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Abstract

We consider two periodically weighted model-matching problems with regard to
a discrete-time LTI plant by means of discrete-time linear periodically time-varying
(LPTV) control. These two problems are formulated by projection operators and
shown to be determined uniquely by corresponding LTI model-matching problems
in which new free parameters arise from the periodically time-varying property of
the controller. As a result, we can solve these problems approximately by using
the usual LTI synthesis tools. The causality of the resulting LPTV controllers is
guaranteed by a representation of a causal N -periodic system which we introduce
as dual lifted forms. We also show an illustrative numerical example in which our
proposing LPTV controller achieves superior performance to that of LTI controllers.

1 Introduction

Periodically time-varying digital control is one of the natural extensions to time-invariant
digital control theory, and we can easily implement it on modern high-performance mi-
crocomputers. To clarify the advantages of periodic controllers compared with linear
time-invariant (LTI) controllers and to find tractable design methods are important from
a practical point of view.

There are many contributions in periodically time-varying control in the last few
decades (See [Davis, 1972, Khargonekar et al., 1985, Francis and Georgiou, 1988, Goodwin
and Feuer, 1992, Chen and Qiu, 1997, Mehr and Chen, 2002, Colaneri and Kučera, 1997,
Bittanti and Colaneri, 2000] and references therein). And several researchers claim that
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periodic controllers have more desirable properties than LTI controllers. For example,
Francis and Georgiou [1988] showed that zero placement of closed-loop systems can be
achieved by periodic compensation. Khargonekar et al. [1985] used a raised form directly
to design periodic controllers with arbitrary gain margins. However, these design meth-
ods are restricted to special qualitative objectives compared with LTI control theories.
This motivates us to find a design method for linear periodically time-varying (LPTV)
controllers that can deal with various control objectives.

In spite of the above advantages of periodic control, it has also been shown that any
time-varying controller cannot be superior to the optimal LTI controller for H∞ and p-
norm control performance with respect to an LTI plant [Poolla and Ting, 1987, Zhang
and Zhang, 1996]. This suggests that the usual H∞ and p-norm control performance
criteria ignore the potential of periodic controllers at least for LTI plants. Therefore, it is
necessary to develop a suitable criterion by which we can see the difference between the
potential of LPTV controllers and that of LTI controllers for LTI plants.

Our objective is to clarify the advantages of periodic controllers in optimization prob-
lems and to provide a design method for them. In this paper, we introduce both a
performance criterion and a procedure for constructing a desirable LPTV controller. The
former is formulated as two forms of periodic model-matching problem, which utilizes
periodic filtering on input and output signal. The latter is given via a representation
called dual lifted forms and relaxed LTI problems to which we can apply various useful
design methods from LTI control theories.

A model-matching problem is known as a generalization of many control problems
[Youla et al., 1976, Zhou et al., 1996] and also appropriate to formulate various design
objectives for LPTV controllers. Colaneri and Kučera [1997] solved a periodic model
matching problem for an LPTV plant with LPTV state feedback control so that the
closed-loop transfer function is identical to a given LTI transfer function. Their design
procedure can be executed automatically, however, they did not refer to the problem when
the optimal controller is periodic and the mechanism of its superiority to LTI control is
unclear. Chapellat et al. [1993] formulated and analyzed a periodic H∞ problem for
an LPTV plant and showed that time-varying controllers have not any advantage over
periodic controllers. However, they did not provide any controller design method. Tanaka
et al. [2002] dealt with the same problem in [Chapellat et al., 1993] and concluded that
the cost of H∞ control for LTI plant cannot be improved by any LPTV controller. This
conclusion is identical to the performance limitation of time-varying control [Poolla and
Ting, 1987, Zhang and Zhang, 1996].

We are interested in the difference between achievable performance of LPTV control
and that of LTI control even for the case with an LTI plant. In this paper, we show that
the interpolation conditions of a model matching problem can be related under some con-
ditions and that this is the reason why an LPTV controller achieves better performances
than LTI controllers. In addition, our considering two types of model matching problem
result in periodic closed-loop and we deal with output feedback control for an LTI plant.
To formulate the problems, we introduce a periodic filtering in the time domain on the
disturbance input signal, or the regulated output signal, of the closed-loop, and show that
periodic controllers have the advantage in periodically weighted signal space.

In one of our proposing problems, the disturbance input of a generalized plant is

2



projected onto a signal space where the signal value can be nonzero only at a specified
phase of each period in the time domain. This problem is equivalent to regulating an
output signal caused by a periodically impulsive disturbance input of a stable closed-loop
system. In the other problem, the regulated output of a generalized plant is projected onto
a signal space where the signal value can be also nonzero only at a specified phase of each
period in the time domain. This case is equivalent to regulating a sampled output signal
caused by an arbitrary disturbance input. In other words, controlled outputs sampled at
a specified phase of each period are required to be regulated more precisely than at the
other phases. The periodic projection operators are represented by the lift operator.

The lift operator was used to transform LPTV systems into rational transfer matrices
in Davis [1972], Khargonekar et al. [1985], Chen and Qiu [1997], Mehr and Chen [2002]
and so on. Davis [1972] introduced a decimation operator relevant to the lifted forms and
analyzed periodic systems using that operator. Goodwin and Feuer [1992] introduced
a modulated system, which is represented with a frequency domain shift operator, and
proposed a memory-less periodic control for a pole placement problem. However, their
controllers are restricted to memory-less or a very conservative class [Khargonekar et al.,
1985] because of causality problem. We reform the lift representations into dual lifted
forms that are appropriate to solve model matching problems. The dual lifted forms
guarantee causality in smart way that is equivalent to block lower triangular structure in
the lifted signal space and simplify the multiplication of two causal LPTV systems.

Because the relationships from input to output of our proposing problems are described
as LPTV operators, we cannot apply LTI design approaches directly to our periodically
weighted model matching problems. We derive two relaxed LTI model-matching problems
which give upper bounds and lower bounds of the performance of the original problems.

This paper is organized as follows. Section 2 is devoted to the problem formulation,
where we introduce two types of periodic model-matching problem that clarify the ad-
vantages of LPTV controllers. In Section 3, we show several mathematical preliminaries,
including the definition of a periodic system and the lift operator. Section 4 introduces
dual lifted forms by which causal LPTV systems can be represented as LTI transfer ma-
trices in the lifted signal space. In Section 5, we discuss the well-posedness of the LPTV
controllers. Our main results are in Section 6, and we provide an approach for the prob-
lems of Section 2 using the tools introduced in Section 4. In Section 7, we give a criterion
for block number reduction which is tightly connected to the order of given plant and the
period of designed LPTV controller. An illustrative example is provided in Section 8 to
show the effectiveness of our design method. Section 9 contains conclusions in this paper
and summarizes the main results.
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We use the following notation:
Z : the set of integers
C : the set of complex numbers
R : the set of real numbers
q : a time forward shift operator
ln : the set of discrete-time sequences of n-th dimension
Ln×m : the set of linear causal maps from lm to ln

RLn×m : the subset of Ln×m represented by matrices whose elements are rational
transfer functions of z

RH∞ : the subset of RL, whose poles are in the open unit disk on C.

ei
�
=

1 · · · i · · ·N︷ ︸︸ ︷
( 0 · · · 0 1 0 · · · 0 )T ∈ R

N

Ei
�
= ei ⊗ Ir,

where ⊗ represents the matrix Kronecker product. Given two matrices A ∈ Cn×m, B ∈
Cp×q, the matrix Kronecker product A ⊗ B is defined as follows (See [Zhou et al., 1996]
for example.):

A ⊗ B
�
=


 a11B · · · a1nB

...
. . .

...
am1B · · · amnB


 . (1)

The z-transformation of a discrete-time r-dimension time sequence {αi}i=0,1,···, where
i is the time index of lr, is given by α(z) =

∑∞
i=0 αiz

−i. When given a rational transfer
matrix f(z), f(z) is called inner if f(z) satisfies f(e−jθ)Tf(ejθ) = I ∀ θ ∈ [0, 2π].

The definition of l2 norm and l∞ norm of signal u ∈ lr are ‖u‖l2
=
(∑∞

i=0 uT
i ui

) 1
2 and

‖u‖l∞ = maxj sup0≤k |(uj)k|, respectively. Signal spaces lr2 and lr∞ denote subsets of lr,
whose l2 and l∞ norm are finite. We may omit the dimension of a signal or a system when
it is obvious from context.

2 Periodic Model-Matching Problems

P

C

v w

y u

Fig. 1: A generalized plant with controller

We formulate two control problems for an LTI plant by LPTV control in this section.
There are several contributions that deal with similar case, however, they are restricted
with specific performance criteria [Khargonekar et al., 1985, Goodwin and Feuer, 1992] or
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state feedback compensation and LPTV plant [Colaneri and Kučera, 1997] or the normal
H∞ problem [Chapellat et al., 1993, Tanaka et al., 2002]. On the other hand, Poolla and
Ting [1987], Zhang and Zhang [1996] showed that the optimal controller for an LTI plant
with respect to the normal H∞ control performance is LTI. One of our main objectives is
to clarify the mechanism when an LPTV controller is superior to LTI controllers for an
LTI plant and this problem does not appear in [Colaneri and Kučera, 1997, Tanaka et al.,
2002]. Hence, we deal with more general case of output feedback performance criteria by
formulating two model-matching problems with respect to an LTI generalized plant. We
use the Youla parameterization of all stabilizing controllers, where the generalized plant
P (z) ∈ RL and the stabilizing controller C ∈ RL (see Fig. 1) are given by

P (z) =


 A B1 B2

C1 D11 D12

C2 D21 D22


 , (2)

C = LFT(Π, Q), Q : stable, (3)

Π
�
=


 A − B2K + HC ′ H B2 + HD22

K 0 −I
C ′ I D22


 , (4)

C ′ �
= C2 − D22K, (5)

where K and H are constant matrices such that A − B2K and A + HC2 are stable and
Q is a free parameter of the controller [Youla et al., 1976, Zhou et al., 1996, Francis and
Doyle, 1987]. Then, the closed-loop transfer function from w to v is given by

T = T1(z) − T2(z)QT3(z) (6)

where T1, T2, T3 ∈ RH∞ is given by [Youla et al., 1976, Zhou et al., 1996]

T1(z)
�
=


 A − B2K B2K B1

0 A + HC2 B1 + HD21

C1 −D12K D12K D11


 , (7)

T2(z)
�
=

(
A − B2K B2

C1 −D12K D12

)
, T3(z)

�
=

(
A + HC2 B1 + HD21

C2 D21

)
, (8)

and the original model-matching problem (see Fig. 2) is:

P0. Find Q∗ such that
Q∗ = arg inf

Q:causal, stable
‖T ‖. (9)

With respect to the usual model-matching problem P0, it has been shown that there is
no LPTV controller that is superior to the optimal LTI controller under lp induced norm
evaluation, i.e.,

inf
Q:causal, stable

‖T ‖lp
= inf

Q∈RH∞
‖T ‖lp

(10)
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T1

T2 Q T3

v w
+

−

Fig. 2: A model-matching problem

is satisfied [Poolla and Ting, 1987, Zhang and Zhang, 1996]. In other words, this per-
formance criterion cannot evaluate the advantages of causal LPTV controllers. This is
because the performance criterion is time-invariant although the controller is time-varying.
With this in mind, we can find other types of model matching problem that can clarify
the performance difference between LPTV controllers and LTI controllers. The key idea is
that LPTV controllers have greater potential than LTI controllers in periodically weighted
signal space. The definitions of periodic model-matching problems are:

P1. Find an LPTV controller that optimally reduces the output signal caused by a
periodic impulsive disturbance input of finite norm.

P2. Find an LPTV controller that optimally reduces the periodically sampled output
signal caused by any disturbance input of finite norm.

These two problems can be seen as model matching problems weighted periodically in
time domain.

We can find applicable areas of these problems such as hard disk drive, reciprocal
engine, and so on. The common feature of these devices is the periodical dynamics that
we are willing to deal with. A possible control subject is to reduce the effect by periodical
impulsive disturbances such as gas explosions in a cylinder or to move a hard disk head to
desirable positions more precisely at every clock time at which data arrives. Such control
subjects can be formulated by the above problems, P1 and P2.

The mathematical definitions of P1 and P2 are given in Section 6. In the following
three sections, we introduce useful mathematical tools to formulate these problems.

3 Lift Operators and Periodic Systems

In this section, we introduce a lift operator, LPTV systems and properties of them for the
followings of this paper. Firstly, we introduce a lift operator W defined in Khargonekar
et al. [1985], which is an isomorphism on time series in lr:

W : lr → lrN : α = ( α0 α1 · · · ) →




( α0 αN · · · )
( α1 αN+1 · · · )

...
( αN−1 α2N−1 · · · )


 , (11)
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and for α(i)(z)
�
=
∑∞

j=0 αNj+iz
−j, where i = 0, · · · , N − 1, an inverse operator of W

denoted by W−1 is given by

W−1 : lrN → lr :


 α(0)(z)

...
α(N−1)(z)


→ α(z) =

N−1∑
i=0

α(i)(zN )z−i. (12)

Note that we define the operator W so that the first row of Wα corresponds to α0, αN , · · ·,
so we assume that the phase of lr with respect to each N -period is determined a priori.
In the following argument, we oftenly state that α ∈ lr is in the original signal space and
Wα ∈ lrN is in the lifted signal space.

Similarly, we can decompose an LTI transfer function G(z) ∈ RLn×m into LTI sub-
systems uniquely [Davis, 1972, Khargonekar et al., 1985] as

G(z) =
N−1∑
i=0

z−iG(i)(zN), (13)

where G(i)(z) ∈ RLn×m for i = 0, 1, · · · , N − 1. By letting (A, B, C, D) be a state space
realization of G(z), each G(i)(z) is represented by

G(i)(z) =

{
D + C(zI −AN )−1AN−1B (i = 0)

CAi−1B + CAi(zI − AN)−1AN−1B (1 ≤ i ≤ N − 1)
. (14)

Obviously, when G(z) is stable, G(i)(z) is also stable for i = 0, · · · , N − 1. It is simple
to check that the definition of G(i)(z) is independent of any similar transformation of
(A, B, C, D) :

(A, B, C, D) → (
V −1AV, V −1B, CV,D

)
.

Define two operators Ui and Di as

Ui
�
= W−1Ei+1, Di

�
= ET

i+1W. (15)

The meanings of Ui and Di are up-sampling and down-sampling of discrete time sequences,
respectively. The equation Di · Ui = Ir is always satisfied for any index i by definition.
Therefore, let an operator Prj denote

Prj �
= UjDj , (16)

then Prj is a projection and has the eigen signal space Wj :

Wr
j

�
=

{
w ∈ lr | Prjw = w

}
. (17)

Property 1 The projection operator Pri has two following properties:

1. ∀ i, j ∈ Z[0, N ] PriPrj = δijPri where δij is the Kronecker delta.
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2. Pr0 + Pr1 + · · · + PrN−1 = I.

The orthogonal property of Pri is useful to formulate the problems P1 and P2. And the
second property is relating to the performance limitations of LPTV controllers. We will
give a detail of this topic in Section 6.

Assume that an m-input n-output linear discrete-time system G ∈ Ln×m has the
following relationship from input to output in the original signal space:

y = Gu, (18)

where y ∈ ln and u ∈ lm. Then, we can give the definition of an LPTV system and the
representation of transfer functions in lifted signal space.

Definition 1 An linear discrete-time system G ∈ Ln×m is called τ -periodic if G satisfies

G = qτGq−τ , (19)

where τ can take any non-negative integer value.

From this definition, an α-periodic system where α× k = β for some positive integer k is
also β-periodic. Therefore, a set of all LTI systems is included in any class of N -periodic
systems where N ≥ 1 because an LTI system is 1-periodic.

By lifting the input signal and the output signal, we can represent (18) in the lifted
signal space (lmN → lnN):

Wy = WGW−1Wu = G̃Wu. (20)

The symbol G̃ denote WGW−1 ∈ LnN×mN in the following argument. Lifting procedure
has convenient properties for further analysis.

Property 2 With respect to the lift operator W and ∀ A, B ∈ Ln×m, the following three
equations and one statement are satisfied:

1. W (A + B)W−1 = WAW−1 + WBW−1

2. WABW−1 = WAW−1 · WBW−1

3. (WAW−1)−1 = WA−1W−1

4. For u ∈ lm, ‖Wu‖ = ‖u‖ is satisfied under l2 and l∞ norms.

From the fourth property, we can discuss induced norms of the transfer matrices repre-
sented in the lifted signal space instead of the original signal space. In other words, the
induced norm in lifted signal space is equivalent to that of in the original signal space:

‖G‖ =
∥∥∥G̃∥∥∥ is satisfied for G ∈ Ln×m.

Multiplying (6) by W and W−1 from both sides, we can see from Property 2 that

T̃ (z) = T̃1(z) − T̃2(z)Q̃(z)T̃3(z) (21)
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is satisfied when Q is linear N -periodic because N -periodic Q can be represented as
Q = W−1Q̃(z)W with an LTI transfer function Q̃(z) (see Section 4). Therefore, when
Q is an N -periodic stable transfer matrix, the closed-loop transfer function T is also
N -periodic and stable. The above procedure can be also seen as a normal LTI Youla
parameterization with an LTI free parameter Q̃(z) in the lifted signal space because if
P (z) has a double coprime factorization P (z) = M−1

l Nl = NrM
−1
r [Zhou et al., 1996]

where [
Xr Yr

−Nl Ml

] [
Mr −Yl

Nr Xl

]
= I, Ml, Nl, Mr, Nr, Xl, Yl, Xr, Yr ∈ RH∞, (22)

then P̃ (z) = WPW−1 also has a coprime factorization P̃ (z) = M̃l
−1

Ñl = ÑrM̃r
−1

with[
X̃r Ỹr

−Ñl M̃l

] [
M̃r −Ỹl

Ñr X̃l

]
= I, M̃l, Ñl, M̃r, Ñr, X̃l, Ỹl, X̃r , Ỹr ∈ RH∞ (23)

where M̃l = WMlW
−1, Ñl = WNlW

−1, and so on. Youla parameterization in the lifted
signal space is summarized as follows.

Lemma 1 [Freudenberg and Grizzle, 1989] A coprime factorization in the lifted signal
space and causal LTI free parameters Q̃(z) ∈ RH∞ whose constant part is block lower
triangular gives all stabilizing causal LPTV controllers in the original signal space.

We formulate an N -periodic system that is causal in the original signal space and is
represented by rational transfer function in the lifted signal space in the following section.
We also discuss the well-posedness of the LPTV controller (3) with an N -periodic free
parameter Q in Section 5.

4 Dual Lifted Forms of N-Periodic Systems

We show that a causal LPTV system has a pair of dual representations in the lifted signal
space. The dual lifted forms enable us to represent the multiplication of two causal LPTV

systems very simply. It has already been shown that for G ∈ RL, G̃
�
= WGW−1 has the

block Toeplitz structure [Davis, 1972, Khargonekar et al., 1985, Francis and Georgiou,
1988, Goodwin and Feuer, 1992]:

G̃(z) =




G(0)(z) z−1G(N−1)(z) · · · z−1G(1)(z)
G(1)(z) G(0)(z) · · · z−1G(2)(z)

...
...

. . .
...

G(N−1)(z) G(N−2)(z) · · · G(0)(z)


 , (24)

where G(i)(z) i = 0, · · · , N − 1 are defined in (13), (14). With this structure in mind,
we introduce a pair of row and column operations for G̃(z). Let cs denote an operator on
RLn×m as

cs : RLn×m → RLnN×m : cs G(z)
�
=


 G(0)(z)

...
G(N−1)(z)


 , (25)
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and rs denote an operator on RLn×m as

rs : RLn×m → RLn×mN : rs G(z)
�
=
(

G(N−1)(z) · · · G(0)(z)
)
. (26)

Note that G(z) is a matrix function, such that cs G(z) and rs G(z) consist of matrix
blocks and the operator cs and rs are one to one maps due to the uniqueness of G(i)(z)
defined in (13) and (14). In addition, the operators cs and rs can be represented by
sampling operators:

cs G(z) = WG(z)U0, (27)

rs G(z) = DN−1G(z)W−1. (28)

The next lemma shows lifted forms of time shift operators which is previously intro-
duced by Bittanti and Colaneri [2000] and it is used throughout the paper.

Lemma 2 [Bittanti and Colaneri, 2000] Suppose W is a lift operator from lr to lrN . Let

q̃τ �
= WqτW−1 and q̃−τ �

= Wq−τW−1 for τ ∈ Z[0, N ]. Then q̃τ and q̃−τ can be represented
as LTI matrices:

q̃τ =

(
0 IN−τ

zIτ 0

)
⊗ Ir, (29)

q̃−τ =

(
0 z−1Iτ

IN−τ 0

)
⊗ Ir. (30)

G
W,W−1−−−−→ G̃

qτ

� �q̃τ

qτG
W,W−1−−−−→ q̃τG̃

Fig. 3: Relationship of G̃ and G

The relationship between G and G̃ can be illustrated as Fig. 3 by using the operators qτ

and q̃τ .

Property 3 The operators q̃τ and q̃−τ have the following properties.

1. ∀τ1, τ2 q̃τ1 · q̃τ2 = q̃τ2 · q̃τ1 = Wqτ1+τ2W−1,

2. ∀τ q̃τ · q̃−τ = I,

3. q̃0 = I, q̃N = zI, q̃−N = z−1I,

4. ∀τ z−1q̃τ = q̃τ−N , zq̃−τ = q̃N−τ .

10



From definitions of cs and rs and q̃, we can transform (24) into the following forms:

G̃(z) =
[

q̃0cs G(z) · · · q̃−N+1cs G(z)
]

(31)

=


 rs G(z) · q̃−N+1

...
rs G(z) · q̃0


 . (32)

The next theorem gives a similar transformation when G is linear and periodic.

Theorem 1 For any linear causal N-periodic discrete-time system G ∈ Ln×m, G̃ =
WGW−1 is an element of RLnN×mN and can be represented by the following pair of dual
lifted forms:

F1. G̃(z) =
[

q̃0cs G0(z) q̃−1cs G1(z) · · · q̃−N+1cs GN−1(z)
]
,

where Gi(z) ∈ RLn×m for i = 0, · · · , N − 1.

F2. G̃(z) =




rs GN−1(z) · q̃−N+1

rs GN−2(z) · q̃−N+2

...
rs G0(z) · q̃0


 ,

where Gi(z) ∈ RLn×m for i = 0, · · · , N − 1.

Proof. Because G is linear and N -periodic, G satisfies

G = qNGq−N . (33)

From this and Property 3, G̃
�
= WGW−1 satisfies

G̃ = q̃NG̃q̃−N = qG̃q−1. (34)

This means that G̃ is an element of RLnN×mN and we can write G̃(z) as

G̃(z) =


 G11(z) · · · G1N (z)

...
. . .

...
GN1(z) · · · GNN(z)


 . (35)

Furthermore, limz→∞ G̃(z) must be block lower triangular because of causality [Khar-
gonekar et al., 1985, Freudenberg and Grizzle, 1989], i.e.,

lim
z→∞

G̃(z) =


 G11(∞) 0 0

...
. . . 0

GN1(∞) · · · GNN(∞)


 . (36)

Therefore, the upper right blocks of G̃ can be represented as z−1Ĝij(z), where Ĝij(z) ∈
RLn×m.1 In addition, because of the uniqueness of the maps cs and rs, there always exists

1For example, 1
z−1 = z−1 · z

z−1 .
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Gi(z) ∈ RLn×m such that q̃−ics Gi(z) equals the i + 1-th column block WGW−1 in the
F1 case and rs GN−1−i(z) · q̃−N+1+i is equal to the i + 1-th row block of WGW−1 in the
F2 case. This completes the proof of the theorem.

As is shown in Section 6, the two forms F1 and F2 enable us to easily calculate the
multiplication of two LPTV systems and this is a key idea to solve our model matching
problems P1 and P2. The relationship between an LPTV system represented in dual
lifted forms and its implicit period is given as follows.

Corollary 1 Given a G̃ in F1 or F2 form, then G = W−1G̃W is τ -periodic (i.e. G̃(z) =
q̃τG̃(z)q̃−τ) iff the following two conditions are satisfied.

1. The equation Gi(z) = Gτ+i(z) is satisfied for i = 0, · · · , N − τ − 1.

2. The equation Gi(z) = GN−τ+i(z) is satisfied for i = 0, · · · , τ − 1.

In particular, G(z) is LTI (i.e. 1-periodic) iff G0(z) = G1(z) = · · · = GN−1(z).

See Appendix A for the proof.
Note that the two conditions in Corollary 1 always hold when τ = N . Therefore,

when given a system G̃ ∈ RLnN×mN in F1 or F2 form, there always exists a linear causal
N -periodic system G ∈ Ln×m whose lifted form is G̃.

5 Well-Posedness of Periodic Controller

The well-posedness condition of the LPTV controller expressed by (3) is given in this
section. Note that we can convert a parametrized controller C = LFT(Π, Q) ∈ Ln×m into

C = C1(z)− C2(z)Q(C3(z) + C4(z)Q)−1, (37)

where C1(z) ∈ RLn×m, C2(z) ∈ RLn×n, C4(z) ∈ RLm×n, and C3(z) ∈ RLm×m. There-
fore, the well-posedness of C is equivalent to the existence of a causal inverse map of
C3 + C4Q in Lm×m. Consequently, the following theorem states the well-posedness con-
dition of the parametrized controller C .

Theorem 2 For causal N-periodic Q, C3 + C4Q has a causal inverse in Lm×m iff

lim
z→∞

det(Im − D22Q
(0)
i (z)) 
= 0 (38)

is satisfied for i = 0, · · · , N − 1.

From this theorem, we know that only the constant part of Q is relevant to the well-
posedness of the LPTV controller. Therefore, any LPTV controller parameterized as
(3) can always be made well-posed by adding appropriate nonzero constant ε to the free
parameter Q to avoid singular points of C3 + C4Q.

Proof. By lifting (37) from both sides we get

C̃ = C̃1 − C̃2Q̃(C̃3 + C̃4Q̃)−1. (39)
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Because Q is causal N -periodic, we can represent Q̃ in F1 form:

Q̃ =
[

q̃0cs Q0(z) · · · q̃−N+1cs QN−1(z)
]
. (40)

Therefore, C̃3 + C̃4Q̃ is a rational matrix function of z in the lifted signal space and has
an inverse iff its constant term is non-singular. Define D∞ as

D∞
�
= lim

z→∞
(C̃3 + C̃4Q̃) (41)

= IN ⊗ Im − IN ⊗ D22 · lim
z→∞

Q̃(z). (42)

Note that D∞ is block lower triangular because C3, C4, Q are causal transfer functions.
Hence, D∞ is non-singular iff its diagonal blocks are non-singular. Moreover, D−1

∞ is also
block lower triangular if it exists. Consequently, the condition:

lim
z→∞

det(C
(0)
3 (z) + C

(0)
4 (z)Q

(0)
i (z)) 
= 0 ∀ i ∈ Z[0, N − 1] (43)

is necessary and sufficient for the existence of a causal N -periodic inverse of C3 +C4Q.

6 Projection Approach for Problems P1 and P2

Now we are ready to state mathematical definitions of two periodic model-matching prob-
lems in Section 2.

P1. Find Q∗ such that

Q∗ = arg inf
Q:causal, WQW−1∈RH∞

‖I[T1(z)− T2(z)QT3(z)]‖, (44)

P2. Find Q∗ such that

Q∗ = arg inf
Q:causal, WQW−1∈RH∞

‖O[T1(z) − T2(z)QT3(z)]‖, (45)

where I[T ] and O[T ] are defined by

I[T ]
�
= T · Pr0, (46)

O[T ]
�
= PrN−1 · T (47)

with T = T1(z)−T2(z)QT3(z) ∈ Ln×m, and Ui and Di are defined in (15). The functionals
I[T ] and O[T ] imply periodic sampling of the input signal of T and the output signal of
T , respectively.

In this section, we discuss the problems P1 and P2 with causal LPTV free parameter
Q. The key idea is to simplify the multiplication of two causal LPTV systems by using
the dual lifted forms F1 and F2. Consequently, we can relax the problems P1 and P2 into
LTI model matching forms. Firstly, we introduce two classes of causal and stable LPTV
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systems by using dual lifted forms. Assume that Q is causal N -periodic in the original
signal space, then from the arguments in Section 4, Q̃ = WQW−1 always has the F1 form
representation:

Q̃(z) =
[

q̃0cs Qc
0(z) q̃−1cs Qc

1(z) · · · q̃−N+1cs Qc
N−1(z)

]
, (48)

or the F2 form representation:

Q̃(z) =


 rs Qr

N−1(z) · q̃−N+1

...
rs Qr

0(z) · q̃0


 . (49)

Observe that Q̃(z) is stable whenever Qc
i (z) or Qr

i(z) is an element in RH∞ for i =
0, · · · , N − 1. Let define two classes of causal and stable LPTV Q parameters as

Qc �
= {Q | WQW−1 is given by (48) where Qc

i(z) ∈ RH∞ for i = 0, · · · , N − 1}, (50)

Qr �
= {Q | WQW−1 is given by (49) where Qr

i(z) ∈ RH∞ for i = 0, · · · , N − 1}. (51)

The two classes Qc and Qr are equivalent although their representation are different. We
introduce two operators on RL next. Let ccs G(z) denote

ccs G(z)
�
=

[
G(0)(zN) z−1G(1)(zN ) · · · z−N+1G(N−1)(zN)

]
=

[
D 0 · · · 0

]
+ C(zNI − AN)−1

[
AN−1B zN−1B zN−2AB · · · zAN−2B

]
, (52)

and rrs G(z) denote

rrs G(z)
�
=


 G(0)(zN )

...
z−N+1G(N−1)(zN )


 =




D
0
...
0


+




CAN−1

zN−1C
...

zCAN−2


 (zNI − AN)−1B. (53)

where G(i)(zN) is given by substituting zN into G(i)(z) defined by (14).
Then, we are ready to state the main result in this paper. The following theorem shows

that the problems P1 and P2 can be expressed by corresponding LTI transfer functions.

Theorem 3 1. Let Q ∈ Qc, then

I[T ] = T I(z)Pr0, (54)

where T I(z) is defined as

T I(z)
�
= T1(z) − T2(z)QI(z) · rrs T3(z) (55)

with

QI(z) =
[

Qc
0(z) · · · Qc

N−1(z)
]
. (56)
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2. Let Q ∈ Qr, then

O[T ] = PrN−1T O(z), (57)

where T O(z) is defined as

T O(z)
�
= T1(z) − ccs T2(z) · QO(z)T3(z) (58)

with

QO(z)
�
=


 Qr

0(z)
...

Qr
N−1(z)


 . (59)

Note that T I(z) and T O(z) contain all free parameters of Qc and Qr. Hence, the
statements of the theorem is not conservative at all. The proof of Theorem 3 is based
on dual lifted forms F1 and F2. We utilize the fact that the multiplication of an LPTV
system in F1 form and an LPTV system in F2 form results in very simple form.

Proof. We start with the proof of the first part of the theorem.

I[T ] = TPr0

= T1Pr0 − T2QT3U0D0

= T1Pr0 − T2W
−1Q̃T̃3E1D0. (60)

Because T3(z) is LTI, T̃3(z) can be represented in F2 form as

T̃3(z) =


 rs T3(z) · q̃−N+1

...
rs T3(z) · q̃0


 , (61)

therefore

W−1Q̃T̃3E1 = W−1

(
N−1∑
i=0

q̃−ics Qc
i · rs T3 · q̃i−N+1

)
E1

= W−1

N−1∑
i=0

Q̃c
iEi+1E

T
i+1T̃3E1

= W−1
N−1∑
i=0

Q̃c
iEi+1T

(i)
3

= W−1
N−1∑
i=0

Q̃c
i cs V c

i

=

(
N−1∑
i=0

Qc
iV

c
i

)
W−1E1

=

(
N−1∑
i=0

Qc
iV

c
i

)
U0 (62)
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where V c
i (z)

�
= z−iT

(i)
3 (zN ) (i = 0, · · · , N − 1). Therefore,

I[T ] =

{
T1 − T2

N−1∑
i=0

Qc
iV

c
i

}
Pr0. (63)

The proof of the second part is similar to that of the first part.

O[T ] = PrN−1T

= PrN−1T1 − UN−1DN−1T2QT3

= PrN−1T1 − UN−1E
T
N T̃2Q̃WT3. (64)

Because T2(z) is LTI, T̃2(z) can be represented in F1 as

T̃2(z) =
[

q̃0cs T2(z) · · · q̃−N+1cs T2(z)
]
, (65)

therefore

ET
N T̃2Q̃W = ET

N

(
N−1∑
i=0

q̃−ics T2 · rs Qr
N−1−i · q̃i−N+1

)
W

=
N−1∑
i=0

ET
N T̃2Ei+1E

T
i+1Q̃

r
N−1−iW

=
N−1∑
i=0

T
(N−1−i)
2 ET

i+1Q̃
r
N−1−iW

=
N−1∑
i=0

rs V r
N−1−i · Q̃r

N−1−iW

= ENW

(
N−1∑
i=0

V r
N−1−iQ

r
N−1−i

)

= DN−1

(
N−1∑
i=0

V r
N−1−iQ

r
N−1−i

)
(66)

where V r
i (z)

�
= z−iT

(i)
2 (zN) (i = 0, · · · , N − 1). Therefore,

O[T ] = PrN−1

{
T1 −

N−1∑
i=0

V r
i Qr

iT3

}
.

(67)

Upper bounds of the achievable induced norm performance by LPTV controllers are
given by the following corollary in combined with Theorem 3.

Corollary 2 The following two statements always hold.
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1. When Q ∈ Qc
i ,

sup
w∈l2, w �=0

‖I[T ]w‖
‖w‖ = sup

w∈W0, w �=0

∥∥T I(z)w
∥∥

‖w‖ ≤ sup
w∈l2, w �=0

∥∥T I(z)w
∥∥

‖w‖ . (68)

2. When Q ∈ Qr
i,

sup
w∈l2, w �=0

‖O[T ]w‖
‖w‖ ≤ sup

w∈l2, w �=0

∥∥T O(z)w
∥∥

‖w‖ . (69)

Proof. Prjw ∈ Wj is satisfied for any w ∈ l2, because Prj is a projection operator onto
Wj and

∥∥Prjw
∥∥ ≤ ‖w‖. Therefore, the first equality of (68) is satisfied. The inequalities

of (68) and (69) are trivial from Theorem 3.

From Theorem 3 and Corollary 2, we can formulate LTI model-matching problems
corresponding to P1 and P2 as P1’ and P2’:

P1’. Find QI∗ ∈ RH∞ such that

QI∗ = arg inf
QI∈RH∞

∥∥T I(z)
∥∥. (70)

P2’. Find QO∗ ∈ RH∞ such that

QO∗ = arg inf
QO∈RH∞

∥∥T O(z)
∥∥. (71)

These are standard LTI model-matching problems and we can solve them by following
the results of Doyle et al. [1989] and Dahleh and Pearson [1987] for the case of H∞ norm
and l1 norm, respectively.

Remark 1: Because
∥∥T I(z)

∥∥ =
∥∥∥∑N−1

j=0 T I(z)Prj
∥∥∥ and

∥∥T O(z)
∥∥ =

∥∥∥∑N−1
j=0 PrjT O(z)

∥∥∥
are satisfied from Property 1, minimizing

∥∥T I(z)
∥∥ instead of

∥∥T I(z)Pr0
∥∥ and minimizing∥∥T O(z)

∥∥ instead of
∥∥PrN−1T O(z)

∥∥ are conservative procedure. However, the following
proposition guarantees that upper and lower bounds for P1 and P2 are given by approx-
imate problems P1’and P2’.

Proposition 1 For any LTI transfer matrix T (z) ∈ RL,

‖T (z)‖ ≥ ∥∥T (z)Pr0
∥∥ =

∥∥T (z)Prj
∥∥ ≥ 1

N
‖T (z)‖, (72)

‖T (z)‖ ≥ ∥∥PrN−1T (z)
∥∥ =

∥∥PrjT (z)
∥∥ ≥ 1

N
‖T (z)‖ (73)

hold for j = 0, · · · , N − 1.
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Proof. We start with (72). Representing T̃ (z) in F1 form,

T (z)Prj = W−1WTW−1Ej+1E
T
j+1W

= W−1q̃jcs T · Dj

= qj(T (z)Pr0)U0Dj (74)

hold for j = 0, · · · , N −1, where the third equality is satisfied from (27) and the definition
of Prj. Because q and Uj are norm preserving operators,

∥∥T (z)Prj
∥∥ =

∥∥T (z)Pr0U0Dj

∥∥
and ‖UjD0w‖ = ‖D0w‖ =

∥∥Pr0w
∥∥ for w ∈ l2. In addition, from U0Dj · UjD0 = Pr0 and

Pr0 · Pr0 = Pr0,

sup
w∈l2, w �=0

∥∥T (z)Pr0U0Djw
∥∥

‖w‖ = sup
w∈l2, w �=0

∥∥T (z)Pr0U0DjUjD0w
∥∥

‖UjD0w‖ (75)

= sup
w∈l2, w �=0

∥∥T (z)Pr0w
∥∥∥∥Pr0w

∥∥ . (76)

From this,
∥∥T (z)Prj

∥∥ =
∥∥T (z)Pr0

∥∥ for j = 0, · · · , N − 1.

We proceed to the proof of (73).
∥∥PrjT

∥∥ = ‖DjT (z)‖ because of the norm preserving
property of Uj. In addition,

DjT (z) = ET
j+1WTW−1W

= rs T · q̃j−N+1W

= rs T · Wqj−N+1, (77)

because T̃ (z) can be represented in F2 form. From this and (28),

DjT (z) = DN−1T (z)qj−N+1. (78)

Therefore,
∥∥PrjT (z)

∥∥ =
∥∥PrN−1T (z)

∥∥ for j = 0, · · · , N − 1.
The first and second inequalities of (72) and (73) readily follow from Corollary 2 and

the triangular inequality. This completes the proof.
Remark 2: For the case Qc

0 = · · · = Qc
N−1 = Q(z) and Qr

0 = · · · = Qr
N−1 = Q(z) , T O

and T I are

T O(z) = T I(z) = T1(z) − T2(z)Q(z)T3(z), (79)

and this means P1’ and P2’ in this case are equivalent to the original model-matching
problem P0 in which Q ∈ RH∞. Therefore, LTI controllers for problems P1’ and P2’ are
no different than those for P0, although LPTV controllers for P1’ and P2’ can be different
from those for P0 because Qc

0(z), · · · , Qc
N−1(z) and Qr

0(z), · · · , Qr
N−1(z) can be different

from each other.

7 Block-Number Reduction by Extended Freedom

Problems P1’ and P2’ are dependent on block matrices rrs T3(z) and ccs T2(z). And we
can simplify the problems by using the special structure of the operators rrs and ccs. In
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this section, we show that P1’ and P2’ are equivalent to simplified LTI model matching
problems where T3(z) or T2(z) disappears under several conditions.

We introduce two functions M c
N (A, B, ξ) and Mo

N(A, C, ξ) as

M c
N (A, B, ξ)

�
=

(
AN−1 + ξ1I + ξ2A + · · · + ξN−1A

N−2
)
B, (80)

Mo
N (A, C, ξ)

�
= C

(
AN−1 + ξ1I + ξ2A + · · · + ξN−1A

N−2
)
, (81)

ξ
�
=

(
ξ1 ξ2 · · · ξN−1

)T ∈ R
N−1 (82)

Then, an existence condition of stable inverses of rrs G(z) and ccs G(z) can be derived.

Lemma 3 Let an LTI system G(z) = (A, B, C, D). If there exists ξ ∈ RN−1 such that
M c

N (A, B, ξ) = 0 or Mo
N (A, C, ξ) = 0, then the two following statements hold.

1. If there exists a constant matrix D# such that DD# = I, then there exist (ccs G)#(z) ∈
RH∞ such that ccs G(z) · (ccs G)#(z) = I

2. If there exists a constant matrix D# such that D#D = I, then there exist (rrs G)#(z) ∈
RH∞ such that (rrs G)#(z) · rrs G(z) = I

Proof. By selecting (ccs G)#(z) and (rrs G)#(z) as

(ccs G)#(z)
�
=




D#

z−N+1ξ1D
#

...
z−1ξN−1D

#


 , (83)

(rrs G)#(z)
�
=

[
D# z−N+1ξ1D

# · · · z−1ξN−1D
#
]
, (84)

it is obvious that (ccs G)#(z), (rrs G)#(z) ∈ RH∞ and the following equations complete
the proof.

ccs G(z) · (ccs G)#(z) = DD# + C(zNI − AN)−1M c
N(A, B, ξ)D#

= DD# + Mo
N (A, C, ξ)(zNI − AN)−1BD#, (85)

(rrs G)#(z) · rrs G(z) = D#D + D#Mo
N (A, C, ξ)(zNI − AN)−1B

= D#D + D#C(zN − AN)−1M c
N (A, B, ξ). (86)

The conditions of Lemma 3 except for the existence of D# are always satisfied in two
cases: (1) when N is larger than the size of A plus one; (2) when N is equal to the size
of A and there exists uncontrollable mode of the pair (A, B) or unobservable mode of the
pair (A, C). In the first case, we can achieve both M c

N (A, B, ξ) = 0 and Mo
N (A, C, ξ) = 0

by selecting ξ1, · · · , ξN−1 as coefficients of the characteristic polynomial of A from Cayley-
Hamilton theorem (See [Zhou et al., 1996]). In the second case, there exists ξ such
that M c

N (A, B, ξ) = 0 or M c
N (A, B, ξ) = 0 because the controllability matrix or the

observability matrix is not rank full. Conversely, it is sufficient to take N = size(A) + 1
in order to construct stable inverse of the operator rrs or ccs.

By using this lemma, the problems P1’ and P2’ can be considerably simplified.
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Theorem 4 1. If there exists ξ ∈ RN−1 such that M c
N (A + HC2, B1 + HD21, ξ) = 0

or Mo
N (A + HC2, C2, ξ) = 0 is satisfied, in addition, there exists a constant matrix

D#
21 such that D#

21D21 = I, then

inf
QI(z)∈RH∞

∥∥T I(z)
∥∥ = inf

QI′(z)∈RH∞

∥∥∥T1(z) − T2(z)QI′(z)
∥∥∥ (87)

2. If there exists ξ ∈ RN−1 such that M c
N (A − B2K,B2, ξ) = 0 or Mo

N(A − B2K,C1 −
D12K, ξ) = 0 is satisfied, in addition, there exists a constant matrix D#

12 such that
D12D

#
12 = I, then

inf
QO(z)∈RH∞

∥∥T O(z)
∥∥ = inf

QO′(z)∈RH∞

∥∥∥T1(z)− QO′
(z)T3(z)

∥∥∥ (88)

Proof. Because QI(z) · rrs T3(z), ccs T2(z) · QO(z) ∈ RH∞ is satisfied,

inf
QI(z)∈RH∞

∥∥T I(z)
∥∥ ≥ inf

QI′(z)∈RH∞

∥∥∥T1(z) − T2(z)QI′(z)
∥∥∥,

inf
QO(z)∈RH∞

∥∥T O(z)
∥∥ ≥ inf

QO′
(z)∈RH∞

∥∥∥T1(z) − QO′
(z)T3(z)

∥∥∥
hold. On the other hand, the lower bonds can be achieved by substituting QI(z) =
QI′(z)(rrs T3)

#(z) into T I(z) and substituting QO(z) = (ccs T2)
#(z)QO′

(z) into T O(z)
from Lemma 3.

The fact that ccs T2(z) or rrs T3(z) can be removed from P1’ and P2’ indicates that
unstable zeros of T2(z) or T3(z) have no effect on resulting control performances. This is
the main reason why LPTV controllers are superior to LTI controllers with regard to our
model matching problems.

In general, the conditions of Theorem 4 except for the existence of D#
12 and D#

21 are
more easily satisfied as N increases. However, when N is a fixed number less than the size
of A matrix and V r

i (z) = T2(z) or V c
i (z) = T3(z) is satisfied for some i where V r

i (z) and
V c

i (z) are defined in the proof of Theorem 3, minimizing
∥∥T I(z)

∥∥ subject to Qc
i(z) ∈ RH∞

or minimizing
∥∥T O(z)

∥∥ subject to Qr
i(z) ∈ RH∞ is equivalent to minimizing ‖T ‖ subject

to Q(z) ∈ RH∞. For example, when T2(z) = z
z2−2

and N = 2, the equation V r
1 (z) = T2(z)

is satisfied. Therefore, when the number N is fixed, our proposed LPTV controller is
effective in the case that V r

i (z) 
= T2(z) or V c
i 
= T3(z) is satisfied for i = 0, · · · , N − 1.

8 Design Example

In the next section, we show an illustrative example in which the controller designed by
the method based on P2’ achieves arbitrary small induced norm performance. In the
example, we consider 2-periodic LPTV controller for the P2 problem with regard to l2
induced norm. We also evaluate the resulting control performance compared with LTI
controllers.
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C
+
w

P− y

Fig. 4: A closed-loop system of the example problem

We consider the following plant P (z):

P (z) =
z − 2

z − 3
. (89)

Because P (z) has an unstable pole at 3 and an unstable zero at 2, trivial controllers C = 0
and C = ∞ do not stabilize the closed-loop. Selecting a feedback gain K and an observer
gain H as K = H = −2.5 and executing the Youla parameterization gives the controller
parameterized by Q:

C = C1(z)− C2(z)Q(C3(z) + C4(z)Q)−1, (90)

where [
C1(z) C2(z)
C3(z) C4(z)

]
=

[
6.25

z−4.25
z−0.5
z−4.25

z−4.25
z−0.5

z−2
z−0.5

]
. (91)

We select Q from Qr
1 which is a class of causal 2-periodic stable functions, then Q̃ =

WQW−1 has the representation, in F2 form:

Q̃
�
=

[
rs Qr

1 · q̃−1

rs Qr
0 · q̃0

]
=

[
Q

r(0)
1 z−1Q

r(1)
1

Q
r(1)
0 Q

r(0)
0

]
. (92)

Let T denote the closed-loop transfer function from w to y

T = T1(z) + 4T2(z)QT3(z), (93)

where

T1(z) = −2
z − 2

1 − 2z

(
1 − 3.75

z − 0.5

)
(94)

T2(z) = T3(z) =
z − 2

1 − 2z
. (95)

Then, there exists T O(z) which satisfies O[T ] = Pr1T O(z) from Theorem 3:

T O(z) = T1(z) + 4
[

T
(0)
2 (z2) z−1T

(1)
2 (z2)

] [
Qr

0

Qr
1

]
T3(z)

= T1(z) + 4 ccs T2(z) · QO(z)T3(z). (96)

By following Theorem 4, we find QO(z) in the form:

QO(z) = 0.25 (ccs T2(z))#(z)QO′
(z) = 0.25

[ −2
z−1

]
QO′

(z), (97)
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where QO′
(z) is a new parameter in RH∞. Substituting (97) into (96), we get

T O(z) =
z − 2

1 − 2z

{
QO′

(z) −
(

2 − 7.5

z − 0.5

)}
. (98)

Therefore, we can design a suboptimal QO′
(z) as

QO′
(z)

�
= 2 + ε − 7.5

z − 0.5
, (99)

where ε > 0 is a constant that guarantees the well-posedness of the LPTV controller (see
Section 5) and we set ε = 0.01 as an example. Note that

∥∥T O(z)
∥∥
∞ = ε because z−2

1−2z
is

an inner function. Substituting (99) into (97) yields QO(z), and using (92) we obtain Q̃:

Q̃ =




0.25 0 −1.875 −3.75
0 0 0 4.253
1 1 0 0

−0.5 0 3.75 −1.005


 . (100)

Substituting Q̃ into C̃ yields

C̃ =




3.943 −4.075 −3.282 −983.3
−5.498 5.682 4.577 −1312
−1.806 1.846 0 0
−3.003 3.104 2.5 −201


 . (101)

Then T̃ = (I + P̃ C̃)−1P̃ is given by

T̃ = D + C(zI −A)−1B ∈ RH2×2, (102)

where

A =


 −1.832 6.345 12.4

−0.762 2.084 4.344
1.632 × 10−2 0.1877 0.2477


 , (103)

B =


 0.4995 3.448

−10.92 6.516
4.886 −3.589


 , (104)

C =

[ −1.722 1.456 1.892
0.000632 −0.001806 −0.003717

]
, (105)

D =

[
1 0

7.5 × 10−3 −5 × 10−3

]
. (106)

Note that the second rows of C and D are extremely small compared with the first
rows. Actually, we readily calculate H∞ norm

∥∥Pr0T
∥∥
∞ = 28.0 and

∥∥Pr1T
∥∥
∞ = 0.01.

On the other hand, the optimal l2 induced norm by LTI controllers is ‖T ‖∞ = 3.00.
Therefore, any LTI controllers cannot achieve

∥∥Pr1T
∥∥
∞ less than 1.50 from Proposition

1. This suggests that the resulting LPTV controller is superior to LTI controllers for our
design objective P2 and contrasts with the fact (10). And we can see that the controller
drastically refine

∥∥Pr1T
∥∥
∞ by ignoring

∥∥Pr0T
∥∥
∞.
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9 Conclusions

We introduced two forms of periodic model-matching problem, P1 and P2, in which input
signals or output signals of a closed-loop transfer function are projected onto the signal
space W0 or WN−1 where any time sequence can take non-zero value at specified phase
in each period. These problems are based on Youla parameterization of causal LPTV
controllers in which only Q parameter is N -periodic.

To formulate causal LPTV discrete-time systems, we introduced the dual lifted forms
F1 and F2. These two forms correspond to N LTI transfer matrices that have the same
size as the original causal LPTV transfer matrix. Such N LTI transfer matrices are all
identical when the original system is LTI.

We discussed the well-posedness of a causal LPTV controller whose Q parameter is
formulated via dual lifted forms. The well-posedness is dependent only on the constant
part of the Q parameter and we can always guarantee it by adding appropriate nonzero
constant to the Q parameter.

Our main result states that the problems P1 and P2 with a class of LPTV controllers
can be solved approximately by LTI model-matching problems P1’ and P2’ in which new
stable LTI free parameters QI(z) and QO(z) are to be designed. These relaxed problems
P1’ and P2’ give upper and lower bounds for the original problems P1 and P2. We
showed a numerical design example such that the resulting LPTV controller achieves a
suboptimal P2 performance that no LTI controller can attain. There was a tradeoff in
the resulting performances and the LPTV controller consequently utilized the tradeoff to
satisfy P2 control objective consequently.

The optimal performances achieved by our LPTV controllers are dependent on T2 and
T3 and we gave a criterion for block number reduction which can be easily satisfied for
sufficient large N . In particular, we can completely remove the effect by unstable zeros of
T2(z) and T3(z) under some conditions and this enables us to design much effective causal
LPTV controllers. However, the conditions are conservative and we will try to overcome
this conservativeness. In addition, it is necessary to clarify the relationship between our
periodic performance criteria and previously revealed advantages, such as arbitrary zero
placement [Francis and Georgiou, 1988] or gain margin achievement [Khargonekar et al.,
1985] etc.
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A Proof of Corollary 1

Proof. We prove this in the F1 form. Multiplying W and W−1 to qτGq−τ from both
sides

WqτGq−τW−1 = q̃τG̃(z)q̃−τ

=
[

q̃0cs Gτ · · · q̃τ−N+1cs GN−1, z−1q̃τcs G0 · · · z−1q̃1cs Gτ−1

]
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=
[

q̃0cs Gτ · · · q̃τ−N+1cs GN−1, q̃τ−Ncs G0 · · · q̃−N+1cs Gτ−1

]
(107)

Therefore,

G̃ − q̃τG̃(z)q̃−τ =
[
q̃0cs (G0 − Gτ ) · · · q̃τ−N+1cs (GN−τ−1 −GN−1),

q̃τ−Ncs (GN−τ − G0) · · · q̃−N+1cs (GN−1 − Gτ−1)
]
. (108)

Because q̃τ is an invertible operator, G̃ − q̃τG̃q̃−τ = 0 iff both conditions of Corollary 1
are satisfied. In particular, when τ = 1, these conditions are

1. Gi+1(z) = Gi(z) ∀ i ∈ Z[0, N − 2],

2. GN−1(z) = G0(z).

This means Gi(z) = Gj(z) ∀ i, j.
The case of F2 form is similar to that of F1 form, so we omit it here.
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