, have a commom/ and

DL R P+ V¥ ® Q 0 % Wk
T 0 o T ] Ty, < He l AW + BuCRy ] (19)

holds for allk € Z,, whereT}, and(.Ay, By, Ci) are defined as in (6) and (7) using the input/state/output dimen-
sions and the state space matrice&'@f\). In this case, one such gain is given ly:= KWW L.

Corollary 3 gives a sufficient condition for the existence of static feedback gain that achieves the multiple FDI
specifications in (18). The condition is given in terms of LMIs and can be solved numerically. The associated
degree of conservatism is dependent upon the choicRs ofn the full information or state feedback case, some
reasonable choices have been proposed in the previous section. It should be noted that this formulation does n
assume common “Lyapunov matrices?, () as in the quadratic stability literature [13] or in the more recent
multi-objective control [14], [15], but rather,X Q) can be interpreted as “parameter-dependent” as discussed
in [7]-[9], [16]. Thus we expect reduced conservatism when compared with these existing techniques for multi-
objective robust control. It should be emphasized, however, that the main contribution of this paper is not the
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conservatism reduction but the synthesis method to meet FDI specifications in (semi)finite frequency ranges.
which have not been addressed in the literature.

The above formulation naturally captures the multi-objective control in the sense that the contr&l ain
designed so that each specification defineddy, ¥y, I1;) is met for the corresponding pla@t, (). However,
the formulation is not suitable for robust control synthesis in its present form. To elaborate on this pdint, let
be a subset of indices, corresponding to a robust performance specificatibp V,, II,,) to be satisfied by a
family of plants defined by the convex hull of the state space matric€s,0%) with & € Z. In this case, we have
(Pr, Uy, Iy) = (Po, Vo, 11,,), Ty, = T,, andRy, = R, for all k € Z. We shall assume that the family of plants
share a common measured output signal, Cge.= C, for all k¥ € Z. The sufficient condition in Corollary 3
guarantees the performangg,, ¥,, I1,) for each vertex plant; (), but not for every plants in the convex hull.
This deficiency can be overcome, with some additional conservatism, by using a comimen W, for all
k € 7 (see the example in Section 5 for a relaxed version of this idea). In this case, every coefficidnts of
andB; for k € 7 become independent &f allowing for an arbitrary convex combination of (19) to be taken to
conclude the robust performance.

4.2 Regional pole constraints

The design specifications in (18) encompass frequency domain shaping of closed-loop transfer functions. How-
ever, the closed-loop stability has not been captured, and hence one may wish to include a stability constraint
or more generally, regional pole constraints, as an additional design specification. The following lemma gives
a basic result for an eigenvalue characterization. The result has appeared earlier [17],[18] but a simple proof i
given here for completeness.

Lemmal Let A € €"*" and® € H be given. Supposéet(®) < 0. Then the following statements are
equivalent.

(i) Each eigenvalue of A satisfiesr(\, @) < 0.

(i) There exists? = P* > 0 suchthat(4,® ® P) < 0.

Proof. Suppose (ii) holds. Let be an eigenvalue od with the corresponding eigenveciarThen
e'0(A,®® P)e = o(\, ®)(e"Pe) < 0.

SinceP > 0, we conclude that (i) holds. To show the converse, suppose (i) holds. &it@) < 0, there exists
a nonsingular matri®/ such that

«1 0 1 _la b
@lel O]M’ M.—[C d}' (20)

It can be shown thatet (M) # 0 anddet(AI — A) # 0 for any A such that (A, @) # 0 imply det(dI +cA) # 0.
Define

A, := (bl 4 aA)(dI 4 cA)™?

and let\, be an eigenvalue of,. Then it can be verified that\, # « holds and\ := (b — \,d)/(cA, — a) is
an eigenvalue ofl. Hence

2

det(M
et(M) (Mo + A2) < 0,

oA, ®) = Y




implying thatA, is Hurwitz. It then follows that there exisf8 = P* > 0 satisfying
0> (dI + cA)*(PA, + A P)(dI + cA) =0(A, P ® P).

Thus we have (ii). [

Corollary 4 Let A € €™ and® € H be given. Supposéet(®) < 0. Then the following are equivalent.
(i) Each eigenvalua of A satisfiesr (A, ®T) < 0.
(i) There exists? = P* > 0 such that (A*,® ® P) < 0.

(iii) There existW andP = P* > 0 such that
boP<He| ! W[ —ql p[}
A

wherer := [p ¢]* € €? is an arbitrary fixed vector satisfying ®r < 0.

Proof. The equivalence (i} (ii) simply follows from Lemma 1 using the identity(A *, ®) = o(A, ®7). The
equivalence (ii)= (iii) follows from the projection lemma. n

The condition in (iii) can be used to give additional constraints in the design equations discussed in the
previous sections. In particular, we replagavith the closed-loop matrixd + B, K in the state feedback case,
and introduce the change of variallle= K'W. As a result, we add the following constraint to the design:

<I>®P<HelAW__F/BQK][—qI p[}

Clearly, multiple inequalities of the same form can be added to enforce (robust) regional pole constraints ex-
pressed as the intersection of half planes and circles. In this case, as in Corollary 3, diffedger®,, and P
may be used for each inequality B@it andC have to be common for all inequality constraints.

5 Design examples

5.1 Disturbanceattenuation problem

We consider the classical ACC benchmark problem of cart-spring system. The plant is described by

&= Ax + Biw+ Bou, z=Cu,

y Bl =

=
i

,C::[0100.

|
> o o
> > oo
oo o~
oo~ o
—_ o oo
o~ oo

wherek = 1 is the spring constant and the unit mass is assumed for each cart. Our objective is to design a
stabilizing state feedback controller= Kz such that

‘Tzw(jw)’ <7, V ‘w| < wy
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‘Tuw(jw)’ <p, V ‘w| > Wh

hold, whereT,,, andT,,, are the closed-loop transfer functions framto z andu, respectively;y andp are the
performance bounds, and, andw;, are the cut-off frequencies in the low/high ranges. From Corollary 4 and
Theorem 2, the synthesis conditions are given by

[0 P, -W
P, 0]<HG[AW+BK][I | (21)
[ —Q, 0 P, 0 ] {—I 0 0 ] WR
0 a 0 0 B B v ¢ 22)
P 0 wiQ 0 A B B /czg
00 0 —ay? c 0 0 ¢
[ Qn 0 B, 0 -I 0 0
WR
0 8 0 0 | _go| 0 -1 0 v h 23)
P, 0 —@wiQn 0 A By B /c 13
L0 0 0 —Bp? 0o 0 1 h

whereW, IC, Py = P; > 0, P = P/, Q¢ = Q; >0, Vy, P, = P, Qn = Q; > 0, V3, anda, 3 > 0 are the
(real) variables an®, and R, are given byR in (16) and (17), respectively. If these equations admit a solution,
a feasible state feedback gain is giveny= KW ~1.

We fixed the valuesoy, wy, andy as

we=2, wp=3, =2,
and then minimize@. The optimal value op and the corresponding feedback g&irare found to be

Pmin — 0.52,
K= [ —1.4414 0.0802 —-1.7213 —0.8622 }

The resulting closed-loop transfer functions are shown in Fig 1 where the shaded regions indicate the bounds or
the gain of the transfer functions. We see that the upper bounds are relatively tight, showing that the associate
conservatism is not significant.

For the sake of illustration, we have changed the frequency interval of the congraint< v from w, = 2
to w, = 1. By this change, the natural frequency of the cart-spring sysigm[fad/s]) is now outside of the
frequency range. All the other parameters are fixed as before and the feasibility problem is solved. The resulting
designis shown in Figs. 3and 4. We see that the large ped@kn is now allowed and the time response is lightly
damped. If we minimize, then it can get as low ds27 at the expense of a larger peak vajlde,, | = 6.8.

The results shown in Figs. 1 and 2 are compared with a miXedH ., multi-objective design [14]. In
particular, the conditions

[Towlloo < v [ Tuwlle < p
can be conservatively reduced to the search for matices X " and K satisfying

He(AX + BQ/C) XCc* B
CX I 0 | <o,
By 0 —I

11
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2 K
He(AX + BoK) + B1B] <0, l I/é* X ] > 0.
Once these LMIs are solved fof andK, a state feedback gain is found By= XX 1.
We have fixed the value of to be the same as that in our design, he= 2, and then minimizeg. This
problem is meant to find the minimum energy control that achieves the same regulation performance as before
As a result, we obtainegh,;, = 2.00 and

K= [ —2.8835 0.3727 —2.4005 —2.7767 ] .

The corresponding closed-loop responses are shown in Figs. 5 and 6. We remark two things. First, the boun
on theH,, norm of the transfer functioffi,,, is not very tight and the gap between tHg, norm bound and the
actual norm shows the degree of conservatism for this design. Second, the transfer flipgtaoes not roll off
as much as in the previous design so that the peak valug0f is three times larger, showing a limitation of the
H> norm as a measure for the “control effort.”
Next we consider the case where the spring condtasmuncertain but is known to lie in the intenvdl 2].
In this case, we will have the synthesis equations (21)-(23} fer1, and in addition, copies of these equations
for k = 2 where the variableB” and K are common but the others are not (e.g., we have two diffdPgistfor
k = 1 andk = 2). Minimizing v subject to these 6 LMIs and computing the gainfby= KW ~!, we have

we=2 wp=4, p=05 ~=2.66,

12



K:[—2.6736 0.8938 —2.2190 —1.1612 |.

The resulting closed-loop responses shown in Figs. 7 and 8, where the two solid curves in each figure show
responses for casés= 1 and2, and similarly for the dashed curves. We see that conservatism is still moderate
even for this robust design, suggesting a potential for practical applications.
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5.2 Sensitivity reduction problem

We consider the same cart-spring system as before but design state feedback controllers to achieve small sen:
tivity and complementary sensitivity within certain frequency ranges. In particular, our objective is to design a
stabilizing state feedback controller= Kz such that

1
P —— <
| < Vel
KP < Vw| >
1—Kp| = TI="n

where P(s) := (sI — A)~1B is the plant transfer function from to = with B defined byB := B,. From
Corollary 4 and Theorem 2, the synthesis condition is given by ahoaho

lzgs %]<HG[AW_K/BIC][II} (24)

13



-Q, 0 P, 0 -1 0 0
0 a 0 0 Hel| 0 -1 0 WVRf -
P o0 = o0 |l A B B Ch (25)
. 00 0 -—ay? 0o 1 1 ¢
Q, 0 P, 0 -1 0 0
03 0 0 | | 0 -1 0 {W;Rh] (26)
P 0 —=2Qn 0 A B B [m’% J
00 0 —Bp? 0 0 1 h

whereW, K, P, = P} >0, P, =P}, Q= Q; >0,V,, P, = P, Qn = Qjf, >0, Vs, a, 38 > 0 are the
(real) variables an®, and R, are given byR in (16) and (17), respectively. If these equations admit a solution,
a feasible state feedback gain is given/by= TV ~1.

We fixed the valueso,, @y, andp, and then minimizeg, and the parameter values are

we=1 wp=3, p=0.5, Ymin=0.61.
The feedback gain is found to be
K = [ —0.1079 0.5825 0.9212 0.0845 }

and the resulting sensitivity functions are shown in Fig 9. We see that the upper bounds on the sensitivity functions
are tight, showing that the associated conservatism is not significant.
Next we consider the case where the spring condtasmuncertain but is known to lie in the intenvdl 2].
In this case, we will have the synthesis equations (24)-(26% fer1, and in addition, copies of these equations
for k = 2 where the variableB” and K are common but the others are not (e.g., we have two diffdPgistfor
k = 1 andk = 2). Solving these 6 LMIs to minimize, and computing the gain bif = KW ~!, we have

Ymin = 0.78, K = [ 0.6299 20.0484 34.0517 17.6313 }
and the resulting sensitivity functions shown in Fig. 10.
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T=ulw=KP/(1-KP) (red), S=(w+u)w=1/(1-KP) (blue) T=ulw=KP/(1-KP) (red), S=(w+u)w=1/(1-KP) (blue)
T T

Frequency [rad/s] Frequency [rads]

Figure 9: Sensitivity functions (Nominal design) Figure 10: Sensitivity functions (Robust design)

Finally, we replace the stability requirement by a regional pole constraint. In the original nominal design, the
closed-loop eigenvalues are

14



Poles Damping | Frequency [rad/s]
-0.207+ 1.51i 0.136 1.52
-0.00867 1.000 0.00867
-0.747 1.000 0.747

and we see that the system is lightly damped. The damping ratio can be increased by imposing a regional pole
constraint. Although it is possible to set an exact bound on the damping ratio by two straight lines in the complex
plane, we choose to use an approximation for simplicity. In particular, we require the closed-loop poles to lie in
the circle with center at-c and radius:. Then the first synthesis equation (24) is replaced by

P, P, —w
lcps (cZETQ)PS]<He[AW+BIC][I el | (27)

Choosinge = 4, » = 3.9, and
we=1 wp=3, p=0.7,
we have found
Yenin = 0.68, K = [ —1.1494 0.9067 —1.8851 —0.1226 }

with the closed-loop poles

Poles Damping| Frequency [rad/s]
-0.502+ 1.38i 0.342 1.47
-0.725 1.000 0.725
-0.156 1.000 0.156

as illustrated in Fig. 11 and the sensitivity functions shown in Fig. 12.
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Figure 11: Closed-loop poles (Nominal design Figure 12: Sensitivity functions (Nominal design
with pole constraint) with pole constraint)
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6 Conclusion

We have developed methods for synthesizing static feedback controllers to achieve, for a family of plants, multiple
FDI specifications in (semi)finite frequency ranges. Sufficient conditions for existence of feasible controllers are
given in terms of LMIs, and some special cases, where the conditions become also necessary, are discusse
Utility of our result for the general state feedback design is demonstrated through numerical examples.
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