MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Composing Stack-Attributed Tree Transducers

Keisuke Nakano

(Communicated by Zhenjiang HU)

METR 2004-01 January 2004

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY
THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.i.u-tokyo.ac.jp/mi/mi-e.htm

The METR technical reports are published as a means to ensure timely dissemina-
tion of scholarly and technical work on a non-commercial basis. Copyright and all
rights therein are maintained by the authors or by other copyright holders, notwith-
standing that they have offered their works here electronically. It is understood that
all persons copying this information will adhere to the terms and constraints invoked
by each author’s copyright. These works may not be reposted without the explicit
permission of the copyright holder.

Composing Stack-Attributed Tree Transducers
Keisuke Nakano

Department of Mathmatical Informatics
University of Tokyo
ksk@ipl.t.u-tokyo.ac.jp

January 2004

Abstract

This paper presents a composition method for stack-attributed tree transducers. Stack-
attributed tree transducers extend attributed tree transducers with a pushdown stack device
for attribute values. Stack-attributed tree transducers are more powerful than attributed tree
transducers due to the stack mechanism. We extend the existing composition method for
attributed tree transducers to the composition method for stack-attributed tree transducers.
The composition method is proved to be correct and to enjoy a closure property.

1 Introduction

Attribute grammars were introduced by Knuth[Knu68, Knu71] as a way of describing semantics
of context-free languages. They specify a meaning of each derivation tree by allocating values
to attributes associated with every node of the tree. The framework of attribute grammars has
been utilized for the development of compiler construction[ASU86, Far84, RM89, KHZ82],
editing environments[Rep84, HT85] and program transformation[Joh87, CDPR99].

Composition of attribute grammars is one of the well-studied issue on attribute grammars
when attribute grammars are regarded as tree transformations. Ganzinger and Giegerich[Gan83,
GGB84, Gie88] inventedescriptional compositigrwhich enables a single attribute grammar to
be synthesized from two attribute grammars under a so-csilggdie-use conditionWhereas it
has been developed for composing compiler components, the composition method makes a gen-
eral contribution. For example,ifinemann[Kih98] and Correnson et al.[CDPR99] indepen-
dently applied the descriptional composition to functional program transformation by utilizing
the fact that attribute grammars have a close connection to functional programs.

The class of attribute grammars to which descriptional composition can be applied is still
limited, however. There are significant instances of transformations where the composition
method cannot be applied. For instance, consider a transformation from the postfix repre-
sentation of numerical formulae,.g.2,1,2,+, x in Figure 1(a), to the infix representation,
e.g.2x (1+2) in Figure 1(b). This transformation requires a pushdown stack device in which
subtrees of the output tree are stored. Figure 2 gives a definition for postfix-to-infix transforma-
tion in attribute grammar. The attribuseeceives stack values. We writgfor an empty stack,

1

root

()

root

O—0O——~(——E @ ()
© (2)

Figure 1(a): Postfix representation Figure 1(b): Infix representation

Figure 1: Two kinds of representations of numerical formulae

e :: e for a stack obtained by adding a valegto a stack valuey, hd(e) for the top element
of a stacke andtl(e) for a stacke without the top element. The existing composition method
cannot deal with such attribute grammars that require a stack mechanism.

We present a new composition method for attribute grammars with a pushdown stack device.
The method is formalized in a framework of attributed tree transdud@g&IF, which is one of
the formal computational models of attribute grammars. In this paper, we intredacke-
attributed tree transducetisy extending attributed tree transducers with a stack device and pro-
pose a composition method for stack-attributed tree transducers that extends the descriptional
composition method. Stack-attributed tree transducers are more powerful than attributed tree
transducers because of the pushdown storages. This relation is similar to that between pushdown
automata and finite state automata: A class of languages accepted by the formers, context-free
languages, is larger than a class of languages accepted by the latters, regular languages[AU73].

This paper contains two main results with respect to our composition method for stack-
attributed tree transducers. First, we prove the correctness of our composition method by utiliz-
ing the fact that a stack-attributed tree transducer can be simulated by an attributed tree trans-
ducer once an input tree is fixed. The correctness of a composition method for stack-attributed
tree transducers is reduced to that for attributed tree transducers which has been proved by
[Gie88]. Second, we prove theftward closure propertpf the composition under a certain con-
dition. A setF of tree transformations satisfies the leftward closure propertg fibrGo F = F
whereGo F = {h|h(x) =9(f(x)),g€ G, f € F} (in contrastF satisfies the full closure prop-
erty if Fo F = F). This paper shows that the set of stack-attributed tree transducers satisfies the
leftward closure property for the set of attributed tree transducers. A stack-attributed tree trans-
ducer can be composed with an attributed tree transducer by our composition method. Then
we obtain a single stack-attributed tree transducer, which is ready to be composed with another

ST Say = T.ag T —+T T.ag = Ti.a9

Ts =[] Ti.s = (hd(tl(T.s)) +hd(T.s)) :: (tI(tI(T.9)))
T— 1T T.ag = T1.ag T — x,Th T.ag = T1.a9

Ti.s=1:Ts Ti.s = (hd(tl(T.s)) x hd(T.s)) :: (tI(tI(T.s)))
T—-2T T.ag = T1.a9 T — ¢ T.ap = hd(T.9)

Ti.s=2:T.s

Figure 2: An attribute grammar with a stack device for postfix-to-infix transformation

TDTToTDTT = TDTT (5)
ATTqoATTsy = ATTg (6)

TDTT C ATT (1)
TDTToATT = ATT 7)
ATT C MTT 2)
TDTToMTT = MTT (8)
MTTwsy G ATT (3) MTTweio MTT MTT (9
O e
ATT C SATT (4) WU ne

ATTSU o SA TTSU - SA TTSU (10)
TDTToSATT = SATT (11

Figure 3: The inclusion relations of various classes of tree transformations and their composi-
tions

attributed tree transducer again.

Our composition method is proposed not only for theoretical interest. The composition
method for stack-attributed tree transducers is useful in practice for transformations over struc-
tured documents such as XML[W3C]. Nakano and Nishimura[NNO1] utilized the descriptional
composition method to generate stream-to-stream document transformations from tree-to-tree
document transformations. Given a tree-to-tree document transfornigteostream-to-stream
document transformation can be obtained by a composition of three transformatipase T
andParse Unparseis an unparsing(tree-to-stream) transformatiéarseis a parsing(stream-
to-tree) transformation. They defined each transformation by an attribute grammar and applied
the descriptional composition method. In their framework, they faced the problem that parsing
transformation requires a stack mechanism, which cannot be dealt with by the existing descrip-
tional composition. They circumvent the problem by restricting the maximum nesting depth
of input documents to a fixed number and by simulating the stack device with a finite set of
attributes. Our composition method provides a general solution of the above problem without
the work around. In this application, the leftward closure property of our composition method
plays an important role. Assume that a tree-to-tree transformdtisrgiven by an attributed-
tree transducer. Sindearseis defined by a stack-attributed tree transducer, the composition of
T andParseis obtained as a stack-attributed tree transducer from the leftward closure property.
SinceUnparseis defined by an attributed tree transducer, the compositi&inpairseand the
previous result is a stack-attributed tree transducer. Consequently, we obtain a stream-to-stream
transformation as a stack-attributed tree transducer.

There are a number of researches on tree transducer composition methods. Figure 3 shows
the inclusion relations of various classes of tree transformations and their compositions. We
write TDTT, ATT, MTT andSATT to represent top-down tree transducers[Rou70], attributed
tree transducers[H81], macro tree transducers[EV85] and stack-attributed tree transducers,
respectively. The subscripty wsuandncindicate subsets of tree transducers restricted by the
conditionssingle-usgGie88], weakly single-us@and non-copyingKk iih98], respectively. The
relations (1) and (7) are shown ini{jB1]; (2) and (8), in [EV85]; (3), in [KIh98]; (5), in
[Rou70]; (6), in [GG84, Gie88]; (9), in [Voi01]. The relations (4), (10) and (11), involving
SATT, are shown in this paper.

Our results (10) and (11) make an important contribution in the sensgAfidt is one of the
largest sets that enjoys a closure property in some sense. The equations (5) and (6) indicate the
full closure property. HoweveT DTT andAT T sy are not expressive enough. The equations (7)

3

and (8) indicate the leftward closure property, as well as our result (10). However, they provide
only the composition withTDTT. As for the composition withTrDTT, we can show (11)
indicating thatSAT T also satisfies the leftward closure property. Although the composition in
(9) may possibly provide more powerful composition than (10), this composition is not closed
for neitherMTTgynor MTT sy

Outline. The paper is comprised of five sections, including this introduction. In Section 2, we
define basic notions and notations. Section 3 introduces attributed tree transducers and stack-
attributed tree transducers with simple examples and shows that stack-attributed tree transducers
can be simulated by attributed tree transducers under a certain restriction. Section 4 introduces
a composition method for attributed tree transducers, presents a composition method for stack-
attributed tree transducers and shows the correctness of the composition method. Finally Sec-
tion 5 presents further work and concludes the paper.

2 Preliminaries

The empty set is denoted By We denote the set of non-negative integers inclu@ibg N and
the set of positive integers Y. The disjoint union of two set® andQ is denoted byPw Q

and the cartesian product of two s&andQ is denoted byP x Q, i.e. Px Q= {(p,q) | p€

P,q € Q}. We assume that the cartesian product is associatvél x Q) x RandP x (Q x R)

are identified and are writtédhx Q x R. We denote a set of finite strings over aBetf symbols
by P*. A null string is denoted by.

A designated symbal means the undefined value. A functibrirom a setP to a setQ is
denoted byf : P — Q. Thendom(f) andrangg f) denote thelomainof f and therangeof f,
respectively, such thatom(f) = {x e P | f(x) # L} andrangg(f) = {f(x) € Q| x e dom(f)}.
A function f o g represents aompositiorof two functionsf andg wheref og(x) = f(g(x)) for
anyx € dom(g). Let F and G be sets of functions. We writeo G for {fog| f € F,g€ G}.

A reduction systerns a system A, =) whereA is a set and= is a binary relation oveA.
We writea; =" an, 1 if a = a;,1(1 <i < n) for someay,--- ,an1 € A. In particular,a="° a.
We also writea =* b, a=* b anda =" b whena="™b holds for somen> 0, m> 1 and
m € {0,1}, respectively.a € A is reduciblewith respect to=- if there existsh € A such that
a=b. Otherwisea € Aisirreducible If a=" b andb is irreducible, we say is anormal
form of a and writenf(=-, a) for b.

A ranked setz is a set in which every symbol is associated with a non-negative integer
calledrank. A ranked alphabeis a finite ranked set. For evene N, (" is the set of symbols
of rankn. We denote the rank of a symbolby rank(c). We may writea(" to indicate that
o € 2. The designated symbadl is of rank0. Let X be a ranked alphabet ardbe a set of
variables disjoint witt®. The set oz-labeled trees indexed by, Aenoted byls (A) (or Ts, if A
is empty), is the smallest s&tsatisfying

e ACTand
e o(ty,---,ty) e T foreveryne N, o € =™ andty,--- ,t, € T,

We denote by[x/s| the substitutionof occurrences of a variableby s. Lett, s, -+, Sy, U1,
-+, Up be trees inlx(X) such that every;(1 <i < n) is a subtree of, provided that; is not
a subtree otij for anyi and j with i # j. The treet[uy,--- ,un :=Sp,---,Sn] Or t[U; := Si]1<i<n

4

is obtained front by simultaneouslyeplacing every subtree at the points of occurrences of
ug,---,Un by the treess,--- , s, € Tx(X), respectively. Ifp = [u, -+ ,up i=S1,--+, S, then
we may writep(t) for t[ug, -« ,upn :=S1, -+ ,S]. A Tz(X)-context£ (or context simply) is

an element ofls (X & {e}) where a symbos, calledhole, occurs exactly once iE. A tree
E[t] with t € Ts(X) stands forE[e/t] € Tx(X). We also sayJ-context for a contex such
that £[u] € U for someu € U. Let p be a replacement) := s]i<i<n. Then the replacement
p* is defined bynf(=, p) where=-; is the binary relation such th@; := tjJ1<i<n =p Ui 1=
P(ti)]1<i<n only if tj # p(t;) for somel <i < n.

The prefix-closed set of gilathsof t, denoted byath(t) (C N*), is defined byath(a(ty, - - - ,
t) = {e}U{iw | 1 <i < kwe pathty)} if o €). Note thatpath(c©)) = {€}. Every path
w € path(t) refers to a corresponding label of denoted bylabel(w), which is defined by
labely, ... t,) (€) = 0 andlabely, ... 1) (iw) = label; (w) for everyl <i <nandw € path(t;).

3 Stack-Attributed Tree Transducers

In this section, we give the definition of attributed tree transducers(ATT) and stack-attributed
tree transducers(SATT). We also show that SATTs are simulated by ATTs when the set of input
trees are restricted to a certain set. We follow the definition of ATTs in [FV98].

3.1 Attributed Tree Transducers

Following [FV98], we start with a definition of the set of trees occurring in the right-hand sides
of attribute rules in the specification of ATTs.

Definition 3.1 Let A be a ranked alphabeBynandinh be unary ranked alphabets wilym
Inh =0 andk € N. The setRHSSynlInh,A k) of right-hand sidesover Syn Inh andA is
given by the smallest subsBHSOf Taysynuinn({Tt 10, - - -, Tk}) which satisfies the following
conditions:

e For everya € Synandl <i <k, the terma(ti) is in RHS
e For everyb € Inh, the termb(m) is in RHS
e Foreveryd c AV with| € Nandng,---,n, € RHS the termd(ng,---,n;) is in RHS

wheret, 1, - - - , TKK are calledpath variables a

Definition 3.2 An attributed tree transduc€ATT) is a septupleM = (SynlInh, X, A ag,{,R)
where

e SynandInh are unary ranked alphabets satisfylgn Inh = 0, of which the elements
are calledsynthesized attributeendinherited attributesrespectively,

e > andA are ranked alphabets witlsynJInh) N (ZUA) = 0, called theinput alphabet
and theoutput alphabetrespectively,

e ap € Synis a designated attribute, called tindial attribute,

e fi ¢ 3 is an unary ranked symbol, called timtial symbol

5

e Ris a set ofattribute rulessuch thatR = Ugesws R® With finite setsR° of o-rules
satisfying the following conditions:

— for everya € Syn the sefR® contains exactly one attribute rule of the foafr) >
No-

— for everyb € Inh and1 < i < k with k = rank(o), the setR® contains exactly one
attribute rule of the fornb(Ti) - ng,

whereng with o € X is any term such thaj; € RH§SynInh,A rank(o)) U {L} andn;
is any term such thaj; € RHSSyn0,A,1) U {L}.

O

Our definition is slightly different from [FV98] in the way of giving the specification of an
ATT. e use no environment describing values of inherited attributes of the root node of an input
tree. We define values of inherited attributes in attribute rules for the initial symbol instead of
the environment.

The readers who are familiar with attribute grammars may understand the specification of
ATTs by consideringa(m) andb(ti) as attribute occurrencé%a andP.b in attribute rules for
a production rule® — o Py --- B, in classical representation of attribute grammars wiere
is a nonterminal symbol. For example, an attribute a(tg) — 3(b(Tl)) with rank(c) = 2
corresponds to an attribute ruRa = o Py.b for a production rule® — o Py P,. We give an
example of an ATT and an attribute grammar counterpart of the ATT.

Example 3.3 We give an AT TMip for an infix-to-postfix conversion of simple numerical for-
mulaee.g.2x (1+2)t02,1,2,+, x (see Figure 1). For the sake of simplicity, we assume that
they are built up from integersand2 by using two binary operators and x. The infix rep-
resentation is specified by a binary tree in which nodes and leaves are numerical operators and
numbers, respectively. The postfix representation is specified by a monadic tree whose element
is either a numerical operator or a number. An AWlfop = (Syninh,Z, A, ag,4,R) is given as
follows:

e Syn={ap}, Inh= {a}.
o > ={ond? twd? plus? multi®}.

o A= {ondY twolV plus? multiV end?}.

¢ Ris a set of the following attribute rules:

ao(m & ag(m) (12)
a(m) % end (13)
ao(m) ¥ onefa() (14)
ap(T) two two(ay (1)) (15)
ao(m) ™ ao(ma) (16)
am) ™ ao(r2) (17)
aym2) ™ plus(a(m) (18)
ao(m) ™" ag(m) (19)
ar(md) ™" ag(m2) (20)
a(m) ™" multiay(m) (21)

Figure 4 shows an attribute grammar which is counterpart of theMip. The rules (12) and
(13), namelyR?, correspond to a set of two attribute rules for the production8ule T in the
attribute grammar. SimilarlyRe"e, RWO, RPIUs gnd R™UI correspond to attribute rules for the
productionrule§d — 1, T — 2, T — T+ T andT — Ty x Ty, respectively. O

We define the semantics of ATTs. The computation of an MTor an input treet is
defined by a reduction system, whose definition is given below.

Definition 3.4 Let M = (SynInh, %, A, ap,4,R) be an ATT,t € Ts andn,, stand for a tree ob-
tained by replacing every occurrencerofvith a pathw € path(£(t)) in n. Thederivation rela-
tion induced by M onis a binary relatior=\ overTa({a(w) | a€ SynJinh,w € path(f(t))})
defined by:

e a(w) =Mt Nw Wherea € Syn a(m) 2 neRando = label;) (w).

e b(wi) =m Nwwhereb € Inh, b(ti) > n € Rando = label;) (w).

® d(N1, =~ ,Ni, - ,Nn) =Mt 8(N1,---,N{,---,Nn) Whereny,---,nj_1 are irreducible and
nf(:>|\/|,ta r]l) = n:(# r]i7J—)'
e (N1, -+ ,Ni, -+ ,Nn) =mt L wherengy,---,ni_1 are irreducible andf(=mt, ni) = L.
T — T1+T T.a = T.ag
Ta = ¢ Tha = +,T.ag
T — 1 Ta = 1T.a T — TixTs Ta = TiLa
T — 2 T.ao = 2,T.a1 Tl.al = Tz.ao
Tha = x,T.ag

Figure 4: An attribute grammar counterpart of Example 3.3

7

It is obvious that this reduction system is determinant. Note that we need to comfipsaig ¢, ;)
in the above definition. In this paper, we do not consider derivation relations in the case where
nf(=wmt, Ni) cannot be computed.

An attribute valueof a(w) for an ATT M and an input treé is defined bynf(=m+, a(w)),
if any, wherew € path(4(t)). We may omit subscripts! andt of = when it is clear from the
context. Note thabf(=m¢, a(w)) is a tree over the output alphal®bf M. This is because
any term having occurrences of terms of the fdrfw) for b € Inhu Synand a patlv is always
reducible. O

We cannot always compute attribute values for a given M&nd an input tre¢. For
instance, an attribute valgw) with a pathw cannot be computed in the case that we have a
reductiona(w) :>Kr,|7t ‘Ela(w)] for some contexE. In order to avoid the problem, we define a
well-definedness property for an ATT.

Definition 3.5 LetM = (SynInh,Z,A, ag, f, R) be an ATT. We define theemanticof an ATT
M by a function[M] : Ts — Ta such thaf{M]|(t) % nf(=mt, ao(€)) if there existaf (=m, ao(€)).
The ATT M is well-definedf [M]|(t) can be defined for evetyc Ts. O

Example 3.6 Let M be an ATT given in Example 3.3. The computationvbfor an input tree
t = multi(two, plus(one two)) is shown below. We obtain that

[M]](multi(two, plug(one two))) = two(ongtwo(plusimulti(end)))))

by the following reduction steps:

ao(e) =t ap(l) 22
— multi,1 ao(]_]_) (23)
ol o(ay(11) o)
_multi,1 tWO(ao()) (25)
—=Plus12 fywo(ag(121)) (26)
=0nel2l two(ongay(121))) 20
=PIUs12 two(ongag(122))) (28)
=W0122 fyo(ongtwo(ay (122)))) (29)
=PUs12 two(ongtwo(plus(ai(12))))) (30)
—multl two(ongtwo(plugmulti(ag (1)))))) (31)
. 1E two(one(two(plugmulti(end))))) (32)

where the superscripts e$%" indicate that the derivation relation is based oo-aule at the
pathw. For example, a reduction stepPus12 at (30) is derived by replacing with a path12
in #(t) in aplusrule at (18). O

Let M be an ATT.M is called atop-down tree transduc€fDTT) if there is no inherited
attribute inM. We write ATT and TDTT for sets of tree transformers such thaf 7 =
{[M] | M is a well-defined ATT; and TDTT = {[M]] | M isa TDTT}. It is well-known that
TDTT C ATT holds[Rul81].

3.2 Stack-Attributed Tree Transducers

Following the definition of ATTs, we give the definition of SATTs. SATTs extend ATTs with

a new class of attributes, callsthck attributes There are two types of attributes in a SATT,
output attributes and stack attributes. Output attributes receive trees over the output alphabet as
well as attributes in ATTs. Stack attributes receive pushdown stacks of trees over the output al-
phabet. The following definition introduces a stack system specifying sets of output expressions
and stack expressions which are used for the definition of a SATT.

Definition 3.7 A stack system ovek is a triple§ = (X5, Xs,A) whereX, and X, are disjoint
sets andA is a ranked alphabet. For a stack systénwe define a seEXP,(S) of output
expressionsa setEXPs(S) of stack expressiorss the smallest subseXP, andEXP;, which
are disjoint, satisfying that:

e EXP, D X, andEXP; D X;.
d(e1,--- ,en) € EXP, if & € EXPo(1<i < n)anddc A withne N.

Congey, e) € EXP; if e € EXP, ande; € EXP.

Emptye EXPs.

Heade) € EXP, if e € EXP.

Tail(e) € EXP; if e € EXPs.
O

The four ranked symbol§ons Empty HeadandTail are calledstack operatorsConges, e)
denotes a stack obtained by adding a vau® the top of a stacky; Emptydenotes an empty
stack;Head e) denotes a value at the head of a starKail(e) denotes a stack obtained by
removing its head from a staek

We specify the set of right-hand sides in attribute rules in SATTs before giving the definition
of SATTs. We use bold-faced symboésg.a, as, - - -, to represent stack attributes for the purpose
of distinguishing them from output attributes.

Definition 3.8 LetA be a ranked alphabet, I8yn Inh, StSyrandStinhbe disjoint unary ranked
alphabets, lek € N and letS be a stack systeiiX,, Xs,A) with

X, = {a(m)|aeSynl<i<k}u{b(m |beInh} (33)
Xs = {a(m) |ae StSynl <i <k}U{b(m) | b € Stinh}. (34)
We define the sets autput right-hand sideandstack right-hand sideas follows.

e The seRHS,(SynInh, StSynStinh A k) of output right-hand sidesver Syn Inh, StSyn
StinhandA is defined byEXP, (S)U{L}.

e The setRHS(SynlInh, StSynStinh A, k) of stack right-hand sidesver Syn Inh, StSyn
StinhandA is defined byEXPs(.S).

Definition 3.9 A stack-attributed tree transdud@ATT) is a nonuple
M = (SynInh,StSynStinh 2, A, ag, £, R)
where

e Syn Inh, Z, A, ap andf are the same as in Definition 3.2. We c&ifnandInh output
synthesized attributeendoutput inherited attributegespectively.

e StSymandStinhare unary ranked alphabets wiitSym Stinh= 0, whose elements are
calledstack synthesized attributasdstack inherited attributegespectively,

e Ris a set ofattribute rulessuch thatR = Ugezwzy R° With finite setsR® of o-rules
satisfying the following conditions. For eveoyc > {f} whose rank ik € N,

— for everya € Syn the setR° contains exactly one attribute rule of the foatfr) —
No-

— for everyb € Inhand1 < i <k, the sefR° contains exactly one attribute rule of the

form b(ti) > ng,

— for everya € StSynthe seR° contains exactly one attribute rule of the foaf) A
Co-

— for everyb € Stinhand1 < i <k, the setR® contains exactly one attribute rule of
the formb(mi) = g,

wherens and{s with o € X are any terms such that; € RHS,(SynInh, StSynStinh A,
rank(o)) U{L} and{s € RHS(SynInh,StSynStinh A, rank(c)) U { L} and wheren;
and{; are any terms such that € RHS (Syn0,StSyn0,A, 1) and{; € RHS(Syn0,
StSyn0,A,1).

Let M = (SynInh, StSynStinh 2, A, ag, £, R) be a SATT andX be a set{k | 2K = 0}. We
defineRHS, (M) andRHS (M) as follows:

RHS,(M) €' | J RHS(SynInh, StSynStinhA, k) (35)
ke X

RHS(M) £ |] RHS(SynInh, StSynStinhA, k) (36)
ke K

O

Example 3.10 The postfix-to-infix conversion in Section 1 can be expressed by a $Ad,
which corresponds to an attribute grammar in Figure 2. A SKE; = (SynInh, StSynStinh
>,A ap,,R) is given as follows:

e Syn={ag}, Inh=10.
e StSyn= 0, Stinh= {s}.

e == {onéY two® plus? multiV, end?}.

10

o A= {ond? two® plus? multi®}.

e Ris a set of the following attribute rules:

ao(m) = ao(m) (37)
sm) % Empty (38)
ao(m) = ag(md) (39)
sm) ¥ Congones(m)) (40)
ao() ¥ ag(m) (41)
s(m) ¥ Congtwo,s()) (42)
ao(m) ™ ag(ml) (43)
s(md) plus Congplus(Head Tail(s(1))),Head s(m))), Tail(Tail(s(1)))) (44)
ao(m) ™" ag(m) (45)
s) ™" Congmulti(Head Tail(s())), Head s(10))), Tail(Tail(s(1)))) ~ (46)
ao(m) ¥ Heads(m)) (47)

O

We define the semantics of SATTs by a reduction system defined in much the same way as
that of ATTs in Definition 3.4.

Definition 3.11 Let M = (SynInh,StSynStinh >, A, ag,4,R) be a SATT,t € Tz, § = (X, U
{L},X;,A) be a stack system with

Xo = {a(w)|ae SynJInh, we path((t))}
Xs = {a(w)|ac StSynJStinh w ¢ path(#(t))}

and{y, stand for an expression obtained by replacing every occurrenmemith a pathw €
path((t)) in {. Thederivation relation induced by M onit defined by a binary relation
=MtC (EXPo(S) x (EXP,(S)U{L}))U(EXPs(S) x EXPs(S)) such that:

e a(w) andb(wi) with a € Syn b € Inh, w € path(f(t)) andi € N, are related by in
the same way as in Definition 3.4.

o a(w) = {w wherea € StSyna(m) = { € Randa = label)(w)

e b(wi) =m {w whereb e Stinh b(ti) > { € Rando = label,) (w)

n’ (if {=Congn’, ')
e Head() =mt ¢ L (if {=Empty wheren’ € EXP,(S)U{L} and
Head{') (otherwisel =m: (')

(,{’ € EXPy(S).

11

¢ (if {=Congn’,7"))
e Tail({) =Mt Empty (if {=Empty wheren’ € EXP, (S)U{L} and(,l
Tail(¢') (otherwisel =m; {')
€ EXPs(S).

b 6(”17 Ny ;rln) =Mt 6(']17 7r]i/a"' ann) Wherenlv'“ ,Ni—1 are irreducible and
nf<:>|\/|,t7 r]l) = n:(;é ni7J—)'

e (N1, -+ ,Ni, -+ ,Nn) =mt L wherengq,---,ni_1 are irreducible andf(=mt, ni) = L.

This reduction system is determinant. We definatribute valueof a(w) by nf(=m, a(w)),
if any, wherew is a path ing(t). We may omit subscript¥! andt of = when it is clear from the
context. 0

The following statement guarantees that all attribute values of output attributes range over
the output tree.

Proposition 3.12 Let M= (SynInh, StSynStinh 2, A ap, 1, R) be a SATT, € Tz, a€ SyrJlInh,
and we path(f(t)). If there exists nf=-u , a(w)), then we always have

nf(=wmt, a(w)) € Ta.

Proof. Let EXP, andEXP; be as given bfXP,(5) andEXP,(S) in Definition 3.11.

Suppose that there exists= nf(=-mt, a(w)). By the definition of=y, we havet’ €
EXP,. We prove the proposition by analyzing the structuré dFirst, we show that there is no
occurrence of the form ad(w) with a € SynU InhuU StSynu Stinhin t’. Second, we show that
there is no occurrence of the form @bngn,) andEmptyin t’. Finally, we show that there is
no occurrence of the form ¢dead) andTail(¢) int’. These facts indicate € Th.

We can find that there is no occurrence of the forra(@f) with a € SynJInhuU StSym Stinh
in t’ since all terms having occurrencesagfv) are reducible by the reduction rules based on
the attribute rules.

We can find that there is no occurrence of the fornCohgn,) in t’ as follows. Assume
thatt’ = E[Congn,)], provided that there is no occurrence@bnsin £. Since we have
t' € EXP, and Congn,{) € EXPs, there exists a context’ such thatE = Z'[Head(e)] or
E = Z'[Tail(e)]. This contradicts the fact thétis irreducible. Thus there is no occurrence of
the form ofCongn,) in t’. Similarly, we can show that there is no occurrence of the form of
Emptyin t'.

We can find also that there is no occurrence of the foredd) andTail({) int’. The
facts we have shown above imply that there is no occurrence of stack expresgionslénce
this indicates there is no occurrencett#fadandTail in t'. a

The semantics of SATTs is defined by the attribute value of the initial attribute at the root
node in the same way as that of ATTSs.
Definition 3.13 LetM = (SynInh, StSynStinh Z, A, ap, £, R) be a SATT. We define theeman-

tics of a SATTM by a function[M]] : Ts — Ta such that[M]}(t) % nf(=wmt, ao(€)) if there
existsnf(=m, ag(€)). The SATTM is well-definedf [[M] (t) can be defined for evetye Ts.
O

12

Example 3.14 Let M be an SATT given in Example 3.10. Figure 5 shows the reduction step
for deriving

[M]](two(ongtwo(plus(multi(end)))))) = multi(two, plus(one two))

wheret = two(ong(two(plusmulti(end))))) and the superscripts £ indicate that the deriva-
tion relation is based on@rule at the patiw. The superscriptsiC, TC, HE andTE indicate
the applied rule in Definition 3.11e. HCfor Head Congn,)), TC for Tail(Congn,{)), HE
for Head Empty andTE for Tail(Empty). O

We write SATT for a set of tree transformers such t&7 7 = {[M] | M is a well-defined
SATT.}. We can easily show thaTT C SATT.

Theorem 3.15 ATT C SATT.

Proof. SinceATT C SATT by the definitions of ATT and SATT, it is enough to show that
this inclusion is propet,e. there is a SATTM which cannot be represented by any ATTs. Let

> = {parenlV parenRY end?} andA = {truel®}. For any ATT fromTs to Tp, we construct

an equivalent finite state automaton by taking the{$e{,,--- ,va,) | V4 = trueor L} as the

state set, where eawh represents the value of the attribaten the ATT. The transition rules of

the finite state automaton follow from attribute rules of the ATT. Consider a tree transformation
from Tz to Ta which represents a parenthesis balancing validatarit returnstrue iff every

right parenthesiparenRhas its left counterpagarenLand vice versa in the input. Since this
transformation cannot be achieved by any finite state automaton, the transformation cannot be
represented by any ATT. On the other hand, the transformation can be defined by a SATT.
Therefore we havAdTT C SATT. 0

3.3 Simulation of Stack-Attributed Tree Transducers with Attributed Tree
Transducers

For a given input tree, the depth of stack values involved in a derivation relation induced by
a well-defined SATT is finitely bounded. This is clear from the fact that the length of the
derivation is finite and the increase of the depth of stack values in every derivation is finite.
This indicates that, once the input is fixed, a SATT can be simulated by an ATT obtained by
replacing stack-attributes with a finite number of attributes. For example, if the number of trees
to be stored in a stack is less tharthen an attribute rula(m) > Congn,a(T)) with a stack
synthesized attributain a SATT can be replaced with the following attribute rules:

(& 1)(
(@,2)(

n
(a,1)(m)

o
—

o
—

a3

(@n)(m = (an-1)(m)

where eacha,i)(1 <i < n) is a synthesized attribute of an ATT that indicates ittie stack
element.

13

2o(e) =
=
=
=
=
=
=

=

=

=

=

=
=
=
=

=

f,e

two,1
onell
two,111
plus1111
multii 11111
end111111

multi,11111

HC

plus1111

HC,TC

two,111

TC,TC,HC
onell
HC,TC
two,1

HC

Heads(111111)
Head Congmulti(Head Tail(s(11111)),Heads(11111))),
Tail(Tail(s(11111))))
multi(Head Tail(s(11111))),Head's(11111)))
multi(Head Tail(Cong plusgHead Tail(s(1111)),Heads(1111)))),
Tail(Tail(s(1111)))))),
Head CongplusHead Tail(s(1111)))),Head s(1111)),
Tail(Tail(s(1111)))))))
multi(Head Tail(Tail(s(1111)))),
plus(Head Tail(s(1111))),Head's(1111))))
multi(Head Tail(Tail(Congtwo,s(111))))),
plusHead Tail(Congtwo,s(111)))), Head Congtwo,s(111)))))
multiHead Tail(s(111))), plus(Head s(111)), two))
multi(Head Tail(Congone s(11)))), plustHead Congone s(11))),two))
multi(Head s(11)), plusone two))
multi(Head Congtwo,s(1))), plus(one two))
(

multi(two, plus(one two))

Figure 5: The reduction steps by the derivation relatisg

14

We first introduce two kinds of simulating functiong anda, for a stack systens. Two
functionsa, anda, are defined oveEXP,(S) andEXPs(S) x N, respectivelyn, represents
amap fromEXP,(S)U{ L} ontoTx ¢ }(A) andas represents a map froBXPs () x N onto
Taug1}(A) whereA is a set of variables. The value af(e,i) corresponds to the value of the
i-th element in a stack representedebyBoth simulating functions eliminate all occurrences of
stack operators;ons Empty HeadandTail.

Definition 3.16 Let § = (X,,Xs,A) be a stack systenf,, : X, — Aandlg : Xs x Ny — A
be functions wheré\ is a set of variables, ande N,. We define twosimulating functions
ag "ot EXPL(S) — Taursy (A) andag ™o =" EXP(S) x N — Ta g3 (A) as follows:

asTelsNe) = [,(e) ifecX,. (48)
aSTelsN@i) = Ty(ei) if eeXs. (49)
1 (if ao(ex) = L for somel < k < m)
SFo,lsn
a3 T <3y, em) { S0 ey, 3T e (otherwise) OO
SFolsn T
Srofun . @i T Ney) (=)
a2 ol s Con , 7| — . . 51
S (ge1,€2),i) {a}s,ro,rs,n(eb,_l) (otherwise) G
oy TolsMEmptyi) = L (52)
Gg,ro,r&n(HeaC(e)) _ ag,ro,rs,n(e l) (53)
o 1 (if i > n)
SFo,ls,n =
Gs (T&”(e)»') { Gg,ro7rs7n(e’i+1) (Othel’WISe) (54)

We also define the simulating functi@rf{r"’rs’” for attribute rules as follows. LR be
a set of attribute rules of the form— n where(x,n) € (EXP,(S) x EXP,(S)) U (EXPs(S) x

EXP.(S)). ay' " *"(R) is defined by

{Gg7r07r57n<x) l) Gg7r07r57n(n) ‘ a«g7r07r57n(x) # J_,Xl) rl E R}
U {adTelsn(ix i) L adTelsnz i) | adTol"(xi) £ L, 1<i<nx%{eR}
([

We first show the following lemma describing that both simulating functions are context-
independent.

Lemma 3.17 Let S = (X,, Xs,A) be a stack system, |Et, andl" be functions, and let4 be
a binary relation over EXB(S) UEXPs(S) such thatn; =q n2 only if one of the two follow-

ing conditions holds, eithemy " ="(n1) = a3 > ="(n,) holds wheren1,nz € EXP,(S) or
oy o= (ny,i) = a e ="(n,, i) holds for any i wherey1,n2 € EXPs(S). Then we have

E[N1] =« E[N2] if ni=an2
for any (EXP,(S) UEXPs(S))-contextE.

Proof. This lemma can be proved by an easy induction on the structurgs of a

A SATT can be simulated by an ATT if the input tree is restricted. The simulation is defined
as follows.

15

Definition 3.18 Let M = (SynInh,StSynStinh 2, A ap, ,R) be a SATT, ands = (X, Xs,4)
be a stack system with

Xo = {a(¢)|aeSynulnh, ¢ €N} and
Xs = {a(p) |aec StSyruStinh ¢ € M}

wherell = {1, 12, --- }, [, be a function such th&t,(a($)) = a(¢) for everya(d) € X, and
I's be a function such thats(a($),i) = (a,i)(¢) for everya(dp) € X andi € N,.. Then-depth
simulation simg(M) for n € N is defined by the following ATT:

sim(M) < (Syr,Inh,Z,0U{L}, a0, 4,05 " ="(R))

whereSyrl = Synu{(a,i) | a€ StSynl <i < n} andInh = Inhu{(a,i) |a€ Stinh 1 <i < n}.
O

Let M be a SATT and be a fixed input tree. If we takelarge enough, then the derivation
chains induced bgim,(M) andM ont coincide as shown by the following lemma and theorem.
We consider th@-depth simulation for the derivation chain bont.

Definition 3.19 LetM = (SynInh, StSynStinh >, A, ap,£,R) be a SATThe N, § = (X, %s,4)
be as given in Definition 3.11 anfle EXP,(S) satisfyao(e) =y ¢. We define then-depth
simulation of¢ by aﬁ7r°’rs’”(¢) whererl , be a function such thdt,(a(w)) = a(w) for every

a(w) € X,, I's be a function such that;(a(w),i) = (a,i)(w) for everya(w) € Xs andi € N;. O

Choosing the first branch of (54) in the computation ofrikepth simulation indicates that
the stack depth is shorter than it is required. The following lemma shows thatsiflerived
by =wm, then_L is derived by=-gm m)t Or @ shortage of the stack depth is observed.

Lemma 3.20 Let M = (SynInh, StSynStinh 2, A, ag,%,R) be a SATT, t be an input tree for
M such that[M]|(t) can be defineds,l,,Is be as given irDefinition 3.19 and$ be a term

such that a(¢) =y ¢. Suppose that - max{D,(¢)} where D(e) stands for the set of the

second arguments af; occurring in the computation (nig’r"’rs’“(e). If a‘g’r"’rs’”(n) and

a;g’r°’r57”(r], j) occur in the computation cnfg’r"’rs’”(q)), then we have the following clauses:
@) If aﬁ’r"’rs’”(n) is reducible by=>gim,w) t» thenn is reducible by=w.
(i) If aﬁ’r"’rs’”(n, j) is reducible by=>gim,), then HeadTaill=%(n)) is reducible by=m.
i) If a3 oT="(n) = simym),t L, thenn =, L.
(v) If o o="(n, }) = simy(M).¢ L, then HeadTaill =1 (n)) =, L.

where Taif(e) = e and Taif(e) = Tail(Tail*"*(e)) for ke N,

Proof. We prove these statements by induction on the structune of
(CAsen = a(w) FOR (i) AND (iii)) Itis clear that (i) holds becauséw) is always reducible.
Supposen, (a(w)) =sim,m)t - Note thata,(a(w)) = a(w) . There is an attribute rule of

the forma(m) = L with 0 = label,) (w) or a(ri) °, 1 with o = label) (v) andw = vi in

16

simy(M). From the definition okim,(M), M has an attribute rule of the same form. Then we
havea(w) =-m+ L. Therefore (iii) holds.

(CAsen = a(w) FOR(ii) AND (iv)) Itis clear that (ii) holds becausgw) is always reducible.
Suppose thad s (a() j) =sim(M)t - With a € StSyn Let a(m) 2, Z be an attribute rule i
whereo = label;)(w). Thensimy(M) has an attribute ruléa, j) (1) 2 al(Z,j) wherea’, is

asTeTs" as given in Definition 3.16. 16(Z, j) = L holds, we havexs(Qw, j) = L with {y
as given in Definition 3.11. TheHead Tail'~(a(w))) :>,J(,|7t Os(Cw, j) = L. Therefore (iv)
holds. We similarly show the statement in the casa efStinh
(CAsSENn =0(N1,---,Nm) FOR (i) AND (iii)) Supposen,(n) is reducible. Theru,(ng) is
reducible for somek. ny is reducible from the induction hypothesis. Thens reducible.
Hence (i) holds. Suppose,(N) = sim,m)t - We haved,(Nk) = sim,(m) L for somek. Then
Nk =>mt L from the induction hypothesis. Hence (jii) holds.

(CASEn = Congn’,l’) FOR (ii) AND (|v)) SinceHead Tail'~(n)) is reducible toas(n, j),
(i) holds. Supposes(n, j) =simm)t L. If j =1, then we havex,(n’) = sim(M)¢t - Then
n’ =m L from the induction hypothesis. Hence (iv) holds since we lidwadn) =y n'. If
j > 1, we havens(T', j — 1) =5) L ThenHeadTail!=%(Z)) =, L follows from the in-
duction hypothesis. Hence (iv) holds since we hlel\ssralc(Tallj 1(n)) =mt Head Tail'~2(7")).
(CASE n = EmptyFoR (ii) AND (iv)) SinceHead Tail'~1(Empty)) is reducible toL, (i) and
(iv) hold.

(CAsen = Headn’) FOR (i) AND (iii)) We havea,(n) = as(n’,1). Headn’) is reducible
from the induction hypothesis. Therefore (i) holds.alf(n) = sim,w) L, we haveas(n’,1)
:>smh(Myt L ThenHeadn’) = ; L follows from the induction hypothesis. Hence (i) holds.
(CAsen = Tail(n’) FOR (ii) AND (iv)) We haveag(n,j) = as(n’,j+1) from j < nwhich

is the assumption of in this lemma. HeadTain(r]’)) is reducible from the induction hy-
pothesis. Sincélead Taill(n')) = Head Tail~*(n)), (ii) holds. If as(n, j) = sim,m) L. then
as(n’, j+1) =simy(m),t L follows from the induction hypothesis. Hendlead Taill (n) =t
| from the induction hypothesis. Sinetead Taill~1(n)) = Head Taill ('), (iv) holds. O

The next theorem shows that a SATT is mimicked byatepth simulation of the SATT for
enough large for every fixed input.

Theorem 3.21 Let M be a SATT and t be an input tree for M. There exigts i such that
[simy(M)]|(t) = [M]](t) for any n= no.
Proof. Let M = (SynInh,StSynStinh 2,A, ap,,R) be a SATT,t € Tz be an input tree for

M such that the output tre¢é= [[M]|(t) can be defined, ande N, andag(g) =mt ¢1 =mz
- =Mt dk(=1') be a derivation chain induced By ont. LetS, I', andl's be as given in

Definition 3.19. We usel,, as for ay” ° =" anday o' =", respectively. Lets’, I, andl", be

! !/ !
S, [, andrl's as given in Definition 3.18, respectively. We usg o anda’gi for ag ’r°’r5’n,
5/ r/07 / n 5/7ri)7r/57n H
as’ anda % , respectively.

Suppose that > max{Do(9) | ao(€) =y ¢} WhereD, is as defined in Lemma 3.20. We
show that

ao(9) ;»;’m(11 0o(W) i & € EXPo(S) andd =t W (55)
((I) J) s|m1 (LIJ J) if ¢ € EXPS(S)’ (I) :>M,t l-IJ (56)

17

whered,(¢) andas(9, j) occurs in the computation of, (@) such thatg(e) =y ; . This im-
pn;as)nm:»sm(w,t, 0o(20(€))) = Nf (=, Bo(€)), i.e. [simy(M)] (t) = [M] () sincedt(ao(e)) =
ap(e).
We prove the statements (55) and (56) by induction on the structyre of

(CAsSE ¢ = a(w) WITH a€ Syr) We havep = Nw Wherea(m) s, n € Randny is obtained
by replacingrtwith win n. Sincea(m) > a/,(n) e G/K(R), we havea(w) = gjm M)t Nw Where
n!, is obtained by replacing with win a’,(n). Now we can show;, = a,(nw) by the defi-
nitions ofa, anda’, and the fact thaf ,(a(w))(= a(w)) is obtained by replacing with w in
I (a(m)(= a(m)). Then (55) holds becausg (a(w)) = a(w).
(CASE ¢ =b(w) WITH b € Inh) Similar to the previous case.
(CASE ¢ =a(w) WITH a € StSy) We havedp =m+ {w wherea(m) 2, Z e Randiy, is obtained
by replacingrtwith win . Since(a, j)(1) > aL(Z,j) € oy (R), we have(@, j) = sim,m)t Qi
whereZQ\” is obtained by replacing with win a.(Z, j). Similar to the first case, we can show

wj = ds(Cw,). Then (56) holds.
(CAsE ¢ = b(wi) wiTH b € Stinh) Similar to the previous case.
(CAse¢d =Head Congn,())) We haveh =y n. (55) holds because,(Head Congn,{))) =
oo(N).
(CAse$ =Head Empty) We havep =+ L. (55) holds because,(Head Empty)) = a,(L).
(CAse ¢ =Head{) wiTH { # Congn1,{1) AND { # Empty We havep =u Head (') where
C :>,\+,|7t ¢'. We findas (¢, 1) = sim,m), @s(¢’, 1) from the induction hypothesis. Then (55) holds.
(CAsE ¢ = Tail(Congn,{))) We havep =-m+ . (56) holds because,(Tail(Congn,{)), j) =
0s(¢, j) for 1 < j < nfrom the assumption on.
(CAsE ¢ = Tail(Empty) We have¢p =m Empty (56) holds because(Tail(Empty, j) =
os(Empty j+1)(= L) foranyj.
(CAsE ¢ = Tail({) wiITH { # Congn1,{1) AND { # Empty We haved = Tail({') where
C :>J,\7|7t ¢'. We findas(Z, j) =simym),t As(¢', j) from the induction hypothesis. Then (55) holds.
(CASE$ =08(N1, -+ ,Nm) WHEREN1, -+ ,Nk—1 ARE IRREDUCIBLE AND Nf(=m¢, Nk) = Ny (#
Nk,-L).) We haved(ng,---,Nk, -+ ,Nm) =mt (N1, -, Ny, -+ ,Nm) by the definition of= ;.
Uo(N1),- -, Ao(Nk-1) are irreducible from Lemma 3.20 (i). Fromy # L, Lemma 3.20 (i), (iii)
and the induction hypothesis, we havg(n;) = nf(=sim,wm).t, do(Nk)) (F L). Thena,(9) =
5(%(01), B ao(nk)a T ,Go(ﬂm)) :>§irrh(M).,t 5(%(01), Tt aao(n{()v o ,Go(ﬂm))- Therefore
(55) holds.
(CASEG =90(N1,---,Nm) WHERENT,- - - ,Nk—1 ARE IRREDUCIBLE ANDNf(=Mm¢t,Nk) = L.) We
haved =-v + L by the definition of=mt. 06(N1), - -+ ,06(Nk-1) are irreducible from Lemma 3.20
(). From Lemma 3.20 (i), (iii) and the induction hypothesif=sim,m) 1, Ao (Nk)) = 0o (L) (=
1) holds. Theno,(9) = 8(0s(N1), -+ ,06(NK) -+, A6(Nm)) =simmyt L- Therefore (55)
holds. O

For a SATTM and an input tre¢, we write mxd M,t) to denote the minimum possible
numbemg in Theorem 3.21.

Corollary 3.22 Let M be a SATT. If siptM) is a well-defined ATT for any @ N, M is a
well-defined SATT.

Proof. LetM be a SATT(SynlInh, StSynStinh X A, ag, £, R). From Definition 3.13, it suffices
to show that there existsf(=m¢, ag(€)) for every inputt € Ts if simy(M) is a well-defined

18

ATT foranyne N.

Lett € Ts andng > mxdM,t). Suppose thatin,(M) is a well-defined ATT for anp € N, .
Then there existh(:>Smho(M)7t, ap(€)) which is[simy, (M)] (t). Since[M] (t) = [[simh,(M)]|(t)
holds from Theorem 3.21, there exist§=-m, ao(€)) which is[M]|(t). O

4 Composing Stack-Attributed Tree Transducers

We present a composition method of SATTs by extending a composition method of ATTs. In
this section, we first review thaescriptional compositid@G84, Gie88], a composition method

for attribute grammars, in terms of ATTs. Next we introduce a composition method of SATTs
by extending an algorithm of descriptional composition. Finally we prove the correctness of the
algorithm and the closure property of the composition.

4.1 Descriptional Composition

We present an algorithm of descriptional composition following the presentation in [CDPR99].
Here, the algorithm is formalized in terms of ATTs. Let us first give a condition, callathctic
single use requiremeirt [GG84, Gie88], under which descriptional composition is successfully
applied.

Definition 4.1 An ATT M = (SynlInh, X, A ap, #,R) satisfies thesingle use requiremefsur)

if there is no pair of rulesq — F[a(d)] andx, > E[a(9)] in RC for everyo e T U {t},
a€ SynJlnh, and¢ € {1, 2 - - } where’£; and %, are contexts. We writd T T s, for a set
of tree transformers such thaf T, = {[M] | M is a well-defined sur-ATT.

For given two ATTsM1 and M,, we write M1(©M> to denote a single ATT which is the
result of descriptional composition bf; andM»,. The ATTM;(©M, computes a transformation
equivalent tg[M]] o [M2]], thusM1(©M3 takes a tree over the input alphabetf and returns
a tree over the output alphabetMi. The descriptional composition is divided into three steps:
projection, symbolic evaluation and renaming.

Definition 4.2 Let M1 = (Syn,Inhy,231,A1,a3,41,R1) andMa = (Syn, Inhy, 32, A2, 82,12, R2)
be ATTs withA, C X1 and letX, = 2, W {f2}. The ATT M1(©M3 is obtained byreno sey, o
projy, (M2), where three function®n, sey, andprojy,, are defined as follows:

e projy, (Mz) returnsU = (Syn, Inhz, 25,47, a, 2, R) where

R = {a(x) La(ny) |acSyn, x->neRy, ye I}
U{b(Nxy) ~ b(X) | b€ Inhy, x5 1 € Ry, y € T}
_J ta(n) (if x=ax(m) andy={?)
xy = n (otherwise)

The calculation oprojy, (M2) is calledprojection Note thatU is just an intermediate
representation and is not an ATT.

19

e say, (U) withU = (Syr;z,Inhz,ZZ,Az,az,sz,Uyez/2 RY) returns
(Syn,Inhy,%3,A2, 82,2, |] nf(=sg RY))
yez,

where the binary relatioa>sg is defined by the following claus® = sg Q holds iff
P = {bi(o(er, - ,en>>lzi [1<i<m}w R

_ umnenew,
. x¥ne o
U wéﬁm)pth(a,w%Dtemegu
a () = Yy € RO 0, 1<k<I
0 = [bi(n) = Zi]lglgm[nl = ej]lgjgn

withye 3, o e A(Zn), Syn ={ai,---,a} andinh; = {bs,--- ,bm}. The calculation of
seu, (U) is calledsymbolic evaluationNote that both sides of any rule iff(=sg, RY)
do not have occurrences of expressions of the fafain,--- ,nNn)).

e ren(U) with U = (Syn, Inhy, 22, A2, a2, 2, R) returns
(Syninh,2,A, (a1, a2),t2,9(R) URdmy)

where
Syn = {{a,d) | (a,d) € Syn x Syn,Ulnhy x Inhy}
Inh = {(a,d)|(ad) e Syn x Inh,Ulnhy x Syn}
OR) = {X>n'|X=86(x),n" =6(n),x>neR}

B = [a(a/(q))) = <aya>(¢)]aeAttl,a’eAttz,q)e{n,n:L,nZ,--~}

with Att; = Syn U Inhy and Att; = Sy U Inhp. Rgmy is a set of dummy rules which
gives a rule(a,a)(¢) > L for any rulea(a(9)) > { ¢ R, a € Atty, @ € Att, and¢ €
{2, --}. The calculation ofen(U) is calledrenaming

The correctness of the descriptional composition method is guaranteed by the following theo-
rem.

Theorem 4.3 (O-Correctness, Ganzinger[Gan83] and Giegerich[Gie88])f M1 and M, are
well-defined sur-ATTs, theni®M is a well-defined sur-ATT such tha#1] o [M2]] = [M1©M2].

Corollary 4.4 ATT g0 ATTgu=ATTq

Proof. The statement follows immediately from the fact tBgtT s, contains the identical tree
transformation and tha& 7 75,0 AT T, C AT T g, holds from Theorem 4.3. O

Consider the case whekd; in Definition 4.2 is a TDTTj.e. M; has no inherited attribute.
Then the descriptional composition method is equivalent to the composition method of a TDTT
and an ATT presented in {f81]. Therefore we have the following theorem. This composition
requires no condition such as the sur-condition required in Theorem 4.3.

20

Theorem 4.5 (O©-Correctness, Rilop[Ful81]) If M1isa TDTT and M is a well-defined ATT,
then M(©M: is a well-defined ATT such thg4] o [M2]] = [M1©OM2].

Corollary 4.6 TDTT o ATT = ATT.

Proof. The statement follows immediately from the fact tii@ 7T contains the identical tree
transformation and thakDTT o ATT C ATT holds from Theorem 4.5. O

4.2 Extended Descriptional Composition

We extend the above descriptional composition to apply to SATTs. As mentioned in Section 1,
we consider a composition of ATTs and SATTs. The result of the composition is obtained as

a single SATT. We first present the condition under which the extended composition method is
successfully applied before introducing the method. As the method is defined by an extension
of the algorithm in Definition 4.2, the condition is also presented by an extension of the sur

condition in Definition 4.1.

Definition 4.7 A SATT M is asur-SATTIf simy(M) is a sur-ATT for anyn € N,.. We write
SATTg,for a set of tree transformers such tBa&(r s, = {[M] | M is a well-defined sur-SATTF.

The above definition is not directly applied to check if a SATT satisfies the sur-condition, since

we need to check the sur-condition for infinitely many ABIis,(M) for anyn € N.. We do not

discuss a checking method for the sur-condition of SATTs. However, there is a finitely checking

method for the sur-condition of SATT. For instance, we can claimMh in Example 3.10

is a sur-SATT. Althougts(m) is referred three times in glusrule (44), these three references

do not overlap each otheHead s(1)) represents a reference to the first element of the stack;

Head Tail(s(1t))) represents a reference to the second element of the StaitKTail(s(1)))

represents a reference to a stack comprised elements following the second element of the stack.
An algorithm of the extended descriptional composition is also divided into three steps. The

intermediate results of the first and second step, projection and symbolic evaluation, do not have

the form of SATTs similarly as in the original composition method for ATTs. A set of terms

occurring at the both sides of attribute rules in the intermediate result is defined by Bt¢Set

or BHS, as defined below.

Definition 4.8 LetM1 = (Syn,Inhy,21,A1,a3,41,R1) andMy = (Syn, Inhy, StSys, Stinkp, 35,
Ny, ap,12,Ro) be an ATT and a SATT wittx; D Ay, respectively, and lef = (X,,Xs,A1) be a
stack system with

Xo = {a(n)|a€Synulinhy,n € RHS(M2)}
u{a(fa(n)) | a€ SynUlnhy,n € RHS,(M2)}
Xs = {a({) |aeSynuUlnh;,{ € RHS(M2)}.

The seBHS, (M1, M2) and the seBHS (M1, M) are defined by the following sets:

BHS, (M1,M2) ' EXP,(S) and BHS (Mg,M2) & EXP.(S).

21

We present the extended descriptional composition method for SATTs below. The major
difference from the original one is found in the step of symbolic evaluation. The original sym-
bolic evaluation process is intend to eliminate occurrences of trees of thafori@, - - - ,en)).

In addition to this, the extended one is intend to eliminate occurrences of trees of the forms
a(Congey, e)), a(Empty), a(Head e)) anda(Tail(e)).

Definition 4.9 LetM; = (Syn, Inhy,21,A1, 81,41, R1) andMz = (Syn, Inhy, StSyn, Stintp, 5,
Ay ap,12,Ro) be an ATT and a SATT witl\, C X3, respectively, letR be a sef{n; S, Nz |
(N1,N2) € BHS,(M1,M2) x BHS,(M1,M2) UBHS (M1, M2) x BHSS(Ml, M)} and letl = {m,
T, T2, --- }. The SATTM;(©OM;, is obtained by€no Say, o prolMl(Mz) where three functions
ren, Sav, andprOJMl are defined as follows:

. pTrEle(Mg) returnsU = (Syn, Inhy, StSyn, Stinhp, 25, Ay, a2, 42, R) whereR C R _is de-

fined in the same way as in Definition 4.2. The calculatioﬁ&iMl(Mg) is calledpro-
jection

e Say, (U) withU = (Sy@,Inhg,StSya,StInhg,Zz,Ag,az,jjz,Uyezzu{ﬁz} RY) returns
(Syn, Inhy, StSyp, Stinhy, 52,A2,82, 12, | nf(=g R)
yezaU{t2}
where the binary relatios>g; over % _is defined as follows:
1. ¢ =g P if ¢ =seP where=-ggis the relation defined in Definition 4.2.
2. {x—> Ela(Head())]} WR =g {X Y, E[Heada(?))]} WR.

(
3. {x% E[a(Tail(Q))]} ¥ R=g x5 E[Tail(@Q))]} wR.
4. {xl E[a(Congn, ()|} WR=¢; {x—>£[Cons{a(),a(0)]}wR.
(

5. {x% E[a(Empty]} WR =g {x = E[Empty} wR.

Y o7
A s e

(i) {a(HeadQ)) > n'}wR=g{a(q) > Congn’,Empty} WR,
if R contains no rule whose left hand side is in the forna@fail({)).

(i) {a(Tail(2)) * '} ¥R=g {a(Q) > Cond L,7)}wR
if R contains no rule whose left hand side is in the forna@fead{)).
l) Ny . (r])—>Heao(Z)
7. {a(Congn,Q)) = '} v R:>SE{ a(7) % Tail(7) } WR
8. {a(Empty - }wR=gR
wherea e Syn UInh;, n € RHS,(M3), { € RHS(M2),n' € BHS,(M1,My), ' € BHS (My,

M) andE is a context, provided that the rewriting rule of 1 and 6 is applied only when
no other rewriting rule can be applied.

22

The calculation ofay, (U) is calledsymbolic evaluation Note that both sides of any
rule innf (=g, RY) do notinclude the form o&(a(na,---,nNn)), a(Head)), a(Tail(q)),
a(Congn,)) or a(Empty).
e ren(U) with U = (Syn, Inhyp, StSyn, Stinhy, 22, A, a9, f2, R) returns
(SynlInh, StSynStinh z, Ay, (a1, 82), 2, ©(R) U Rymy)
whereSynandInh is given is the same way &snin Definition 4.2 and
StSyn = {(a,d@) | (a,&) € Syn x StSypUInh; x Stintp}
Stinh = {(a,d) | (a,a") € Syn x StinpUInh; x StSyn}
O(R) = {X>n'[X=86(x),n"=6(n),x>neR}
0 = [a@(9)):=(a, a/>(q))]aeAttl,a’eAttZUStAt'Q,cbel'l
with Att; = Syn Ulnhg, Att, = Syn, U Inh, andStAtp = StSyp U Stinhp. Rymyis the set
of dummy rules which gives
— (a,a)(¢) > L for any rulea(a(9)) > L € R, ac Atty, @ € Attp, ¢ € M ando €
Z1¥{t1}, and
— (a,@)(9) > Emptyfor any rulea(a'(¢)) > { ¢ R, a € Atty, & € StAtb, ¢ € M and
o€ Wit}
The calculation ofen(U) is calledrenaming

We give a partial example of our descriptional composition, where an Mikd, and an

SATT Mptoi are composed. Firsp/rale yields a set of the following attribute rules from an
attribute rule (40) irM,:

one

ao(s(md)) — ao(Congones(m))) (57)
a;(Congones(m)) ¥ ay(s(T)). (58)
Next, Say, yields a set of the following attribute rules from (58):
aj(ong ¥ Headay(s(md))) (59)
ar(s(m) =¥ Tail(ay(s(ml))), (60)

wherea; (one) is intended to be rewritten by the rule 1 of symbolic evaluation. Finadly,
yields a following attribute rule from (60):
(ag,s) (1) =¥ Tail((ag,s)(T)). (61)

Figure 6 shows the final resMpop Of the composition oMiiop andMpiei. Considering the
roles ofMiiop andMpyoi, the role ofMptop is expected to be that of the identical transformation
mapping prefix representations onto prefix representations. InNggd, does not behave as
an identical transformation for an input tree which is invalid as a prefix representation, such as
1,2, x,+. That is becaus®ly; fails to return a tree representing an infix representation for
such an invalid input.

We prove the correctness of the extended descriptional metleofM1©My] = [M1] o
[M2]] for an ATT M; and a SATTM». The proof is completed by simulating each step in Defi-
nition 4.9 with the corresponding step in Definition 4.2. First, we definetiepth simulation
for an intermediate result of projection or symbolic evaluation.

23

Mptop = (SynInh,StSynStinh >, A, (ag, ap), 2, R), where

e Syn= {(ao,a0)}, Inh= {(a1,a0) },
e StSyn={(a1,s)}, Stinh= {(ao,s)},

o 2 =A={onéV twoV, plus? multi¥ end?},

* R={ (ag,a0)(m =

{
<

(a1, 80) (1l) & (ay, a0) (10),
(2, 9) () T Tail((au,) (1)),
(20,5) (1) % Congone(Head (a, 5) (111))), (a0,) (10)
(a0, a0) (1)) ™ (a0, 20) (L),

(2, 30) (1) ™% (a4, 30) (1),

(20, 9) (1) ¥ Tail((ay, 5) (101)),

80,5) () ¥ Congtwo(Head((ay,) (1))), (20,) (1)
80.0) () ™ (a9, a0) (1),

ay, 20) (1i1) ™" (ay, a0) (1),

ay,s)(m) IDI—“>SCons{plus(Heac((al,s>(n1)))
CongHead (ao, s) (1)), Tail((a1, s)(1)))),

(
(20,9) (L) ° CongHead Tail (a0, 5) (19)), Tail (Tail (0,) (1)),
(a0, 30) (1) ™" (20, a0) (),
(a1,a0) (1) ™" (2, a0) (1),

multi

(a1,) (M) — Congmulti(Head (as,s)(1))),
CongHead (a0, s) (1)), Tail((a, s)(1)))),

(80,9) () ™' CongHead Tail (a0,) (1)), Tail(Tail (a0, 9)(19))),
(80, 20) () ' Head (a0,) (1),

(a1,9) () ©¥'Cong (ay, a0) (), Empty }

Figure 6: A SATTMptop Obtained by composing an ATMiiop and a SAT TMptoi

24

—

projy, Saw, fén

simn\ 0) sinﬁ\ (i) sinﬁ\ (i) simn\

Proju, Sév, ren

Figure 7: The extended descriptional composition and its simulation

Definition 4.10 Let M = (SynInh, StSynStinh Z A, a, £, R) be one of the intermediate results
at a step of descriptional composition for an AM; = (Syn,Inhy,%1,A1,a1,41,R1) and a
SATT M2 = (Syn, Inhy, StSyn, Stinhy, 25, Ay, a2, 82, Rp), M = {1, 1L, 12, - - - }, S be a stack sys-
tem (X,, Xs,A1) with

X, = {a(n)|aeSynuinh;,n € RH$ (M)}
U{a(tz(n)) | a€ SynUlnhy,n € RHS, (M)}
Xs = {a() |a€ Synulnh;,{ € RHS(M2)}

andrl ,, I s be functions given by

Mo@m) = a(as™™"n))
e SITLTin . o
ro(a@), = {L (f o T i) = 1)

a(as T ="(Z,i)) (otherwise)

where §' is a stack systentX/, X!, A;) with X! = {a(¢) | a€ SynUlnhy,¢ € N}, X! =

077°S)

{a(¢) | a€ StSypUStinh, ¢ € M}, and two function§’ andl,, are given by (a($)) = a(d)
andl,(a(¢),i) = (a,i)(¢) with ¢ € M. Then-depth simulatiorsiny;(M) is defined by the fol-
lowing septuple:

simf(M) €' (Syr, Ik, £,AU {1}, a4, a5 "(R))

whereSyrl = Synu{(a,i) | a€ StSynl <i < n} andInh = InhU{(a,i) |a€ Stinh 1 <i < n}.

We prove that every diagram in Figure 7 commuteseach step in the extended descrip-
tional composition is simulated by the corresponding step in the original descriptional compo-
sition.

Lemma 4.11 Let My be an ATT. The three functiop]BjMP Sav, andren which are defined in
Definition 4.9satisfy the following equations:

(i) Sim; o projy, = Projy, o simy
(i) simy oSy, = say, o siny,

(ii) simporen=renosiny

25

Proof. Let M1 = (Syn,Inhy,%1,A1,81,81,R1) andMz = (Syn, Inhy, StSyn, Stinhy, 25, Ay, ap,
f2,Rz) be an ATT and a SATT witlh, C 23. We useS, 'y, ['s, S/, ', andl',, each of which
is as given in Definition 4.10, and functions, as, ag, a,, anda’; be respectively defined by

: N N
Ggar07r57n1 asss,r07r57n’ afé‘r07r57n’ ag o)''s andas v s

(i) Neither projy,, nor p/rBle change the sets of attributes. Each of the functsing and
simj; changes the sets of attributes but they coincide. Heimggo projy, (M2) and projy, o
simy(M2) have the same sets of attributes. It is enough to showsihgto projy, (M2) and
projy, o simh(Mz2) yield the same set of rules for every rude’s neRe. If n € RHS(Mo)U

{t2(n") | n’ € RHS,(M2)} and{ € RHS(My), from Definition 4.10, the following equations
hold:

This implies thasir; o projy, (M2) andprojy, o simy(Mz) have the same set of rules.
(i) Let U = (Syn, Inhy, StSyp, Stinty, £, A2, 32, 2, Uyes,uq4,} RY) be an intermediate re-
sult. It is enough to show that

ag () =qeag (W) if D= W (62)

If the above clause holds, we hawg (R) =g 0 (nf(=g R)). Sincenf(=g, R) has no
reducible form for=-sg by the definition of:>§E andag yields no reducible form for>s,
ag (nf(=gg R)) is irreducible. Thereforenf(=-sg, 0 (R)) = ag (nf(=g5 R)) holds. This
means that everl®Y with y € U {t»} yields the same set of rules in the computatiosiof; o
Sau, (U) andsey, o sing(U).

We prove (62) by case analysis on rewriting rules=teg; in Definition 4.9.

(Casel) LetRDbe the following set of rules:

{bi(o(ey, - ,en))LZi [1<i<mluRl.

We haveR =gz P Q where

. xEneRyg
Q = (x—=p'(N)|p=[ax(o(er, -, en)) :=8(Wk)|1<k<l,
a(m > P e RS, 1< k< |
0 = [bi(m) = (ili<i<m[TT) = €jl1<j<n

26

and we also haveg (R) =sg P'wQ where

bi(1j) > n e R,
1<i<mil<j<n

P = {bi(ao(eﬁ)le'(”)
x Y ne aﬂ((%isc)’ }

q = {Xl p'(N)| p= [a(0(0o(e1), -+ ,0o(En))) == O (Wk)] 1<kl
a(m) > Y e R, 1<k<I

0" = [bi(T) := a0 (&i)]1<i<m[TT := 0o (€)]1<j<n.

We can show tha®’ = ag (P) andQ’ = ag (Q). Henceag (R) =sgag (PWQ).

(Case 2) LetP be a set of attribute rulefsc Y, Ela(Head())]} with L € RHS(M2). Then we
havePwR =gz QWR whereQ = {x Y, E[Heada())]}. The following equations

hold:
ao(a(Head())) = To(a(Head()))
= a(ag(¢,1)
ao(Heada(())) = as(a((),1)
= rs(a(Z)al)
a(0(g,1)).

From Lemma 3.17, we obtaiB[a(Head{))] =q E[Head a({))] where=4 is given
in Lemma 3.17. This impliesig (P) = az (Q). Hence,ag (PYR) = ag (QWR)
holds.

(Case 3) LetP be a set of attribute rules« Y, Ela(Tail(C))]} with { € RHS§(Myz). Then we
haveP ¥R =g QWR whereQ = {x Y, E[Tail(a(¢))]}. The following equations

hold:
R gt (if a’.(Tail(2),i) = L)

ds(a(Tail(¢)).lo) = { a(a’(Tail(¢),ip)) (otherwise) i
B 1 (ifio=noral(g,ip+1)=1)
- { a(aL(¢,iop+1)) (otherwise)

. Nt (if io = n)

ds(Tail(a(c)).lo) = { al(a(C),ip+1) (othoerwise)
B 1 (ifip=noral(gip+1)=1)
- { a(aL(¢,io+1)) (otherwise)

for any 1 <ip < n. From Lemma 3.17E[a(Tail({))] =q E[Tail(a(l))] with =q
given in Lemma 3.17 holds. This impliesg (P) = ag (Q). Hence,ag (PWR) =
ag (QWR) holds.

(Case4) Similar toCASE 3.

(Case5) Similar toCASE 3.

27

(Case 6) Considerthe case 6 (i) in Definition 4.9. [Ebe a set of attribute rulds(Head)) Y,
n',a(Tail(2)) % ¢’} with £ € RHS (M), n’ € BHS, (M1, M) andZ’ € BHS, (M1, Ma).

We haveP W R =< QWR whereQ = {a(() Y, Congn’,l’)}. Sincea(Head?)) €
BHS,(M1,M3) anda(Tail({)) € BHS (M1, M2), we have

ag(P) = {x5e|x=a,(a(Headl)))# L, e=ao(n’)}
U{x 5 g | % = as(a(Tail(Q)),i) £ L, & = as(Z,i), 1<i<n}
= {xLe|x=a(a;(Z,1)), 0s(Z,1) # L, e=ao(n')}

Ly xi=a(as(¢,i+1)), as(¢,i+1)# L, e =as(l,i),
U{X'_’e' 1<i<n-1 }

(from as(Tail(),n) = L.)
ag(Q = {%->a|x=0asa(),), a=as(Congn’,),i), 1<i<n}
= (utex=0,aQ),1)#L e=a(n)}
Ui Y& [% =as(a).i) # L, g =0as(Zi—1), 2<i<n}
= {utexa=a(0}@1), aiZ1) # L e =aj(n)}
Ufx L & [x = a(al (L), o4(L.i) # L, e =o(li~1), 2<i <n)

Thenag (P) = ag (Q) holds, hencerg (PYR) = a4 (QuR). We can similarly show
the statement in the cases 6 (ii), (iii).

(Case 7) Similar toCASE 6.

(CAse 8) LetP be a set of attribute rulea(Empty) Y, ('} with ¢’ € BHS(M1,M3). We have
PUR=gR as(a(Empty,i) = L sinceas(Emptyi) = L. Thisimpliesag (P) =0,
henceng (PUR) =ag (R).

(iii) Let U = (Syn, Inhy, StSyn, Stinhy, 25, Ay, a2, 2, R) be an intermediate result after the

symbolic evaluation, lefll be a sef{1, 1, - - - , Tt} With m = max{K | Z(lk) # 0}. and0,0’ be
replacements represented by

0 = [a@(9)) = (aa&)(d)]acat acAten
6 = [a@(9)):= <a=a/><¢)]aeAttl,a’eAttzLJStAttg,q)el‘l7

respectively, wherétt; = Syn UInhy, Att; = Sy U Inhz andStAtb = StSyp U Stinhyp.
We prove the statement (iii) by showing that

a,(8'(n)) = 6(ay(n)) (63)
as(6'().i) = 8(a5(Ci)) (64)

foranyn € BHS,, { € BHS and1 <i < nwhereBHS, andBHS; are subsets @HS, (M1, My)
andBHS (M1, M>) such that their elements have no occurrence of the expression of the form

a(o(ng,---,Nn)), a(Headq)), a(Tail(C)), a(Congn,{)) or a(Empty. The equations (63)
and (64) can be proved by induction on the structure] afr ¢, if (63) and (64) hold where
n=a@(¢)) and = a(@(9)) for a € Atty, a € Atty, @ € StAtp and ¢ € M. If a € Atty,

28

a € Atty andd € M, thena,(a(@(¢))) =a(@(¢)). Hence (63) holds. l& € Att, & € StAt,
¢ € N andig, then

because,(a/($),io) = (&,io)(¢) # L. From the definition ofxs,

as(6'(a(@(9))),io) = as((aa)(9),io)
((a.d),io)(9)
{

a,d,io)(0).

Hence (64) holds. (63) and (64) imply theitr,(ren(U)) andreno sinys(U) have the same set
of attribute rules because it is trivial that both sets of dummy rules producsuirhy ren and
reno sin coincide. Thereforsim, o ren(U) = reno simi(U). O

It follows from this lemma that th@-depth simulation of the composition of an ATM;
and a SATTM, equals to the composition of an ATM; andn-depth simulation of a SATM,.

Proposition 4.12 Let M; and M, be a sur-ATT a sur-SATT, respectively. Then

[M1©sim(M2)] = [[sim(Mi©M)]
holds for any n.
Proof.
M1©sim(M2) = renosey, o projy, oSim(Mz) (by Definition 4.2)

= sinhore’710§awlor7fo\le(M2) (by Lemma 4.11)
= sim(M1©My) (by Definition 4.9)

O

The correctness of the extended descriptional composition is an immediate consequence of
this proposition.

Theorem 4.13 (O-Correctness, I) If M is a well-defined sur-ATT and Ms and a well-
defined sur-SATT, theng®M is a well-defined sur-SATT such tHd] o [M2] = [M1©OM_],

e. [Ma] o [M2](t) = [M1OM](t) for any input .

Proof. Assume that is an arbitrary input tree idom([Mz]), M1 is a well-defined sur-ATT
andMg is a well-defined sur-SATT. Thesim,(M3) is a sur-ATT for anyn by Definition 4.7.

29

Letting n = max{mxd M,t), mxd M1©M,t)}, we have

[Mi©M]J(t) = [simy(Mi©OM2)](t) (by Theorem 3.21)
= [M1©sim(M2)](t) (by Proposition 4.12)
[My]lo[[simn(M2)] (t) (by Theorem 4.3)
= [Mq]([sim(M2)](t)) (by the definition ofo)
= [M1]}([M2](t)) (by Theorem 3.21)
= [Mq]Jo[M2](t) (by the definition ofo)

It follows thatM1(©sim,(M>) is a well-defined sur-ATT for ang from Theorem 4.3. Hence,
sim(M1©M,) is a well-defined sur-ATT for any. ThereforeM;[©M; is a well-defined sur-
SATT from Definition 4.7 and Corollary 3.22. a

The transition by equations in the above proof does not depend on the sur-conditlan of
andMa,. Therefore we obtain the following theorem by using Theorem 4.5 instead of Theo-
rem 4.3.

Theorem 4.14 ([©-Correctness, Il) If My is a TDTT and M is a well-defined SATT, then
M1©M; is a well-defined SATT such thf1] o [M2] = [M1©OMa].

The closure properties are corollaries to these theorems.

Corollary 4.15
(|) ATTSUO SATTSU = SATTSU

(i) TDTToSATT = SATT.

Proof. The first statement follows immediately from the fact tAdiT s, contains the identical
tree transformation and thal Tgyo SAT Ty C SAT Ty holds from Theorem 4.13. Similarly,
the second statement follows from Theorem 4.14. O

5 Conclusion

We have presented a composition method for stack-attributed tree transducers(SATT) and proved
the correctness of it. Stack-attributed tree transducers are more powerful than attributed tree
transducers(ATT) due to a stack mechanism. Our composition method is based upon the fact
that stack-attributed tree transducers are approximated by attributed tree transducers once an
input tree is fixed.

We proved also that the composition method enjoys a closure property under the restriction
called single-use restriction(sur). This indicates that the composition of a sur-ATT and a sur-
SATT results in a single sur-SATT, which can be subject to composition with another sur-ATT.

This paper has only dealt with the composition of an ATT and an SATT. We believe that
the result of the composition of two SATTs cannot be obtained by a single SATT. Instead,
we would obtain an attributed tree transducers whose attribute values have nested stack struc-
tures,i.e. stack of stacks. It would be interesting to compare the result with the composition of
other tree transducers: macro tree transducer[EV85], macro attributed tree transducer[KV94],
n-iterated pushdown tree transducer[EV88], et al.

30

References

[ASUSE]

[AU73]

A. V. Aho, R. Sethi, and J. D. UllmanCompilers — Principles, Techniques, and
Tools Addison-Wesley, 1986.

Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing, Translation and
Compiling Prentice-Hall, Englewood Cliffs, NJ, 1973. I and II.

[CDPR99] Ldc Correnson, Etienne Duris, Didier Parigot, and Gilles Roussel. Declarative

[EV85]

[EV8S]

[Far84]

[FUI81]
[FVO8]

[Gan83]

[GG84]

[Gie8s]

[HT85]

[Joh87]

[KHZ82]

program transformation: A deforestation case-studyPrinciples and Practice of
Declarative Programmingvolume 1702 ot NCS pages 360-377. Springer Verlag,
1999.

Joost Engelfriet and Heiko Vogler. Macro tree transducdmirnal of Computer
and System Sciengexl(1):71-146, August 1985.

Joost Engelfriet and Heiko Vogler. High level tree transducers and iterated push-
down tree transducergcta Informatica 26(1-2):131-192, October 1988.

Rodney Farrow. Generating a production compiler from an attribute grariifas.
Software 1(4):77-93, October 1984.

Z. Rilop. On attributed tree transducerscta Cyberneticab5:261-280, 1981.

Z. Fulop and H. Vogler.Syntax-directed semantics—Formal models based on tree
transducers Monographs in Theoretical Computer Science, An EATCS Series.
Springer-Verlag, 1998.

Harald Ganzinger. Increasing modularity and language-independency in automat-
ically generated compilers.Science of Computer Programming(3):223-278,
1983.

Harald Ganzinger and Robert Giegerich. Attribute coupled grammaPsobteed-
ings of the ACM SIGPLAN ’84 Symposium on Compiler Constructiolume 19
of SIGPLAN Noticespages 157-170, June 1984.

Robert Giegerich. Composition and evaluation of attribute coupled gramfas.
Informaticg 25(4):355-423, May 1988.

Susan Horwitz and Tim Teitelbaum. Relations and attributes: a symbiotic basis
for editing environments. IMCM SIGPLAN '85 Symp. on Language Issues in
Programming Environmentpages 93-106. ACM press, Seattle, WA, June 1985.
Published as ACM SIGPLAN Notices, volume 20, number 7.

Thomas Johnsson. Attribute grammars as a functional programming paradigm.
In Gilles Kahn, editor,Proceedings of the Conference on Functional Program-
ming Languages and Computer Architecturelume 274 oLNCS pages 154-173.
Springer Verlag, 1987.

U. Kastens, B. Hutt, and E. Zimmerman@AG: A Practical Compiler Generator
Number 141 in Lecture Notes in Computer Science. Springer Verlag, 1982.

31

[Knu68]

[Knu71]

[K h98]

[KV94]

[NNO1]

[Rep84]

[RM89]

[Rou70]

[Voi01]

[W3C]

Donald E. Knuth. Semantics of context-free languag®kathematical Systems
Theory 2(2):127-145, 1968.

Donald E. Knuth. Correction: Semantics of context-free languageshematical
Systems Theor(1):95-96, 1971.

A. Kiihnemann. Benefits of tree transducers for optimizing functional programs.
Lecture Notes in Computer Sciend®30:146-157, 1998.

Armin K ihnemann and Heiko Vogler. Synthesized and inherited functions. A new
computational model for syntax-directed semantissta Informatica 31(5):431—
477, 1994.

Keisuke Nakano and Susumu Nishimura. Deriving event-based document trans-
formers from tree-based specifications. LDTA2001 Workshop on Lan-
guage Descriptions, Tools and Applicationgolume 44 of Electronic Notes

in Theoretical Computer ScienceElsevier Science, 2001. available on-
line: http://lwww.elsevier.nl/gej-ng/31/29/23/73/27/show/
Products/notes/index.htt

T. Reps.Generating Language-based EnvironmeT Press, Cambridge, Ma,
1984.

P. Rechenberg and H. Moessenboegkcompiler generator for microcomputers
Prentice-Hall, Englewood Cliffs, NJ, 1989.

William C. Rounds. Mappings and grammars on trebfathematical Systems
Theory 4(3):257-287, 1970.

Janis Voigthnder. Composition of restricted macro tree transducers. Master’s thesis,
Dresden University of Technology, Germany, March 2001.

Extensible markup language (XMLttp://www.w3c.org/XML/

32

