
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Composing Stack-Attributed Tree Transducers

Keisuke Nakano

(Communicated by Zhenjiang HU)

METR 2004–01 January 2004

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.i.u-tokyo.ac.jp/mi/mi-e.htm

The METR technical reports are published as a means to ensure timely dissemina-
tion of scholarly and technical work on a non-commercial basis. Copyright and all
rights therein are maintained by the authors or by other copyright holders, notwith-
standing that they have offered their works here electronically. It is understood that
all persons copying this information will adhere to the terms and constraints invoked
by each author’s copyright. These works may not be reposted without the explicit
permission of the copyright holder.

Composing Stack-Attributed Tree Transducers

Keisuke Nakano

Department of Mathmatical Informatics
University of Tokyo

ksk@ipl.t.u-tokyo.ac.jp

January 2004

Abstract

This paper presents a composition method for stack-attributed tree transducers. Stack-
attributed tree transducers extend attributed tree transducers with a pushdown stack device
for attribute values. Stack-attributed tree transducers are more powerful than attributed tree
transducers due to the stack mechanism. We extend the existing composition method for
attributed tree transducers to the composition method for stack-attributed tree transducers.
The composition method is proved to be correct and to enjoy a closure property.

1 Introduction

Attribute grammars were introduced by Knuth[Knu68, Knu71] as a way of describing semantics
of context-free languages. They specify a meaning of each derivation tree by allocating values
to attributes associated with every node of the tree. The framework of attribute grammars has
been utilized for the development of compiler construction[ASU86, Far84, RM89, KHZ82],
editing environments[Rep84, HT85] and program transformation[Joh87, CDPR99].

Composition of attribute grammars is one of the well-studied issue on attribute grammars
when attribute grammars are regarded as tree transformations. Ganzinger and Giegerich[Gan83,
GG84, Gie88] inventeddescriptional composition, which enables a single attribute grammar to
be synthesized from two attribute grammars under a so-calledsingle-use condition. Whereas it
has been developed for composing compiler components, the composition method makes a gen-
eral contribution. For example, K̈uhnemann[K̈uh98] and Correnson et al.[CDPR99] indepen-
dently applied the descriptional composition to functional program transformation by utilizing
the fact that attribute grammars have a close connection to functional programs.

The class of attribute grammars to which descriptional composition can be applied is still
limited, however. There are significant instances of transformations where the composition
method cannot be applied. For instance, consider a transformation from the postfix repre-
sentation of numerical formulae,e.g. 2,1,2,+,× in Figure 1(a), to the infix representation,
e.g.2× (1+2) in Figure 1(b). This transformation requires a pushdown stack device in which
subtrees of the output tree are stored. Figure 2 gives a definition for postfix-to-infix transforma-
tion in attribute grammar. The attributes receives stack values. We write[] for an empty stack,

1

root

µ´
¶³

2 -
µ´
¶³

1 -
µ´
¶³

2 -
µ´
¶³
+ -

µ´
¶³
× -

µ´
¶³

ε

Figure 1(a): Postfix representation

root

µ´
¶³
×

½
½½=

µ´
¶³

2

Z
ZZ~

µ´
¶³
+

½
½½=

µ´
¶³

1

Z
ZZ~

µ´
¶³

2

Figure 1(b): Infix representation

Figure 1: Two kinds of representations of numerical formulae

e1 :: e2 for a stack obtained by adding a valuee1 to a stack valuee2, hd(e) for the top element
of a stacke andtl(e) for a stacke without the top element. The existing composition method
cannot deal with such attribute grammars that require a stack mechanism.

We present a new composition method for attribute grammars with a pushdown stack device.
The method is formalized in a framework of attributed tree transducers[Fül81], which is one of
the formal computational models of attribute grammars. In this paper, we introducestack-
attributed tree transducersby extending attributed tree transducers with a stack device and pro-
pose a composition method for stack-attributed tree transducers that extends the descriptional
composition method. Stack-attributed tree transducers are more powerful than attributed tree
transducers because of the pushdown storages. This relation is similar to that between pushdown
automata and finite state automata: A class of languages accepted by the formers, context-free
languages, is larger than a class of languages accepted by the latters, regular languages[AU73].

This paper contains two main results with respect to our composition method for stack-
attributed tree transducers. First, we prove the correctness of our composition method by utiliz-
ing the fact that a stack-attributed tree transducer can be simulated by an attributed tree trans-
ducer once an input tree is fixed. The correctness of a composition method for stack-attributed
tree transducers is reduced to that for attributed tree transducers which has been proved by
[Gie88]. Second, we prove theleftward closure propertyof the composition under a certain con-
dition. A setF of tree transformations satisfies the leftward closure property forG if G ◦F = F
whereG ◦F = {h | h(x) = g(f (x)),g∈ G , f ∈ F} (in contrast,F satisfies the full closure prop-
erty if F ◦F = F). This paper shows that the set of stack-attributed tree transducers satisfies the
leftward closure property for the set of attributed tree transducers. A stack-attributed tree trans-
ducer can be composed with an attributed tree transducer by our composition method. Then
we obtain a single stack-attributed tree transducer, which is ready to be composed with another

S → T S.a0 = T.a0 T → +,T1 T.a0 = T1.a0

T.s = [] T1.s = (hd(tl(T.s))+hd(T.s)) :: (tl(tl(T.s)))
T → 1,T1 T.a0 = T1.a0 T → ×,T1 T.a0 = T1.a0

T1.s = 1 :: T.s T1.s = (hd(tl(T.s))×hd(T.s)) :: (tl(tl(T.s)))
T → 2,T1 T.a0 = T1.a0 T → ε T.a0 = hd(T.s)

T1.s = 2 :: T.s

Figure 2: An attribute grammar with a stack device for postfix-to-infix transformation

2

TDTT (ATT (1)

ATT (MTT (2)

MTTwsu (ATT (3)

ATT (SATT (4)

TDTT ◦TDTT = TDTT (5)

ATT su◦ATT su = ATT su (6)

TDTT ◦ATT = ATT (7)

TDTT ◦MTT = MTT (8)

MTTwsu◦MTT nc = MTT (9)

ATT su◦SATT su = SATT su (10)

TDTT ◦SATT = SATT (11)

Figure 3: The inclusion relations of various classes of tree transformations and their composi-
tions

attributed tree transducer again.
Our composition method is proposed not only for theoretical interest. The composition

method for stack-attributed tree transducers is useful in practice for transformations over struc-
tured documents such as XML[W3C]. Nakano and Nishimura[NN01] utilized the descriptional
composition method to generate stream-to-stream document transformations from tree-to-tree
document transformations. Given a tree-to-tree document transformationT, a stream-to-stream
document transformation can be obtained by a composition of three transformationsUnparse, T
andParse: Unparseis an unparsing(tree-to-stream) transformation;Parseis a parsing(stream-
to-tree) transformation. They defined each transformation by an attribute grammar and applied
the descriptional composition method. In their framework, they faced the problem that parsing
transformation requires a stack mechanism, which cannot be dealt with by the existing descrip-
tional composition. They circumvent the problem by restricting the maximum nesting depth
of input documents to a fixed number and by simulating the stack device with a finite set of
attributes. Our composition method provides a general solution of the above problem without
the work around. In this application, the leftward closure property of our composition method
plays an important role. Assume that a tree-to-tree transformationT is given by an attributed-
tree transducer. SinceParseis defined by a stack-attributed tree transducer, the composition of
T andParseis obtained as a stack-attributed tree transducer from the leftward closure property.
SinceUnparseis defined by an attributed tree transducer, the composition ofUnparseand the
previous result is a stack-attributed tree transducer. Consequently, we obtain a stream-to-stream
transformation as a stack-attributed tree transducer.

There are a number of researches on tree transducer composition methods. Figure 3 shows
the inclusion relations of various classes of tree transformations and their compositions. We
write TDTT , ATT , MTT andSATT to represent top-down tree transducers[Rou70], attributed
tree transducers[F̈ul81], macro tree transducers[EV85] and stack-attributed tree transducers,
respectively. The subscriptsu, wsuandnc indicate subsets of tree transducers restricted by the
conditionssingle-use[Gie88], weakly single-useand non-copying[Küh98], respectively. The
relations (1) and (7) are shown in [Fül81]; (2) and (8), in [EV85]; (3), in [K̈uh98]; (5), in
[Rou70]; (6), in [GG84, Gie88]; (9), in [Voi01]. The relations (4), (10) and (11), involving
SATT , are shown in this paper.

Our results (10) and (11) make an important contribution in the sense thatSATT is one of the
largest sets that enjoys a closure property in some sense. The equations (5) and (6) indicate the
full closure property. However,TDTT andATT suare not expressive enough. The equations (7)

3

and (8) indicate the leftward closure property, as well as our result (10). However, they provide
only the composition withTDTT . As for the composition withTDTT , we can show (11)
indicating thatSATT also satisfies the leftward closure property. Although the composition in
(9) may possibly provide more powerful composition than (10), this composition is not closed
for neitherMTT su norMTTwsu.

Outline. The paper is comprised of five sections, including this introduction. In Section 2, we
define basic notions and notations. Section 3 introduces attributed tree transducers and stack-
attributed tree transducers with simple examples and shows that stack-attributed tree transducers
can be simulated by attributed tree transducers under a certain restriction. Section 4 introduces
a composition method for attributed tree transducers, presents a composition method for stack-
attributed tree transducers and shows the correctness of the composition method. Finally Sec-
tion 5 presents further work and concludes the paper.

2 Preliminaries

The empty set is denoted by/0. We denote the set of non-negative integers including0 byN and
the set of positive integers byN+. The disjoint union of two setsP andQ is denoted byP]Q
and the cartesian product of two setsP andQ is denoted byP×Q, i.e. P×Q = {〈p,q〉 | p∈
P,q∈Q}. We assume that the cartesian product is associative,i.e. (P×Q)×RandP× (Q×R)
are identified and are writtenP×Q×R. We denote a set of finite strings over a setP of symbols
by P∗. A null string is denoted byε.

A designated symbol⊥ means the undefined value. A functionf from a setP to a setQ is
denoted byf : P→Q. Thendom(f) andrange(f) denote thedomainof f and therangeof f ,
respectively, such thatdom(f) = {x∈ P | f (x) 6=⊥} andrange(f) = { f (x) ∈Q | x∈ dom(f)}.
A function f ◦g represents acompositionof two functionsf andg where f ◦g(x) = f (g(x)) for
anyx∈ dom(g). Let F andG be sets of functions. We writeF ◦G for { f ◦g | f ∈ F ,g∈ G}.

A reduction systemis a system(A,⇒) whereA is a set and⇒ is a binary relation overA.
We writea1 ⇒n an+1 if ai ⇒ ai+1(1≤ i ≤ n) for somea1, · · · ,an+1 ∈ A. In particular,a⇒0 a.
We also writea⇒∗ b, a⇒+ b anda⇒? b whena⇒m b holds for somem≥ 0, m≥ 1 and
m∈ {0,1}, respectively.a ∈ A is reduciblewith respect to⇒ if there existsb ∈ A such that
a⇒ b. Otherwise,a ∈ A is irreducible. If a⇒∗ b andb is irreducible, we sayb is a normal
form of a and writenf(⇒, a) for b.

A ranked setΣ is a set in which every symbol is associated with a non-negative integer
calledrank. A ranked alphabetis a finite ranked set. For everyn∈N, Σ(n) is the set of symbols
of rankn. We denote the rank of a symbolσ by rank(σ). We may writeσ(n) to indicate that
σ ∈ Σ(n). The designated symbol⊥ is of rank0. Let Σ be a ranked alphabet andA be a set of
variables disjoint withΣ. The set ofΣ-labeled trees indexed by A, denoted byTΣ(A) (or TΣ, if A
is empty), is the smallest setT satisfying

• A⊂ T and

• σ(t1, · · · , tn) ∈ T for everyn∈ N, σ ∈ Σ(n) andt1, · · · , tn ∈ T,

We denote byt[x/s] thesubstitutionof occurrences of a variablex by s. Let t,s1, · · · ,sn,u1,
· · · ,un be trees inTΣ(X) such that everyui(1≤ i ≤ n) is a subtree oft, provided thatui is not
a subtree ofu j for any i and j with i 6= j. The treet[u1, · · · ,un := s1, · · · ,sn] or t[ui := si]1≤i≤n

4

is obtained fromt by simultaneouslyreplacingevery subtree at the points of occurrences of
u1, · · · ,un by the treess1, · · · ,sn ∈ TΣ(X), respectively. Ifρ = [u1, · · · ,un := s1, · · · ,sn], then
we may writeρ(t) for t[u1, · · · ,un := s1, · · · ,sn]. A TΣ(X)-contextE (or context, simply) is
an element ofTΣ(X]{•}) where a symbol•, calledhole, occurs exactly once inE . A tree
E [t] with t ∈ TΣ(X) stands forE [•/t] ∈ TΣ(X). We also sayU-context for a contextE such
that E [u] ∈U for someu ∈U . Let ρ be a replacement[ui := si]1≤i≤n. Then the replacement
ρ∗ is defined bynf(⇒ρ, ρ) where⇒ρ is the binary relation such that[ui := ti]1≤i≤n ⇒ρ [ui :=
ρ(ti)]1≤i≤n only if ti 6= ρ(ti) for some1≤ i ≤ n.

The prefix-closed set of allpathsof t, denoted bypath(t)(⊆N∗), is defined bypath(σ(t1, · · · ,
tk)) = {ε}∪{iw | 1≤ i ≤ k,w∈ path(ti)} if σ ∈ Σ(k). Note thatpath(σ(0)) = {ε}. Every path
w ∈ path(t) refers to a corresponding label oft, denoted bylabelt(w), which is defined by
labelσ(t1,··· ,tn)(ε) = σ andlabelσ(t1,··· ,tn)(iw) = labelti(w) for every1≤ i ≤ n andw∈ path(ti).

3 Stack-Attributed Tree Transducers

In this section, we give the definition of attributed tree transducers(ATT) and stack-attributed
tree transducers(SATT). We also show that SATTs are simulated by ATTs when the set of input
trees are restricted to a certain set. We follow the definition of ATTs in [FV98].

3.1 Attributed Tree Transducers

Following [FV98], we start with a definition of the set of trees occurring in the right-hand sides
of attribute rules in the specification of ATTs.

Definition 3.1 Let ∆ be a ranked alphabet,SynandInh be unary ranked alphabets withSyn∩
Inh = /0 and k ∈ N. The setRHS(Syn, Inh,∆,k) of right-hand sidesover Syn, Inh and ∆ is
given by the smallest subsetRHSof T∆∪Syn∪Inh({π,π1, · · · ,πk}) which satisfies the following
conditions:

• For everya∈ Synand1≤ i ≤ k, the terma(πi) is in RHS.

• For everyb∈ Inh, the termb(π) is in RHS.

• For everyδ ∈ ∆(l) with l ∈ N andη1, · · · ,ηl ∈ RHS, the termδ(η1, · · · ,ηl) is in RHS,

whereπ,π1, · · · ,πk are calledpath variables. 2

Definition 3.2 An attributed tree transducer(ATT) is a septupleM = (Syn, Inh,Σ,∆,a0,],R)
where

• SynandInh are unary ranked alphabets satisfyingSyn∩ Inh = /0, of which the elements
are calledsynthesized attributesandinherited attributes, respectively,

• Σ and∆ are ranked alphabets with(Syn∪ Inh)∩ (Σ∪∆) = /0, called theinput alphabet
and theoutput alphabet, respectively,

• a0 ∈ Synis a designated attribute, called theinitial attribute,

•] 6∈ Σ is an unary ranked symbol, called theinitial symbol,

5

• R is a set ofattribute rulessuch thatR =
S

σ∈Σ]{]}Rσ with finite setsRσ of σ-rules
satisfying the following conditions:

– for everya∈ Syn, the setRσ contains exactly one attribute rule of the forma(π) σ→
ησ.

– for everyb∈ Inh and1≤ i ≤ k with k = rank(σ), the setRσ contains exactly one
attribute rule of the formb(πi) σ→ ησ,

whereησ with σ ∈ Σ is any term such thatησ ∈ RHS(Syn, Inh,∆, rank(σ))∪{⊥} andη]

is any term such thatη] ∈ RHS(Syn, /0,∆,1)∪{⊥}.
2

Our definition is slightly different from [FV98] in the way of giving the specification of an
ATT. e use no environment describing values of inherited attributes of the root node of an input
tree. We define values of inherited attributes in attribute rules for the initial symbol instead of
the environment.

The readers who are familiar with attribute grammars may understand the specification of
ATTs by consideringa(π) andb(πi) as attribute occurrencesP.a andPi .b in attribute rules for
a production ruleP→ σ P1 · · · Pk, in classical representation of attribute grammars whereP
is a nonterminal symbol. For example, an attribute rulea(π) σ→ δ(b(π1)) with rank(σ) = 2
corresponds to an attribute ruleP.a = δ P1.b for a production ruleP→ σ P1 P2. We give an
example of an ATT and an attribute grammar counterpart of the ATT.

Example 3.3 We give an ATTMitop for an infix-to-postfix conversion of simple numerical for-
mulae,e.g.2× (1+2) to 2,1,2,+,× (see Figure 1). For the sake of simplicity, we assume that
they are built up from integers1 and2 by using two binary operators+ and×. The infix rep-
resentation is specified by a binary tree in which nodes and leaves are numerical operators and
numbers, respectively. The postfix representation is specified by a monadic tree whose element
is either a numerical operator or a number. An ATTMitop = (Syn, Inh,Σ,∆,a0,],R) is given as
follows:

• Syn= {a0}, Inh = {a1}.
• Σ = {one(0), two(0),plus(2),multi(2)}.
• ∆ = {one(1), two(1),plus(1),multi(1),end(0)}.

6

• R is a set of the following attribute rules:

a0(π)
]→ a0(π1) (12)

a1(π1)
]→ end (13)

a0(π) one→ one(a1(π)) (14)

a0(π) two→ two(a1(π)) (15)

a0(π)
plus→ a0(π1) (16)

a1(π1)
plus→ a0(π2) (17)

a1(π2)
plus→ plus(a1(π)) (18)

a0(π) multi→ a0(π1) (19)

a1(π1) multi→ a0(π2) (20)

a1(π2) multi→ multi(a1(π)) (21)

Figure 4 shows an attribute grammar which is counterpart of the ATTMitop. The rules (12) and
(13), namelyR], correspond to a set of two attribute rules for the production ruleS→ T in the
attribute grammar. Similarly,Rone, Rtwo, Rplus andRmulti correspond to attribute rules for the
production rulesT → 1, T → 2, T → T1 +T2 andT → T1×T2, respectively. 2

We define the semantics of ATTs. The computation of an ATTM for an input treet is
defined by a reduction system, whose definition is given below.

Definition 3.4 Let M = (Syn, Inh,Σ,∆,a0,],R) be an ATT,t ∈ TΣ andηw stand for a tree ob-
tained by replacing every occurrence ofπ with a pathw∈ path(](t)) in η. Thederivation rela-
tion induced by M on tis a binary relation⇒M,t overT∆({a(w) | a∈Syn∪ Inh,w∈ path(](t))})
defined by:

• a(w)⇒M,t ηw wherea∈ Syn, a(π) σ→ η ∈ Randσ = label](t)(w).

• b(wi)⇒M,t ηw whereb∈ Inh, b(πi) σ→ η ∈ Randσ = label](t)(w).

• δ(η1, · · · ,ηi , · · · ,ηn) ⇒M,t δ(η1, · · · ,η′i , · · · ,ηn) whereη1, · · · ,ηi−1 are irreducible and
nf(⇒M,t , ηi) = η′i(6= ηi ,⊥).

• δ(η1, · · · ,ηi , · · · ,ηn)⇒M,t ⊥ whereη1, · · · ,ηi−1 are irreducible andnf(⇒M,t , ηi) =⊥.

T → T1 +T2 T.a0 = T1.a0

S → T S.a0 = T.a0 T1.a1 = T2.a0

T.a1 = ε T2.a1 = +,T.a1

T → 1 T.a0 = 1,T.a1 T → T1×T2 T.a0 = T1.a0

T → 2 T.a0 = 2,T.a1 T1.a1 = T2.a0

T2.a1 = ×,T.a1

Figure 4: An attribute grammar counterpart of Example 3.3

7

It is obvious that this reduction system is determinant. Note that we need to computenf(⇒M,t , ηi)
in the above definition. In this paper, we do not consider derivation relations in the case where
nf(⇒M,t , ηi) cannot be computed.

An attribute valueof a(w) for an ATT M and an input treet is defined bynf(⇒M,t , a(w)),
if any, wherew∈ path(](t)). We may omit subscriptsM andt of ⇒ when it is clear from the
context. Note thatnf(⇒M,t , a(w)) is a tree over the output alphabet∆ of M. This is because
any term having occurrences of terms of the formb(v) for b∈ Inh∪Synand a pathv is always
reducible. 2

We cannot always compute attribute values for a given ATTM and an input treet. For
instance, an attribute valuea(w) with a pathw cannot be computed in the case that we have a
reductiona(w)⇒+

M,t E [a(w)] for some contextE . In order to avoid the problem, we define a
well-definedness property for an ATT.

Definition 3.5 Let M = (Syn, Inh,Σ,∆,a0,],R) be an ATT. We define thesemanticsof an ATT

M by a function[[M]] : TΣ→T∆ such that[[M]](t)
def
= nf(⇒M,t , a0(ε)) if there existsnf(⇒M,t , a0(ε)).

The ATTM is well-definedif [[M]](t) can be defined for everyt ∈ TΣ. 2

Example 3.6 Let M be an ATT given in Example 3.3. The computation ofM for an input tree
t = multi(two,plus(one, two)) is shown below. We obtain that

[[M]](multi(two,plus(one, two))) = two(one(two(plus(multi(end)))))

by the following reduction steps:

a0(ε) ⇒],ε a0(1) (22)

⇒multi,1 a0(11) (23)

⇒two,11 two(a1(11)) (24)

⇒multi,1 two(a0(12)) (25)

⇒plus,12 two(a0(121)) (26)

⇒one,121 two(one(a1(121))) (27)

⇒plus,12 two(one(a0(122))) (28)

⇒two,122 two(one(two(a1(122)))) (29)

⇒plus,12 two(one(two(plus(a1(12))))) (30)

⇒multi,1 two(one(two(plus(multi(a1(1)))))) (31)

⇒],ε two(one(two(plus(multi(end))))) (32)

where the superscripts of⇒σ,w indicate that the derivation relation is based on aσ-rule at the
pathw. For example, a reduction step⇒plus,12 at (30) is derived by replacingπ with a path12
in](t) in aplus-rule at (18). 2

Let M be an ATT.M is called atop-down tree transducer(TDTT) if there is no inherited
attribute inM. We write ATT and TDTT for sets of tree transformers such thatATT =
{[[M]] | M is a well-defined ATT.} andTDTT = {[[M]] | M is a TDTT.}. It is well-known that
TDTT (ATT holds[F̈ul81].

8

3.2 Stack-Attributed Tree Transducers

Following the definition of ATTs, we give the definition of SATTs. SATTs extend ATTs with
a new class of attributes, calledstack attributes. There are two types of attributes in a SATT,
output attributes and stack attributes. Output attributes receive trees over the output alphabet as
well as attributes in ATTs. Stack attributes receive pushdown stacks of trees over the output al-
phabet. The following definition introduces a stack system specifying sets of output expressions
and stack expressions which are used for the definition of a SATT.

Definition 3.7 A stack system over∆ is a tripleS = (Xo ,Xs ,∆) whereXo andXs are disjoint
sets and∆ is a ranked alphabet. For a stack systemS , we define a setEXPo(S) of output
expressions, a setEXPs(S) of stack expressionsas the smallest subsetEXPo andEXPs , which
are disjoint, satisfying that:

• EXPo ⊃ Xo andEXPs ⊃ Xs .

• δ(e1, · · · ,en) ∈ EXPo if ei ∈ EXPo(1≤ i ≤ n) andδ ∈ ∆(n) with n∈ N.

• Cons(e1,e2) ∈ EXPs if e1 ∈ EXPo ande2 ∈ EXPs .

• Empty∈ EXPs .

• Head(e) ∈ EXPo if e∈ EXPs .

• Tail(e) ∈ EXPs if e∈ EXPs .

2

The four ranked symbolsCons, Empty, HeadandTail are calledstack operators: Cons(e1,e2)
denotes a stack obtained by adding a valuee1 to the top of a stacke2; Emptydenotes an empty
stack;Head(e) denotes a value at the head of a stacke; Tail(e) denotes a stack obtained by
removing its head from a stacke.

We specify the set of right-hand sides in attribute rules in SATTs before giving the definition
of SATTs. We use bold-faced symbols,e.g.a,a1, · · · , to represent stack attributes for the purpose
of distinguishing them from output attributes.

Definition 3.8 Let ∆ be a ranked alphabet, letSyn, Inh, StSynandStInhbe disjoint unary ranked
alphabets, letk∈ N and letS be a stack system(Xo ,Xs ,∆) with

Xo = {a(πi) | a∈ Syn,1≤ i ≤ k}∪{b(π) | b∈ Inh} (33)

Xs = {a(πi) | a∈ StSyn,1≤ i ≤ k}∪{b(π) | b∈ StInh}. (34)

We define the sets ofoutput right-hand sidesandstack right-hand sidesas follows.

• The setRHSo(Syn, Inh,StSyn,StInh,∆,k) of output right-hand sidesoverSyn, Inh, StSyn,
StInhand∆ is defined byEXPo(S)∪{⊥}.

• The setRHSs(Syn, Inh,StSyn,StInh,∆,k) of stack right-hand sidesoverSyn, Inh, StSyn,
StInhand∆ is defined byEXPs(S).

2

9

Definition 3.9 A stack-attributed tree transducer(SATT) is a nonuple

M = (Syn, Inh,StSyn,StInh,Σ,∆,a0,],R)

where

• Syn, Inh, Σ, ∆, a0 and] are the same as in Definition 3.2. We callSynand Inh output
synthesized attributesandoutput inherited attributes, respectively.

• StSynandStInhare unary ranked alphabets withStSyn∩StInh= /0, whose elements are
calledstack synthesized attributesandstack inherited attributes, respectively,

• R is a set ofattribute rulessuch thatR =
S

σ∈Σ]{]}Rσ with finite setsRσ of σ-rules
satisfying the following conditions. For everyσ ∈ Σ]{]} whose rank isk∈ N,

– for everya∈ Syn, the setRσ contains exactly one attribute rule of the forma(π) σ→
ησ.

– for everyb∈ Inh and1≤ i ≤ k, the setRσ contains exactly one attribute rule of the
form b(πi) σ→ ησ,

– for everya∈StSyn, the setRσ contains exactly one attribute rule of the forma(π) σ→
ζσ.

– for everyb∈ StInhand1≤ i ≤ k, the setRσ contains exactly one attribute rule of
the formb(πi) σ→ ζσ,

whereησ andζσ with σ ∈ Σ are any terms such thatησ ∈ RHSo(Syn, Inh,StSyn,StInh,∆,
rank(σ))∪{⊥} andζσ ∈ RHSs(Syn, Inh,StSyn,StInh,∆, rank(σ))∪{⊥} and whereη]

and ζ] are any terms such thatη] ∈ RHSo(Syn, /0,StSyn, /0,∆,1) and ζ] ∈ RHSs(Syn, /0,
StSyn, /0,∆,1).

Let M = (Syn, Inh,StSyn,StInh,Σ,∆,a0,],R) be a SATT andK be a set{k | Σ(k) 6= /0}. We
defineRHSo(M) andRHSs(M) as follows:

RHSo(M)
def
=

[

k∈K
RHSo(Syn, Inh,StSyn,StInh,∆,k) (35)

RHSs(M)
def
=

[

k∈K
RHSs(Syn, Inh,StSyn,StInh,∆,k) (36)

2

Example 3.10 The postfix-to-infix conversion in Section 1 can be expressed by a SATTMptoi,
which corresponds to an attribute grammar in Figure 2. A SATTMptoi = (Syn, Inh,StSyn,StInh,
Σ,∆,a0,],R) is given as follows:

• Syn= {a0}, Inh = /0.

• StSyn= /0, StInh= {s}.
• Σ = {one(1), two(1),plus(1),multi(1),end(0)}.

10

• ∆ = {one(0), two(0),plus(2),multi(2)}.
• R is a set of the following attribute rules:

a0(π)
]→ a0(π1) (37)

s(π1)
]→ Empty (38)

a0(π) one→ a0(π1) (39)

s(π1) one→ Cons(one,s(π)) (40)

a0(π) two→ a0(π1) (41)

s(π1) two→ Cons(two,s(π)) (42)

a0(π)
plus→ a0(π1) (43)

s(π1)
plus→ Cons(plus(Head(Tail(s(π))),Head(s(π))),Tail(Tail(s(π)))) (44)

a0(π) multi→ a0(π1) (45)

s(π1) multi→ Cons(multi(Head(Tail(s(π))),Head(s(π))),Tail(Tail(s(π)))) (46)

a0(π) end→ Head(s(π)) (47)

2

We define the semantics of SATTs by a reduction system defined in much the same way as
that of ATTs in Definition 3.4.

Definition 3.11 Let M = (Syn, Inh,StSyn,StInh,Σ,∆,a0,],R) be a SATT,t ∈ TΣ, S = (Xo ∪
{⊥},Xs ,∆) be a stack system with

Xo = {a(w) | a∈ Syn∪ Inh, w∈ path(](t))}
Xs = {a(w) | a∈ StSyn∪StInh, w∈ path(](t))}

andζw stand for an expression obtained by replacing every occurrence ofπ with a pathw ∈
path(](t)) in ζ. The derivation relation induced by M on tis defined by a binary relation
⇒M,t⊆ (EXPo(S)× (EXPo(S)∪{⊥}))∪ (EXPs(S)×EXPs(S)) such that:

• a(w) andb(wi) with a∈ Syn, b∈ Inh, w∈ path(](t)) andi ∈ N+ are related by⇒M,t in
the same way as in Definition 3.4.

• a(w)⇒M,t ζw wherea∈ StSyn, a(π) σ→ ζ ∈ Randσ = label](t)(w).

• b(wi)⇒M,t ζw whereb∈ StInh, b(πi) σ→ ζ ∈ Randσ = label](t)(w).

• Head(ζ)⇒M,t

η′ (if ζ = Cons(η′,ζ′))
⊥ (if ζ = Empty)
Head(ζ′) (otherwise,ζ⇒M,t ζ′)

whereη′ ∈ EXPo(S)∪{⊥} and

ζ,ζ′ ∈ EXPs(S).

11

• Tail(ζ)⇒M,t

ζ′ (if ζ = Cons(η′,ζ′))
Empty (if ζ = Empty)
Tail(ζ′) (otherwise,ζ⇒M,t ζ′)

whereη′ ∈EXPo(S)∪{⊥} andζ,ζ′

∈ EXPs(S).

• δ(η1, · · · ,ηi , · · · ,ηn) ⇒M,t δ(η1, · · · ,η′i , · · · ,ηn) whereη1, · · · ,ηi−1 are irreducible and
nf(⇒M,t , ηi) = η′i(6= ηi ,⊥).

• δ(η1, · · · ,ηi , · · · ,ηn)⇒M,t ⊥ whereη1, · · · ,ηi−1 are irreducible andnf(⇒M,t , ηi) =⊥.

This reduction system is determinant. We define anattribute valueof a(w) bynf(⇒M,t , a(w)),
if any, wherew is a path in](t). We may omit subscriptsM andt of⇒ when it is clear from the
context. 2

The following statement guarantees that all attribute values of output attributes range over
the output tree.

Proposition 3.12 Let M= (Syn, Inh,StSyn,StInh,Σ,∆,a0,],R) be a SATT, t∈ TΣ, a∈Syn∪ Inh,
and w∈ path(](t)). If there exists nf(⇒M,t , a(w)), then we always have

nf(⇒M,t , a(w)) ∈ T∆.

2

Proof. Let EXPo andEXPs be as given byEXPo(S) andEXPo(S) in Definition 3.11.
Suppose that there existst ′ = nf(⇒M,t , a(w)). By the definition of⇒M,t , we havet ′ ∈

EXPo . We prove the proposition by analyzing the structure oft ′. First, we show that there is no
occurrence of the form ofa(w) with a∈ Syn∪ Inh∪StSyn∪StInhin t ′. Second, we show that
there is no occurrence of the form ofCons(η,ζ) andEmptyin t ′. Finally, we show that there is
no occurrence of the form ofHead(ζ) andTail(ζ) in t ′. These facts indicatet ′ ∈ T∆.

We can find that there is no occurrence of the form ofa(w) with a∈Syn∪ Inh∪StSyn∪StInh
in t ′ since all terms having occurrences ofa(w) are reducible by the reduction rules based on
the attribute rules.

We can find that there is no occurrence of the form ofCons(η,ζ) in t ′ as follows. Assume
that t ′ = E [Cons(η,ζ)], provided that there is no occurrence ofCons in E . Since we have
t ′ ∈ EXPo and Cons(η,ζ) ∈ EXPs , there exists a contextE ′ such thatE = E ′[Head(•)] or
E = E ′[Tail(•)]. This contradicts the fact thatt ′ is irreducible. Thus there is no occurrence of
the form ofCons(η,ζ) in t ′. Similarly, we can show that there is no occurrence of the form of
Emptyin t ′.

We can find also that there is no occurrence of the form ofHead(ζ) andTail(ζ) in t ′. The
facts we have shown above imply that there is no occurrence of stack expressions int ′. Hence
this indicates there is no occurrence ofHeadandTail in t ′. 2

The semantics of SATTs is defined by the attribute value of the initial attribute at the root
node in the same way as that of ATTs.

Definition 3.13 Let M = (Syn, Inh,StSyn,StInh,Σ,∆,a0,],R) be a SATT. We define theseman-

tics of a SATT M by a function[[M]] : TΣ → T∆ such that[[M]](t)
def
= nf(⇒M,t , a0(ε)) if there

existsnf(⇒M,t , a0(ε)). The SATTM is well-definedif [[M]](t) can be defined for everyt ∈ TΣ.
2

12

Example 3.14 Let M be an SATT given in Example 3.10. Figure 5 shows the reduction step
for deriving

[[M]](two(one(two(plus(multi(end)))))) = multi(two,plus(one, two))

wheret = two(one(two(plus(multi(end))))) and the superscripts of⇒σ,w indicate that the deriva-
tion relation is based on aσ-rule at the pathw. The superscriptsHC, TC, HE andTE indicate
the applied rule in Definition 3.11,i.e. HC for Head(Cons(η,ζ)), TC for Tail(Cons(η,ζ)), HE
for Head(Empty) andTE for Tail(Empty). 2

We writeSATT for a set of tree transformers such thatSATT = {[[M]] |M is a well-defined
SATT.}. We can easily show thatATT (SATT .

Theorem 3.15 ATT (SATT .

Proof. SinceATT ⊆ SATT by the definitions of ATT and SATT, it is enough to show that
this inclusion is proper,i.e. there is a SATTM which cannot be represented by any ATTs. Let
Σ = {parenL(1),parenR(1),end(0)} and∆ = {true(0)}. For any ATT fromTΣ to T∆, we construct
an equivalent finite state automaton by taking the set{〈va1, · · · ,van〉 | vai = trueor⊥} as the
state set, where eachvai represents the value of the attributeai in the ATT. The transition rules of
the finite state automaton follow from attribute rules of the ATT. Consider a tree transformation
from TΣ to T∆ which represents a parenthesis balancing validator,i.e. it returnstrue iff every
right parenthesisparenRhas its left counterpartparenLand vice versa in the input. Since this
transformation cannot be achieved by any finite state automaton, the transformation cannot be
represented by any ATT. On the other hand, the transformation can be defined by a SATT.
Therefore we haveATT (SATT . 2

3.3 Simulation of Stack-Attributed Tree Transducers with Attributed Tree
Transducers

For a given input tree, the depth of stack values involved in a derivation relation induced by
a well-defined SATT is finitely bounded. This is clear from the fact that the length of the
derivation is finite and the increase of the depth of stack values in every derivation is finite.
This indicates that, once the input is fixed, a SATT can be simulated by an ATT obtained by
replacing stack-attributes with a finite number of attributes. For example, if the number of trees
to be stored in a stack is less thann, then an attribute rulea(π) σ→ Cons(η,a(π1)) with a stack
synthesized attributea in a SATT can be replaced with the following attribute rules:

〈a,1〉(π) σ→ η
〈a,2〉(π) σ→ 〈a,1〉(π1)

...

〈a,n〉(π) σ→ 〈a,n−1〉(π1)

where each〈a, i〉(1≤ i ≤ n) is a synthesized attribute of an ATT that indicates thei-th stack
element.

13

a0(ε) ⇒],ε a0(1)

⇒two,1 a0(11)

⇒one,11 a0(111)

⇒two,111 a0(1111)

⇒plus,1111 a0(11111)

⇒multi,11111 a0(111111)

⇒end,111111 Head(s(111111))

⇒multi,11111 Head(Cons(multi(Head(Tail(s(11111))),Head(s(11111))),

Tail(Tail(s(11111)))))

⇒HC multi(Head(Tail(s(11111))),Head(s(11111)))

⇒plus,1111 multi(Head(Tail(Cons(plus(Head(Tail(s(1111)),Head(s(1111)))),

Tail(Tail(s(1111)))))),

Head(Cons(plus(Head(Tail(s(1111)))),Head(s(1111)),

Tail(Tail(s(1111)))))))

⇒HC,TC multi(Head(Tail(Tail(s(1111)))),

plus(Head(Tail(s(1111))),Head(s(1111))))

⇒two,111 multi(Head(Tail(Tail(Cons(two,s(111))))),

plus(Head(Tail(Cons(two,s(111)))),Head(Cons(two,s(111)))))

⇒TC,TC,HC multi(Head(Tail(s(111))),plus(Head(s(111)), two))

⇒one,11 multi(Head(Tail(Cons(one,s(11)))),plus(Head(Cons(one,s(11))), two))

⇒HC,TC multi(Head(s(11)),plus(one, two))

⇒two,1 multi(Head(Cons(two,s(1))),plus(one, two))

⇒HC multi(two,plus(one, two))

Figure 5: The reduction steps by the derivation relation⇒M,t

14

We first introduce two kinds of simulating functionsαo andαs for a stack systemS . Two
functionsαo andαs are defined overEXPo(S) andEXPs(S)×N+, respectively:αo represents
a map fromEXPo(S)∪{⊥} ontoT∆∪{⊥}(A) andαs represents a map fromEXPs(S)×N+ onto
T∆∪{⊥}(A) whereA is a set of variables. The value ofαs(e, i) corresponds to the value of the
i-th element in a stack represented bye. Both simulating functions eliminate all occurrences of
stack operators,Cons, Empty, HeadandTail.

Definition 3.16 Let S = (Xo ,Xs ,∆) be a stack system,Γo : Xo → A and Γs : Xs ×N+ → A
be functions whereA is a set of variables, andn ∈ N+. We define twosimulating functions
αS ,Γo ,Γs ,n

o : EXPo(S)→ T∆∪{⊥}(A) andαS ,Γo ,Γs ,n
s : EXPs(S)×N+ → T∆∪{⊥}(A) as follows:

αS ,Γo ,Γs ,n
o (e) = Γo(e) if e∈ Xo . (48)

αS ,Γo ,Γs ,n
s (e, i) = Γs(e, i) if e∈ Xs . (49)

αS ,Γo ,Γs ,n
o (δ(e1, · · · ,em)) =

{ ⊥ (if αo(ek) =⊥ for some1≤ k≤m)
δ(αS ,Γo ,Γs ,n

o (e1), · · · ,αS ,Γo ,Γs ,n
o (em)) (otherwise)

(50)

αS ,Γo ,Γs ,n
s (Cons(e1,e2), i) =

{
αS ,Γo ,Γs ,n

o (e1) (if i = 1)
αS ,Γo ,Γs ,n

s (e2, i−1) (otherwise)
(51)

αS ,Γo ,Γs ,n
s (Empty, i) = ⊥ (52)

αS ,Γo ,Γs ,n
o (Head(e)) = αS ,Γo ,Γs ,n

s (e,1) (53)

αS ,Γo ,Γs ,n
s (Tail(e), i) =

{ ⊥ (if i ≥ n)
αS ,Γo ,Γs ,n

s (e, i +1) (otherwise)
(54)

We also define the simulating functionαS ,Γo ,Γs ,n
R for attribute rules as follows. LetR be

a set of attribute rules of the formx
σ→ η where〈x,η〉 ∈ (EXPo(S)×EXPo(S))∪ (EXPs(S)×

EXPs(S)). αS ,Γo ,Γs ,n
R (R) is defined by

{αS ,Γo ,Γs ,n
o (x)

γ→ αS ,Γo ,Γs ,n
o (η) | αS ,Γo ,Γs ,n

o (x) 6=⊥,x
γ→ η ∈ R}

∪ {αS ,Γo ,Γs ,n
s (x, i)

γ→ αS ,Γo ,Γs ,n
s (ζ, i) | αS ,Γo ,Γs ,n

s (x, i) 6=⊥,1≤ i ≤ n,x
γ→ ζ ∈ R}

2

We first show the following lemma describing that both simulating functions are context-
independent.

Lemma 3.17 Let S = (Xo ,Xs ,∆) be a stack system, letΓo andΓs be functions, and let=α be
a binary relation over EXPo(S)∪EXPs(S) such thatη1 =α η2 only if one of the two follow-
ing conditions holds, eitherαS ,Γo ,Γs ,n

o (η1) = αS ,Γo ,Γs ,n
o (η2) holds whereη1,η2 ∈ EXPo(S) or

αS ,Γo ,Γs ,n
s (η1, i) = αS ,Γo ,Γs ,n

s (η2, i) holds for any i whereη1,η2 ∈ EXPs(S). Then we have

E [η1] =α E [η2] if η1 =α η2

for any(EXPo(S)∪EXPs(S))-contextE .

Proof. This lemma can be proved by an easy induction on the structures ofE . 2

A SATT can be simulated by an ATT if the input tree is restricted. The simulation is defined
as follows.

15

Definition 3.18 Let M = (Syn, Inh,StSyn,StInh,Σ,∆,a0,],R) be a SATT, andS = (Xo ,Xs ,∆)
be a stack system with

Xo = {a(ϕ) | a∈ Syn∪ Inh, ϕ ∈Π} and

Xs = {a(ϕ) | a∈ StSyn∪StInh, ϕ ∈Π}

whereΠ = {π,π1,π2, · · ·}, Γo be a function such thatΓo(a(ϕ)) = a(ϕ) for everya(ϕ)∈Xo and
Γs be a function such thatΓs(a(ϕ), i) = 〈a, i〉(ϕ) for everya(ϕ) ∈ Xs andi ∈ N+. Then-depth
simulation simn(M) for n∈ N+ is defined by the following ATT:

simn(M)
def
= (Syn′, Inh′,Σ,∆∪{⊥},a0,],αS ,Γo ,Γs ,n

R (R))

whereSyn′ = Syn∪{〈a, i〉 | a∈ StSyn,1≤ i ≤ n} andInh′ = Inh∪{〈a, i〉 | a∈ StInh,1≤ i ≤ n}.
2

Let M be a SATT andt be a fixed input tree. If we taken large enough, then the derivation
chains induced bysimn(M) andM on t coincide as shown by the following lemma and theorem.
We consider then-depth simulation for the derivation chain byM on t.

Definition 3.19 LetM =(Syn, Inh,StSyn,StInh,Σ,∆,a0,],R) be a SATT,n∈N+, S =(Xo ,Xs ,∆)
be as given in Definition 3.11 andϕ ∈ EXPo(S) satisfya0(ε)⇒∗

M,t ϕ. We define then-depth

simulation ofϕ by αS ,Γo ,Γs ,n
o (ϕ) whereΓo be a function such thatΓo(a(w)) = a(w) for every

a(w) ∈ Xo , Γs be a function such thatΓs(a(w), i) = 〈a, i〉(w) for everya(w) ∈ Xs andi ∈N+. 2

Choosing the first branch of (54) in the computation of then-depth simulation indicates that
the stack depth is shorter than it is required. The following lemma shows that, if⊥ is derived
by⇒M,t , then⊥ is derived by⇒simn(M),t or a shortage of the stack depth is observed.

Lemma 3.20 Let M = (Syn, Inh,StSyn,StInh,Σ,∆,a0,],R) be a SATT, t be an input tree for
M such that[[M]](t) can be defined,S ,Γo ,Γs be as given inDefinition 3.19, andϕ be a term
such that a0(ε)⇒∗

M,t ϕ. Suppose that n> max{Do(ϕ)} where Do(e) stands for the set of the

second arguments ofαs occurring in the computation ofαS ,Γo ,Γs ,n
o (e). If αS ,Γo ,Γs ,n

o (η) and
αS ,Γo ,Γs ,n

s (η, j) occur in the computation ofαS ,Γo ,Γs ,n
o (ϕ), then we have the following clauses:

(i) If αS ,Γo ,Γs ,n
o (η) is reducible by⇒simn(M),t , thenη is reducible by⇒M,t .

(ii) If αS ,Γo ,Γs ,n
s (η, j) is reducible by⇒simn(M),t , then Head(Tail j−1(η)) is reducible by⇒M,t .

(iii) If αS ,Γo ,Γs ,n
o (η)⇒simn(M),t ⊥, thenη⇒∗

M,t ⊥.

(iv) If αS ,Γo ,Γs ,n
s (η, j)⇒simn(M),t ⊥, then Head(Tail j−1(η))⇒∗

M,t ⊥.

where Tail0(e) = e and Tailk(e) = Tail(Tailk−1(e)) for k∈ N+.

Proof. We prove these statements by induction on the structure ofη.
(CASE η = a(w) FOR (i) AND (iii)) It is clear that (i) holds becausea(w) is always reducible.
Supposeαo(a(w)) ⇒simn(M),t ⊥. Note thatαo(a(w)) = a(w) . There is an attribute rule of

the forma(π) σ→ ⊥ with σ = label](t)(w) or a(πi) σ→ ⊥ with σ = label](t)(v) andw = vi in

16

simn(M). From the definition ofsimn(M), M has an attribute rule of the same form. Then we
havea(w)⇒M,t ⊥. Therefore (iii) holds.
(CASE η = a(w) FOR (ii) AND (iv)) It is clear that (ii) holds becausea(w) is always reducible.
Suppose thatαs(a(w), j)⇒simn(M),t ⊥ with a∈ StSyn. Let a(π) σ→ ζ be an attribute rule inM

whereσ = label](t)(w). Thensimn(M) has an attribute rule〈a, j〉(π) σ→ α′s(ζ, j) whereα′s is

αS ,Γo ,Γs ,n
s as given in Definition 3.16. Ifα′s(ζ, j) = ⊥ holds, we haveαs(ζw, j) = ⊥ with ζw

as given in Definition 3.11. ThenHead(Tail j−1(a(w)))⇒+
M,t αs(ζw, j) = ⊥. Therefore (iv)

holds. We similarly show the statement in the case ofa∈ StInh.
(CASE η = δ(η1, · · · ,ηm) FOR (i) AND (iii)) Supposeαo(η) is reducible. Thenαo(ηk) is
reducible for somek. ηk is reducible from the induction hypothesis. Thenη is reducible.
Hence (i) holds. Supposeαo(η)⇒simn(M),t ⊥. We haveαo(ηk)⇒simn(M),t ⊥ for somek. Then
ηk ⇒M,t ⊥ from the induction hypothesis. Hence (iii) holds.
(CASE η = Cons(η′,ζ′) FOR (ii) AND (iv)) SinceHead(Tail j−1(η)) is reducible toαs(η, j),
(ii) holds. Supposeαs(η, j)⇒simn(M),t ⊥. If j = 1, then we haveαo(η′)⇒simn(M),t ⊥. Then
η′⇒∗

M,t ⊥ from the induction hypothesis. Hence (iv) holds since we haveHead(η)⇒∗
M,t η′. If

j > 1, we haveαs(ζ′, j−1)⇒∗
simn(M),t ⊥. ThenHead(Tail j−2(ζ′))⇒∗

M,t ⊥ follows from the in-

duction hypothesis. Hence (iv) holds since we haveHead(Tail j−1(η))⇒M,t Head(Tail j−2(ζ′)).
(CASE η = EmptyFOR (ii) AND (iv)) SinceHead(Tail j−1(Empty)) is reducible to⊥, (ii) and
(iv) hold.
(CASE η = Head(η′) FOR (i) AND (iii)) We haveαo(η) = αs(η′,1). Head(η′) is reducible
from the induction hypothesis. Therefore (i) holds. Ifαo(η)⇒simn(M),t ⊥, we haveαs(η′,1)
⇒∗

simn(M),t ⊥. ThenHead(η′)⇒∗
M,t ⊥ follows from the induction hypothesis. Hence (iii) holds.

(CASE η = Tail(η′) FOR (ii) AND (iv)) We haveαs(η, j) = αs(η′, j + 1) from j < n which
is the assumption ofj in this lemma. Head(Tail j(η′)) is reducible from the induction hy-
pothesis. SinceHead(Tail j(η′)) = Head(Tail j−1(η)), (ii) holds. If αs(η, j)⇒simn(M),t ⊥, then
αs(η′, j +1)⇒simn(M),t ⊥ follows from the induction hypothesis. HenceHead(Tail j(η′))⇒∗

M,t

⊥ from the induction hypothesis. SinceHead(Tail j−1(η)) = Head(Tail j(η′)), (iv) holds. 2

The next theorem shows that a SATT is mimicked by ann-depth simulation of the SATT for
enough largen for every fixed input.

Theorem 3.21 Let M be a SATT and t be an input tree for M. There exists n0 ∈ N such that
[[simn(M)]](t) = [[M]](t) for any n≥ n0.

Proof. Let M = (Syn, Inh,StSyn,StInh,Σ,∆,a0,],R) be a SATT,t ∈ TΣ be an input tree for
M such that the output treet ′ = [[M]](t) can be defined, andn ∈ N+ anda0(ε)⇒M,t ϕ1 ⇒M,t

· · · ⇒M,t ϕk(= t ′) be a derivation chain induced byM on t. Let S , Γo andΓs be as given in
Definition 3.19. We useαo , αs for αS ,Γo ,Γs ,n

o andαS ,Γo ,Γs ,n
s , respectively. LetS ′, Γ′o andΓ′s be

S , Γo andΓs as given in Definition 3.18, respectively. We useα′o , α′s andα′R for αS ′,Γ′o ,Γ′s ,n
o ,

αS ′,Γ′o ,Γ′s ,n
s andαS ′,Γ′o ,Γ′s ,n

R , respectively.
Suppose thatn > max{Do(φ) | a0(ε)⇒∗

M,t φ} whereDo is as defined in Lemma 3.20. We
show that

αo(ϕ)⇒?
simn(M),t αo(ψ) if ϕ ∈ EXPo(S) andϕ⇒M,t ψ (55)

αs(ϕ, j)⇒?
simn(M),t αs(ψ, j) if ϕ ∈ EXPs(S), ϕ⇒M,t ψ (56)

17

whereαo(ϕ) andαs(ϕ, j) occurs in the computation ofαo(φ) such thata0(ε)⇒∗
M,t φ. This im-

pliesnf(⇒simn(M),t , αo(a0(ε)))= nf(⇒M,t , a0(ε)), i.e.[[simn(M)]](t)= [[M]](t) sinceαo(a0(ε))=
a0(ε).

We prove the statements (55) and (56) by induction on the structure ofϕ.
(CASE ϕ = a(w) WITH a∈ Syn) We haveϕ⇒M,t ηw wherea(π) σ→ η ∈ R andηw is obtained

by replacingπ with w in η. Sincea(π) σ→ α′o(η) ∈ α′R (R), we havea(w)⇒simn(M),t η′w where
η′w is obtained by replacingπ with w in α′o(η). Now we can showη′w = αo(ηw) by the defi-
nitions ofαo andα′o and the fact thatΓo(a(w))(= a(w)) is obtained by replacingπ with w in
Γ′o(a(π))(= a(π)). Then (55) holds becauseαo(a(w)) = a(w).
(CASE ϕ = b(w) WITH b∈ Inh) Similar to the previous case.
(CASE ϕ = a(w) WITH a∈ StSyn) We haveϕ⇒M,t ζw wherea(π) σ→ ζ ∈Randζw is obtained

by replacingπ with w in ζ. Since〈a, j〉(π) σ→ α′s(ζ, j) ∈ α′R (R), we have〈a, j〉 ⇒simn(M),t ζ′w, j

whereζ′w, j is obtained by replacingπ with w in α′s(ζ, j). Similar to the first case, we can show
ζ′w, j = αs(ζw, j). Then (56) holds.
(CASE ϕ = b(wi) WITH b∈ StInh) Similar to the previous case.
(CASE ϕ = Head(Cons(η,ζ))) We haveϕ⇒M,t η. (55) holds becauseαo(Head(Cons(η,ζ)))=
αo(η).
(CASE ϕ = Head(Empty)) We haveϕ⇒M,t ⊥. (55) holds becauseαo(Head(Empty)) = αo(⊥).
(CASE ϕ = Head(ζ) WITH ζ 6= Cons(η1,ζ1) AND ζ 6= Empty) We haveϕ⇒M,t Head(ζ′) where
ζ⇒+

M,t ζ′. We findαs(ζ,1)⇒simn(M),t αs(ζ′,1) from the induction hypothesis. Then (55) holds.
(CASE ϕ = Tail(Cons(η,ζ))) We haveϕ⇒M,t ζ. (56) holds becauseαs(Tail(Cons(η,ζ)), j) =
αs(ζ, j) for 1≤ j < n from the assumption onn.
(CASE ϕ = Tail(Empty)) We haveϕ ⇒M,t Empty. (56) holds becauseαs(Tail(Empty), j) =
αs(Empty, j +1)(=⊥) for any j.
(CASE ϕ = Tail(ζ) WITH ζ 6= Cons(η1,ζ1) AND ζ 6= Empty) We haveϕ ⇒M,t Tail(ζ′) where
ζ⇒+

M,t ζ′. We findαs(ζ, j)⇒simn(M),t αs(ζ′, j) from the induction hypothesis. Then (55) holds.
(CASE ϕ = δ(η1, · · · ,ηm) WHERE η1, · · · ,ηk−1 ARE IRREDUCIBLE AND nf(⇒M,t , ηk) = η′k(6=
ηk,⊥).) We haveδ(η1, · · · ,ηk, · · · ,ηm)⇒M,t δ(η1, · · · ,η′k, · · · ,ηm) by the definition of⇒M,t .
αo(η1), · · · , αo(ηk−1) are irreducible from Lemma 3.20 (i). Fromη′k 6=⊥, Lemma 3.20 (i), (iii)
and the induction hypothesis, we haveαo(η′k) = nf(⇒simn(M),t , αo(ηk))(6=⊥). Thenαo(ϕ) =
δ(αo(η1), · · · , αo(ηk), · · · ,αo(ηm)) ⇒?

simn(M),t δ(αo(η1), · · · ,αo(η′k), · · · ,αo(ηm)). Therefore
(55) holds.
(CASE ϕ = δ(η1, · · · ,ηm) WHEREη1, · · · ,ηk−1 ARE IRREDUCIBLE ANDnf(⇒M,t , ηk)=⊥.) We
haveϕ⇒M,t ⊥ by the definition of⇒M,t . αo(η1), · · · ,αo(ηk−1) are irreducible from Lemma 3.20
(i). From Lemma 3.20 (i), (iii) and the induction hypothesis,nf(⇒simn(M),t , αo(ηk)) = αo(⊥)(=
⊥) holds. Thenαo(ϕ) = δ(αo(η1), · · · ,αo(ηk) · · · ,αo(ηm)) ⇒simn(M),t ⊥. Therefore (55)
holds. 2

For a SATTM and an input treet, we write mxd(M, t) to denote the minimum possible
numbern0 in Theorem 3.21.

Corollary 3.22 Let M be a SATT. If simn(M) is a well-defined ATT for any n∈ N+, M is a
well-defined SATT.

Proof. Let M be a SATT(Syn, Inh,StSyn,StInh,Σ,∆,a0,],R). From Definition 3.13, it suffices
to show that there existsnf(⇒M,t , a0(ε)) for every inputt ∈ TΣ if simn(M) is a well-defined

18

ATT for anyn∈ N+.
Let t ∈ TΣ andn0≥mxd(M, t). Suppose thatsimn(M) is a well-defined ATT for anyn∈N+.

Then there existsnf(⇒simn0(M),t , a0(ε)) which is[[simn0(M)]](t). Since[[M]](t) = [[simn0(M)]](t)
holds from Theorem 3.21, there existsnf(⇒M,t , a0(ε)) which is[[M]](t). 2

4 Composing Stack-Attributed Tree Transducers

We present a composition method of SATTs by extending a composition method of ATTs. In
this section, we first review thedescriptional composition[GG84, Gie88], a composition method
for attribute grammars, in terms of ATTs. Next we introduce a composition method of SATTs
by extending an algorithm of descriptional composition. Finally we prove the correctness of the
algorithm and the closure property of the composition.

4.1 Descriptional Composition

We present an algorithm of descriptional composition following the presentation in [CDPR99].
Here, the algorithm is formalized in terms of ATTs. Let us first give a condition, calledsyntactic
single use requirementin [GG84, Gie88], under which descriptional composition is successfully
applied.

Definition 4.1 An ATT M = (Syn, Inh,Σ,∆,a0,],R) satisfies thesingle use requirement(sur)
if there is no pair of rulesx1

σ→ E1[a(ϕ)] and x2
σ→ E2[a(ϕ)] in Rσ for every σ ∈ Σ∪ {]},

a∈ Syn∪ Inh, andϕ ∈ {π,π1,π2· · ·} whereE1 andE2 are contexts. We writeATT su for a set
of tree transformers such thatATT su = {[[M]] | M is a well-defined sur-ATT.}.

For given two ATTsM1 andM2, we write M1 c©M2 to denote a single ATT which is the
result of descriptional composition ofM1 andM2. The ATTM1 c©M2 computes a transformation
equivalent to[[M1]]◦ [[M2]], thusM1 c©M2 takes a tree over the input alphabet ofM2 and returns
a tree over the output alphabet ofM1. The descriptional composition is divided into three steps:
projection, symbolic evaluation and renaming.

Definition 4.2 Let M1 = (Syn1, Inh1,Σ1,∆1,a1,]1,R1) andM2 = (Syn2, Inh2,Σ2,∆2,a2,]2,R2)
be ATTs with∆2 ⊂ Σ1 and letΣ′2 = Σ2]{]2}. The ATT M1 c©M2 is obtained byren◦ seM1 ◦
projM1

(M2), where three functionsren, seM1 andprojM1
are defined as follows:

• projM1
(M2) returnsU = (Syn2, Inh2,Σ2,∆2,a2,]2,R) where

R = {a(x)
γ→ a(ηx,γ) | a∈ Syn1, x

γ→ η ∈ R2, γ ∈ Σ′2}
∪{b(ηx,γ)

γ→ b(x) | b∈ Inh1, x
γ→ η ∈ R2, γ ∈ Σ′2}

ηx,γ =
{

]1(η) (if x = a2(π) andγ =]2)
η (otherwise)

The calculation ofprojM1
(M2) is calledprojection. Note thatU is just an intermediate

representation and is not an ATT.

19

• seM1(U) with U = (Syn2, Inh2,Σ2,∆2,a2,]2,
S

γ∈Σ′2 Rγ) returns

(Syn2, Inh2,Σ2,∆2,a2,]2,
[

γ∈Σ′2

nf(⇒SE, Rγ))

where the binary relation⇒SE is defined by the following clause.P⇒SEQ holds iff

P = {bi(σ(e1, · · · ,en))
γ→ ζi | 1≤ i ≤m}] Rγ

misc

Q =
{

bi(ej)
γ→ θ(η) bi(π j) σ→ η ∈ Rσ

1,
1≤ i ≤m,1≤ j ≤ n

}

∪

x
γ→ ρ∗(η)

x
γ→ η ∈ Rγ

misc,
ρ = [ak(σ(e1, · · · ,en)) := θ(ψk)]1≤k≤l ,

ak(π) σ→ ψk ∈ Rσ
1,1≤ k≤ l

θ = [bi(π) := ζi]1≤i≤m[π j := ej]1≤ j≤n

with γ ∈ Σ′2, σ ∈ ∆(n)
2 , Syn1 = {a1, · · · ,al} and Inh1 = {b1, · · · ,bm}. The calculation of

seM1(U) is calledsymbolic evaluation. Note that both sides of any rule innf(⇒SE, Rγ)
do not have occurrences of expressions of the forma(σ(η1, · · · ,ηn)).

• ren(U) with U = (Syn2, Inh2,Σ2,∆2,a2,]2,R) returns

(Syn, Inh,Σ2,∆1,〈a1,a2〉,]2,Θ(R)∪Rdmy)

where

Syn = {〈a,a′〉 | 〈a,a′〉 ∈ Syn1×Syn2∪ Inh1× Inh2}
Inh = {〈a,a′〉 | 〈a,a′〉 ∈ Syn1× Inh2∪ Inh1×Syn2}

Θ(R) = {x′ σ→ η′ | x′ = θ(x),η′ = θ(η),x σ→ η ∈ R}
θ = [a(a′(ϕ)) := 〈a,a′〉(ϕ)]a∈Att1,a′∈Att2,ϕ∈{π,π1,π2,···}

with Att1 = Syn1∪ Inh1 and Att2 = Syn2∪ Inh2. Rdmy is a set of dummy rules which

gives a rule〈a,a′〉(ϕ) σ→⊥ for any rulea(a′(ϕ)) σ→ ζ 6∈ R, a ∈ Att1, a′ ∈ Att2 andϕ ∈
{π,π1,π2, · · ·}. The calculation ofren(U) is calledrenaming.

The correctness of the descriptional composition method is guaranteed by the following theo-
rem.

Theorem 4.3 (c©-Correctness, Ganzinger[Gan83] and Giegerich[Gie88])If M1 and M2 are
well-defined sur-ATTs, then M1 c©M2 is a well-defined sur-ATT such that[[M1]]◦[[M2]] = [[M1 c©M2]].

Corollary 4.4 ATT su◦ATT su = ATT su.

Proof. The statement follows immediately from the fact thatATT su contains the identical tree
transformation and thatATT su◦ATT su⊆ ATT su holds from Theorem 4.3. 2

Consider the case whereM1 in Definition 4.2 is a TDTT,i.e. M1 has no inherited attribute.
Then the descriptional composition method is equivalent to the composition method of a TDTT
and an ATT presented in [Fül81]. Therefore we have the following theorem. This composition
requires no condition such as the sur-condition required in Theorem 4.3.

20

Theorem 4.5 (c©-Correctness, F̈ulöp[Fül81]) If M1 is a TDTT and M2 is a well-defined ATT,
then M1 c©M2 is a well-defined ATT such that[[M1]]◦ [[M2]] = [[M1 c©M2]].

Corollary 4.6 TDTT ◦ATT = ATT .

Proof. The statement follows immediately from the fact thatTDTT contains the identical tree
transformation and thatTDTT ◦ATT ⊆ ATT holds from Theorem 4.5. 2

4.2 Extended Descriptional Composition

We extend the above descriptional composition to apply to SATTs. As mentioned in Section 1,
we consider a composition of ATTs and SATTs. The result of the composition is obtained as
a single SATT. We first present the condition under which the extended composition method is
successfully applied before introducing the method. As the method is defined by an extension
of the algorithm in Definition 4.2, the condition is also presented by an extension of the sur
condition in Definition 4.1.

Definition 4.7 A SATT M is a sur-SATTif simn(M) is a sur-ATT for anyn ∈ N+. We write
SATT su for a set of tree transformers such thatSATT su= {[[M]] |M is a well-defined sur-SATT.}.
The above definition is not directly applied to check if a SATT satisfies the sur-condition, since
we need to check the sur-condition for infinitely many ATTssimn(M) for anyn∈N+. We do not
discuss a checking method for the sur-condition of SATTs. However, there is a finitely checking
method for the sur-condition of SATT. For instance, we can claim thatMptoi in Example 3.10
is a sur-SATT. Althoughs(π) is referred three times in aplus-rule (44), these three references
do not overlap each other:Head(s(π)) represents a reference to the first element of the stack;
Head(Tail(s(π))) represents a reference to the second element of the stack;Tail(Tail(s(π)))
represents a reference to a stack comprised elements following the second element of the stack.

An algorithm of the extended descriptional composition is also divided into three steps. The
intermediate results of the first and second step, projection and symbolic evaluation, do not have
the form of SATTs similarly as in the original composition method for ATTs. A set of terms
occurring at the both sides of attribute rules in the intermediate result is defined by the setBHSo

or BHSs , as defined below.

Definition 4.8 Let M1 = (Syn1, Inh1,Σ1,∆1,a1,]1,R1) andM2 = (Syn2, Inh2,StSyn2,StInh2,Σ2,
∆2,a2,]2,R2) be an ATT and a SATT withΣ1 ⊃ ∆2, respectively, and letS = (Xo ,Xs ,∆1) be a
stack system with

Xo = {a(η) | a∈ Syn1∪ Inh1,η ∈ RHSo(M2)}
∪{a(]1(η)) | a∈ Syn1∪ Inh1,η ∈ RHSo(M2)}

Xs = {a(ζ) | a∈ Syn1∪ Inh1,ζ ∈ RHSs(M2)}.

The setBHSo(M1,M2) and the setBHSs(M1,M2) are defined by the following sets:

BHSo(M1,M2)
def
= EXPo(S) and BHSs(M1,M2)

def
= EXPs(S).

21

We present the extended descriptional composition method for SATTs below. The major
difference from the original one is found in the step of symbolic evaluation. The original sym-
bolic evaluation process is intend to eliminate occurrences of trees of the forma(σ(e1, · · · ,en)).
In addition to this, the extended one is intend to eliminate occurrences of trees of the forms
a(Cons(e1,e2)), a(Empty), a(Head(e)) anda(Tail(e)).

Definition 4.9 Let M1 = (Syn1, Inh1,Σ1,∆1,a1,]1,R1) andM2 = (Syn2, Inh2,StSyn2,StInh2,Σ2,

∆2,a2,]2,R2) be an ATT and a SATT with∆2 ⊂ Σ1, respectively, letR be a set{η1
σ→ η2 |

〈η1,η2〉 ∈ BHSo(M1,M2)×BHSo(M1,M2)∪BHSs(M1,M2)×BHSs(M1,M2)} and letΠ = {π,

π1,π2, · · ·}. The SATTM1 ĉ©M2 is obtained bŷren◦ ŝeM1 ◦ p̂rojM1
(M2), where three functions

r̂en, ŝeM1 andp̂rojM1
are defined as follows:

• p̂rojM1
(M2) returnsU = (Syn2, Inh2,StSyn2,StInh2,Σ2,∆2,a2,]2,R) whereR⊂ R is de-

fined in the same way as in Definition 4.2. The calculation of̂projM1
(M2) is calledpro-

jection.

• ŝeM1(U) with U = (Syn2, Inh2,StSyn2,StInh2,Σ2,∆2,a2,]2,
S

γ∈Σ2∪{]2}Rγ) returns

(Syn2, Inh2,StSyn2,StInh2,Σ2,∆2,a2,]2,
[

γ∈Σ2∪{]2}
nf(⇒ŜE, Rγ))

where the binary relation⇒ŜE overR is defined as follows:

1. ϕ⇒ŜEψ if ϕ⇒SEψ where⇒SE is the relation defined in Definition 4.2.

2. {x γ→ E [a(Head(ζ))]}]R⇒ŜE{x
γ→ E [Head(a(ζ))]}]R.

3. {x γ→ E [a(Tail(ζ))]}]R⇒ŜE{x
γ→ E [Tail(a(ζ))]}]R.

4. {x γ→ E [a(Cons(η,ζ))]}]R⇒ŜE{x
γ→ E [Cons(a(η),a(ζ))]}]R.

5. {x γ→ E [a(Empty)]}]R⇒ŜE{x
γ→ E [Empty]}]R.

6. (i)

{
a(Head(ζ))

γ→ η′

a(Tail(ζ))
γ→ ζ′

}
]R⇒ŜE{a(ζ)

γ→ Cons(η′,ζ′)}]R.

(ii) {a(Head(ζ))
γ→ η′}]R⇒ŜE{a(ζ)

γ→ Cons(η′,Empty)}]R,
if Rcontains no rule whose left hand side is in the form ofa(Tail(ζ)).

(iii) {a(Tail(ζ))
γ→ ζ′}]R⇒ŜE{a(ζ)

γ→ Cons(⊥,ζ′)}]R,
if Rcontains no rule whose left hand side is in the form ofa(Head(ζ)).

7. {a(Cons(η,ζ))
γ→ ζ′}]R⇒ŜE

{
a(η)

γ→ Head(ζ′)
a(ζ) σ→ Tail(ζ′)

}
]R.

8. {a(Empty)
γ→ ζ′}]R⇒ŜER.

wherea∈Syn1∪Inh1, η∈RHSo(M2), ζ∈RHSs(M2), η′ ∈BHSo(M1,M2), ζ′ ∈BHSs(M1,
M2) andE is a context, provided that the rewriting rule of 1 and 6 is applied only when
no other rewriting rule can be applied.

22

The calculation ofŝeM1(U) is calledsymbolic evaluation. Note that both sides of any
rule innf(⇒ŜE, Rγ) do not include the form ofa(σ(η1, · · · ,ηn)), a(Head(ζ)), a(Tail(ζ)),
a(Cons(η,ζ)) or a(Empty).

• r̂en(U) with U = (Syn2, Inh2,StSyn2,StInh2,Σ2,∆2,a2,]2,R) returns

(Syn, Inh,StSyn,StInh,Σ2,∆1,〈a1,a2〉,]2,Θ(R)∪Rdmy)

whereSynandInh is given is the same way asren in Definition 4.2 and

StSyn = {〈a,a′〉 | 〈a,a′〉 ∈ Syn1×StSyn2∪ Inh1×StInh2}
StInh = {〈a,a′〉 | 〈a,a′〉 ∈ Syn1×StInh2∪ Inh1×StSyn2}
Θ(R) = {x′ σ→ η′ | x′ = θ(x),η′ = θ(η),x σ→ η ∈ R}

θ = [a(a′(ϕ)) := 〈a,a′〉(ϕ)]a∈Att1,a′∈Att2∪StAtt2,ϕ∈Π

with Att1 = Syn1∪ Inh1, Att2 = Syn2∪ Inh2 andStAtt2 = StSyn2∪StInh2. Rdmy is the set
of dummy rules which gives

– 〈a,a′〉(ϕ) σ→⊥ for any rulea(a′(ϕ)) σ→ ζ 6∈ R, a∈ Att1, a′ ∈ Att2, ϕ ∈ Π andσ ∈
Σ1]{]1}, and

– 〈a,a′〉(ϕ) σ→ Emptyfor any rulea(a′(ϕ)) σ→ ζ 6∈ R, a∈ Att1, a′ ∈ StAtt2, ϕ ∈Π and
σ ∈ Σ1]{]1}.

The calculation of̂ren(U) is calledrenaming.

We give a partial example of our descriptional composition, where an ATTMitop and an
SATT Mptoi are composed. First,̂projM1

yields a set of the following attribute rules from an
attribute rule (40) inM2:

a0(s(π1)) one→ a0(Cons(one,s(π))) (57)

a1(Cons(one,s(π))) one→ a1(s(π1)). (58)

Next, ŝeM1 yields a set of the following attribute rules from (58):

a1(one) one→ Head(a1(s(π1))) (59)

a1(s(π)) one→ Tail(a1(s(π1))), (60)

wherea1(one) is intended to be rewritten by the rule 1 of symbolic evaluation. Finally,r̂en
yields a following attribute rule from (60):

〈a1,s〉(π) one→ Tail(〈a1,s〉(π1)). (61)

Figure 6 shows the final resultMptop of the composition ofMitop andMptoi. Considering the
roles ofMitop andMptoi, the role ofMptop is expected to be that of the identical transformation
mapping prefix representations onto prefix representations. In fact,Mptop does not behave as
an identical transformation for an input tree which is invalid as a prefix representation, such as
1,2,×,+. That is becauseMptoi fails to return a tree representing an infix representation for
such an invalid input.

We prove the correctness of the extended descriptional method,i.e. [[M1 ĉ©M2]] = [[M1]] ◦
[[M2]] for an ATT M1 and a SATTM2. The proof is completed by simulating each step in Defi-
nition 4.9 with the corresponding step in Definition 4.2. First, we define then-depth simulation
for an intermediate result of projection or symbolic evaluation.

23

Mptop = (Syn, Inh,StSyn,StInh,Σ,∆,〈a0,a0〉,]2,R), where

• Syn= {〈a0,a0〉}, Inh = {〈a1,a0〉},
• StSyn= {〈a1,s〉}, StInh= {〈a0,s〉},
• Σ = ∆ = {one(1), two(1),plus(1),multi(1),end(0)},
• R= { 〈a0,a0〉(π)

]2→ 〈a0,a0〉(π1),

〈a1,a0〉(π1)
]2→ end,

〈a0,s〉(π1)
]2→ Empty,

〈a0,a0〉(π) one→ 〈a0,a0〉(π1),

〈a1,a0〉(π1) one→ 〈a1,a0〉(π),

〈a1,s〉(π) one→ Tail(〈a1,s〉(π1)),

〈a0,s〉(π1) one→ Cons(one(Head(〈a1,s〉(π1))),〈a0,s〉(π))

〈a0,a0〉(π) two→ 〈a0,a0〉(π1),

〈a1,a0〉(π1) two→ 〈a1,a0〉(π),

〈a1,s〉(π) two→ Tail(〈a1,s〉(π1)),

〈a0,s〉(π1) two→ Cons(two(Head(〈a1,s〉(π1))),〈a0,s〉(π))

〈a0,a0〉(π)
plus→ 〈a0,a0〉(π1),

〈a1,a0〉(π1)
plus→ 〈a1,a0〉(π),

〈a1,s〉(π)
plus→ Cons(plus(Head(〈a1,s〉(π1))),

Cons(Head(〈a0,s〉(π)),Tail(〈a1,s〉(π1)))),

〈a0,s〉(π1)
plus→ Cons(Head(Tail(〈a0,s〉(π))),Tail(Tail(〈a0,s〉(π)))),

〈a0,a0〉(π) multi→ 〈a0,a0〉(π1),

〈a1,a0〉(π1) multi→ 〈a1,a0〉(π),

〈a1,s〉(π) multi→ Cons(multi(Head(〈a1,s〉(π1))),
Cons(Head(〈a0,s〉(π)),Tail(〈a1,s〉(π1)))),

〈a0,s〉(π1) multi→ Cons(Head(Tail(〈a0,s〉(π))),Tail(Tail(〈a0,s〉(π)))),

〈a0,a0〉(π) end→ Head(〈a0,s〉(π)),

〈a1,s〉(π) end→ Cons(〈a1,a0〉(π),Empty) }

Figure 6: A SATTMptop obtained by composing an ATTMitop and a SATTMptoi

24

(i) (ii) (iii)
? ? ? ?

simn simx
n simx

n simn

- - -p̂rojM1 ŝeM1 r̂en

- - -
projM1

seM1 ren

Figure 7: The extended descriptional composition and its simulation

Definition 4.10 Let M = (Syn, Inh,StSyn,StInh,Σ,∆,a,],R) be one of the intermediate results
at a step of descriptional composition for an ATTM1 = (Syn1, Inh1,Σ1,∆1,a1,]1,R1) and a
SATT M2 = (Syn2, Inh2,StSyn2,StInh2,Σ2,∆2,a2,]2,R2), Π = {π,π1,π2, · · ·}, S be a stack sys-
tem(Xo ,Xs ,∆1) with

Xo = {a(η) | a∈ Syn1∪ Inh1,η ∈ RHSo(M2)}
∪{a(]1(η)) | a∈ Syn1∪ Inh1,η ∈ RHSo(M2)}

Xs = {a(ζ) | a∈ Syn1∪ Inh1,ζ ∈ RHSs(M2)}

andΓo ,Γs be functions given by

Γo(a(η)) = a(αS ′,Γ′o ,Γ′s ,n
o (η))

Γs(a(ζ), i) =

{
⊥ (if αS ′,Γ′o ,Γ′s ,n

s (ζ, i) =⊥)

a(αS ′,Γ′o ,Γ′s ,n
s (ζ, i)) (otherwise)

where S ′ is a stack system(X′o ,X′s ,∆2) with X′o = {a(ϕ) | a ∈ Syn2 ∪ Inh2,ϕ ∈ Π}, X′s =
{a(ϕ) | a∈StSyn2∪StInh2,ϕ∈Π}, and two functionsΓ′o andΓ′s are given byΓ′o(a(ϕ)) = a(ϕ)
andΓ′s(a(ϕ), i) = 〈a, i〉(ϕ) with ϕ ∈ Π. Then-depth simulationsimx

n(M) is defined by the fol-
lowing septuple:

simx
n(M)

def
= (Syn′, Inh′,Σ,∆∪{⊥},a,],αS ,Γo ,Γs ,n

R (R))

whereSyn′ = Syn∪{〈a, i〉 | a∈ StSyn,1≤ i ≤ n} andInh′ = Inh∪{〈a, i〉 | a∈ StInh,1≤ i ≤ n}.
We prove that every diagram in Figure 7 commutesi.e. each step in the extended descrip-

tional composition is simulated by the corresponding step in the original descriptional compo-
sition.

Lemma 4.11 Let M1 be an ATT. The three functionŝprojM1
, ŝeM1 andr̂en which are defined in

Definition 4.9satisfy the following equations:

(i) simx
n ◦ p̂rojM1

= projM1
◦simn

(ii) simx
n ◦ ŝeM1 = seM1 ◦simx

n

(iii) simn◦ r̂en= ren◦simx
n

25

Proof. Let M1 = (Syn1, Inh1,Σ1,∆1,a1,]1,R1) andM2 = (Syn2, Inh2,StSyn2,StInh2,Σ2,∆2,a2,
]2,R2) be an ATT and a SATT with∆2 ⊂ Σ1. We useS , Γo , Γs , S ′, Γ′o andΓ′s , each of which
is as given in Definition 4.10, and functionsαo , αs , αR , α′o andα′s be respectively defined by

αS ,Γo ,Γs ,n
o , αS ,Γo ,Γs ,n

s , αS ,Γo ,Γs ,n
R , αS ′,Γ′o ,Γ′s ,n

o andαS ′,Γ′o ,Γ′s ,n
s .

(i) NeitherprojM1
nor p̂rojM1

change the sets of attributes. Each of the functionssimn and

simx
n changes the sets of attributes but they coincide. Hencesimx

n ◦ p̂rojM1
(M2) andprojM1

◦
simn(M2) have the same sets of attributes. It is enough to show thatsimx

n ◦ p̂rojM1
(M2) and

projM1
◦ simn(M2) yield the same set of rules for every rulex

γ→ η ∈ R2. If η ∈ RHSo(M2)∪
{]2(η′) | η′ ∈ RHSo(M2)} andζ ∈ RHSs(M2), from Definition 4.10, the following equations
hold:

αo(a(η)) = Γo(a(η))
= a(α′o(η))

αs(a(ζ), i) = Γs(a(ζ), i)
= a(α′s(ζ, i)).

This implies thatsimx
n ◦ p̂rojM1

(M2) andprojM1
◦simn(M2) have the same set of rules.

(ii) Let U = (Syn2, Inh2,StSyn2,StInh2,Σ2,∆2,a2,]2,
S

γ∈Σ2∪{]2}Rγ) be an intermediate re-
sult. It is enough to show that

αR (Φ)⇒?
SEαR (Ψ) if Φ⇒ŜEΨ. (62)

If the above clause holds, we haveαR (R)⇒∗
SE αR (nf(⇒ŜE, R)). Sincenf(⇒ŜE, R) has no

reducible form for⇒SE by the definition of⇒ŜE andαR yields no reducible form for⇒SE,
αR (nf(⇒ŜE, R)) is irreducible. Therefore,nf(⇒SE, αR (R)) = αR (nf(⇒ŜE, R)) holds. This
means that everyRγ with γ ∈ Σ2∪{]2} yields the same set of rules in the computation ofsimx

n ◦
ŝeM1(U) andseM1 ◦simx

n(U).
We prove (62) by case analysis on rewriting rules for⇒ŜE in Definition 4.9.

(CASE 1) LetRbe the following set of rules:

{bi(σ(e1, · · · ,en))
γ→ ζi | 1≤ i ≤m}]Rγ

misc.

We haveR⇒ŜEP]Q where

P =
{

bi(ej)
γ→ θ(η) bi(π j) σ→ η ∈ Rσ

1,
1≤ i ≤m,1≤ j ≤ n

}

Q =

x
γ→ ρ∗(η)

x
γ→ η ∈ Rγ

misc,
ρ = [ak(σ(e1, · · · ,en)) := θ(ψk)]1≤k≤l ,

ak(π) σ→ ψk ∈ Rσ
1,1≤ k≤ l

θ = [bi(π) := ζi]1≤i≤m[π j := ej]1≤ j≤n

26

and we also haveαR (R)⇒SEP′]Q′ where

P′ =
{

bi(αo(ej))
γ→ θ′(η) bi(π j) σ→ η ∈ Rσ

1,
1≤ i ≤m,1≤ j ≤ n

}

Q′ =

x
γ→ ρ∗(η)

x
γ→ η ∈ αR (Rγ

misc),
ρ = [ak(σ(αo(e1), · · · ,αo(en))) := θ′(ψk)]1≤k≤l ,

ak(π) σ→ ψk ∈ Rσ
1,1≤ k≤ l

θ′ = [bi(π) := αo(ζi)]1≤i≤m[π j := αo(ej)]1≤ j≤n.

We can show thatP′ = αR (P) andQ′ = αR (Q). HenceαR (R)⇒SEαR (P]Q).

(CASE 2) Let P be a set of attribute rules{x γ→ E [a(Head(ζ))]} with ζ ∈ RHSs(M2). Then we

haveP]R⇒ŜE Q]R whereQ = {x γ→ E [Head(a(ζ))]}. The following equations
hold:

αo(a(Head(ζ))) = Γo(a(Head(ζ)))
= a(α′s(ζ,1))

αo(Head(a(ζ))) = αs(a(ζ),1)
= Γs(a(ζ),1)
= a(α′s(ζ,1)).

From Lemma 3.17, we obtainE [a(Head(ζ))] =α E [Head(a(ζ))] where=α is given
in Lemma 3.17. This impliesαR (P) = αR (Q). Hence,αR (P]R) = αR (Q]R)
holds.

(CASE 3) Let P be a set of attribute rules{x γ→ E [a(Tail(ζ))]} with ζ ∈ RHSs(M2). Then we

haveP]R⇒ŜE Q]R whereQ = {x γ→ E [Tail(a(ζ))]}. The following equations
hold:

αs(a(Tail(ζ)), i0) =
{ ⊥ (if α′s(Tail(ζ), i0) =⊥)

a(α′s(Tail(ζ), i0)) (otherwise)

=
{ ⊥ (if i0 = n or α′s(ζ, i0 +1) =⊥)

a(α′s(ζ, i0 +1)) (otherwise)

αs(Tail(a(ζ)), i0) =
{ ⊥ (if i0 = n)

α′s(a(ζ), i0 +1) (otherwise)

=
{ ⊥ (if i0 = n or α′s(ζ, i0 +1) =⊥)

a(α′s(ζ, i0 +1)) (otherwise)

for any 1 ≤ i0 ≤ n. From Lemma 3.17,E [a(Tail(ζ))] =α E [Tail(a(ζ))] with =α
given in Lemma 3.17 holds. This impliesαR (P) = αR (Q). Hence,αR (P]R) =
αR (Q]R) holds.

(CASE 4) Similar toCASE 3.

(CASE 5) Similar toCASE 3.

27

(CASE 6) Consider the case 6 (i) in Definition 4.9. LetPbe a set of attribute rules{a(Head(ζ))
γ→

η′,a(Tail(ζ))
γ→ ζ′}with ζ∈RHSs(M2), η′ ∈BHSo(M1,M2) andζ′ ∈BHSs(M1,M2).

We haveP]R⇒ŜE Q]R whereQ = {a(ζ)
γ→ Cons(η′,ζ′)}. Sincea(Head(ζ)) ∈

BHSo(M1,M2) anda(Tail(ζ)) ∈ BHSs(M1, M2), we have

αR (P) = {x γ→ e | x = αo(a(Head(ζ))) 6=⊥, e= αo(η′)}
∪{xi

γ→ ei | xi = αs(a(Tail(ζ)), i) 6=⊥, ei = αs(ζ′, i), 1≤ i ≤ n}
= {x γ→ e | x = a(αs(ζ,1)), αs(ζ,1) 6=⊥, e= αo(η′)}

∪
{

xi
γ→ ei

xi = a(αs(ζ, i +1)), αs(ζ, i +1) 6=⊥, ei = αs(ζ′, i),
1≤ i ≤ n−1

}

(from αs(Tail(ζ),n) =⊥.)

αR (Q) = {xi
γ→ ei | xi = αs(a(ζ), i), ei = αs(Cons(η′,ζ′), i), 1≤ i ≤ n}

= {x1
γ→ e1 | x1 = αs(a(ζ),1) 6=⊥, e1 = αo(η′)}

∪{xi
γ→ ei | xi = αs(a(ζ), i) 6=⊥, ei = αs(ζ′, i−1), 2≤ i ≤ n}

= {x1
γ→ e1 | x1 = a(α′s(ζ,1)), α′s(ζ,1) 6=⊥, e1 = α′o(η

′)}
∪{xi

γ→ ei | xi = a(α′s(ζ, i)), α′s(ζ, i) 6=⊥, ei = α′s(ζ
′, i−1), 2≤ i ≤ n}

ThenαR (P) = αR (Q) holds, henceαR (P]R) = αR (Q]R). We can similarly show
the statement in the cases 6 (ii), (iii).

(CASE 7) Similar toCASE 6.

(CASE 8) Let P be a set of attribute rules{a(Empty)
γ→ ζ′} with ζ′ ∈ BHSs(M1,M2). We have

P]R⇒ŜER. αs(a(Empty), i) =⊥ sinceα′s(Empty, i) =⊥. This impliesαR (P) = /0,
henceαR (P]R) = αR (R).

(iii) Let U = (Syn2, Inh2,StSyn2,StInh2,Σ2,∆2,a2,]2,R) be an intermediate result after the

symbolic evaluation, letΠ be a set{π,π1, · · · ,πm} with m= max{k | Σ(k)
1 6= /0}. andθ,θ′ be

replacements represented by

θ = [a(a′(ϕ)) := 〈a,a′〉(ϕ)]a∈Att1,a′∈Att2,ϕ∈Π

θ′ = [a(a′(ϕ)) := 〈a,a′〉(ϕ)]a∈Att1,a′∈Att2∪StAtt2,ϕ∈Π,

respectively, whereAtt1 = Syn1∪ Inh1, Att2 = Syn2∪ Inh2 andStAtt2 = StSyn2∪StInh2.
We prove the statement (iii) by showing that

αo(θ′(η)) = θ(α′o(η)) (63)

αs(θ′(ζ), i) = θ(α′s(ζ, i)) (64)

for anyη∈BHSo , ζ∈BHSs and1≤ i ≤ n whereBHSo andBHSs are subsets ofBHSo(M1,M2)
andBHSs(M1,M2) such that their elements have no occurrence of the expression of the form
a(σ(η1, · · · ,ηn)), a(Head(ζ)), a(Tail(ζ)), a(Cons(η,ζ)) or a(Empty). The equations (63)
and (64) can be proved by induction on the structure ofη or ζ, if (63) and (64) hold where
η = a(a′(ϕ)) and ζ = a(a′(ϕ)) for a ∈ Att1, a′ ∈ Att2, a′ ∈ StAtt2 and ϕ ∈ Π. If a ∈ Att1,

28

a′ ∈ Att2 andϕ ∈Π, thenαo(a(a′(ϕ))) = a(a′(ϕ)). Hence (63) holds. Ifa∈ Att1, a′ ∈ StAtt2,
ϕ ∈Π andi0, then

θ(α′s(a(a′(ϕ)), i0)) = θ(a(α′s(a
′(ϕ), i0)))

= θ(a(〈a′, i0〉(ϕ)))
= 〈a,〈a′, i0〉〉(ϕ)
= 〈a,a′, i0〉(ϕ)

becauseα′s(a′(ϕ), i0) = 〈a′, i0〉(ϕ) 6=⊥. From the definition ofαs ,

αs(θ′(a(a′(ϕ))), i0) = αs(〈a,a′〉(ϕ), i0)
= 〈〈a,a′〉, i0〉(ϕ)
= 〈a,a′, i0〉(ϕ).

Hence (64) holds. (63) and (64) imply thatsimn(r̂en(U)) andren◦ simx
n(U) have the same set

of attribute rules because it is trivial that both sets of dummy rules produced bysimn◦ r̂en and
ren◦simx

n coincide. Thereforesimn◦ r̂en(U) = ren◦simx
n(U). 2

It follows from this lemma that then-depth simulation of the composition of an ATTM1

and a SATTM2 equals to the composition of an ATTM1 andn-depth simulation of a SATTM2.

Proposition 4.12 Let M1 and M2 be a sur-ATT a sur-SATT, respectively. Then

[[M1 c©simn(M2)]] = [[simn(M1 ĉ©M2)]]

holds for any n.

Proof.

M1 c©simn(M2) = ren◦seM1 ◦projM1
◦simn(M2) (by Definition 4.2)

= simn◦ r̂en◦ ŝeM1 ◦ p̂rojM1
(M2) (by Lemma 4.11)

= simn(M1 ĉ©M2) (by Definition 4.9)

2

The correctness of the extended descriptional composition is an immediate consequence of
this proposition.

Theorem 4.13 (̂c©-Correctness, I) If M1 is a well-defined sur-ATT and M2 is and a well-
defined sur-SATT, then M1 ĉ©M2 is a well-defined sur-SATT such that[[M1]]◦ [[M2]] = [[M1 ĉ©M2]],
i.e. [[M1]]◦ [[M2]](t) = [[M1 ĉ©M2]](t) for any input t.

Proof. Assume thatt is an arbitrary input tree indom([[M2]]), M1 is a well-defined sur-ATT
andM2 is a well-defined sur-SATT. Thensimn(M2) is a sur-ATT for anyn by Definition 4.7.

29

Lettingn = max{mxd(M2, t),mxd(M1 ĉ©M2, t)}, we have

[[M1 ĉ©M2]](t) = [[simn(M1 ĉ©M2)]](t) (by Theorem 3.21)

= [[M1 c©simn(M2)]](t) (by Proposition 4.12)

= [[M1]]◦[[simn(M2)]](t) (by Theorem 4.3)

= [[M1]]([[simn(M2)]](t)) (by the definition of◦)
= [[M1]]([[M2]](t)) (by Theorem 3.21)

= [[M1]]◦[[M2]](t) (by the definition of◦)
It follows thatM1 c©simn(M2) is a well-defined sur-ATT for anyn from Theorem 4.3. Hence,

simn(M1 ĉ©M2) is a well-defined sur-ATT for anyn. ThereforeM1 ĉ©M2 is a well-defined sur-
SATT from Definition 4.7 and Corollary 3.22. 2

The transition by equations in the above proof does not depend on the sur-condition ofM1

andM2. Therefore we obtain the following theorem by using Theorem 4.5 instead of Theo-
rem 4.3.

Theorem 4.14 (̂c©-Correctness, II) If M1 is a TDTT and M2 is a well-defined SATT, then
M1 ĉ©M2 is a well-defined SATT such that[[M1]]◦ [[M2]] = [[M1 ĉ©M2]].

The closure properties are corollaries to these theorems.

Corollary 4.15

(i) ATT su◦SATT su = SATT su.

(ii) TDTT ◦SATT = SATT .

Proof. The first statement follows immediately from the fact thatATT su contains the identical
tree transformation and thatATT su◦SATT su⊆ SATT su holds from Theorem 4.13. Similarly,
the second statement follows from Theorem 4.14. 2

5 Conclusion

We have presented a composition method for stack-attributed tree transducers(SATT) and proved
the correctness of it. Stack-attributed tree transducers are more powerful than attributed tree
transducers(ATT) due to a stack mechanism. Our composition method is based upon the fact
that stack-attributed tree transducers are approximated by attributed tree transducers once an
input tree is fixed.

We proved also that the composition method enjoys a closure property under the restriction
called single-use restriction(sur). This indicates that the composition of a sur-ATT and a sur-
SATT results in a single sur-SATT, which can be subject to composition with another sur-ATT.

This paper has only dealt with the composition of an ATT and an SATT. We believe that
the result of the composition of two SATTs cannot be obtained by a single SATT. Instead,
we would obtain an attributed tree transducers whose attribute values have nested stack struc-
tures,i.e. stack of stacks. It would be interesting to compare the result with the composition of
other tree transducers: macro tree transducer[EV85], macro attributed tree transducer[KV94],
n-iterated pushdown tree transducer[EV88], et al.

30

References

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman.Compilers — Principles, Techniques, and
Tools. Addison-Wesley, 1986.

[AU73] Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing, Translation and
Compiling. Prentice-Hall, Englewood Cliffs, NJ, 1973. I and II.

[CDPR99] Löıc Correnson, Etienne Duris, Didier Parigot, and Gilles Roussel. Declarative
program transformation: A deforestation case-study. InPrinciples and Practice of
Declarative Programming, volume 1702 ofLNCS, pages 360–377. Springer Verlag,
1999.

[EV85] Joost Engelfriet and Heiko Vogler. Macro tree transducers.Journal of Computer
and System Sciences, 31(1):71–146, August 1985.

[EV88] Joost Engelfriet and Heiko Vogler. High level tree transducers and iterated push-
down tree transducers.Acta Informatica, 26(1–2):131–192, October 1988.

[Far84] Rodney Farrow. Generating a production compiler from an attribute grammar.IEEE
Software, 1(4):77–93, October 1984.

[Fül81] Z. Fülöp. On attributed tree transducers.Acta Cybernetica, 5:261–280, 1981.

[FV98] Z. Fülöp and H. Vogler.Syntax-directed semantics—Formal models based on tree
transducers. Monographs in Theoretical Computer Science, An EATCS Series.
Springer-Verlag, 1998.

[Gan83] Harald Ganzinger. Increasing modularity and language-independency in automat-
ically generated compilers.Science of Computer Programming, 3(3):223–278,
1983.

[GG84] Harald Ganzinger and Robert Giegerich. Attribute coupled grammars. InProceed-
ings of the ACM SIGPLAN ’84 Symposium on Compiler Construction, volume 19
of SIGPLAN Notices, pages 157–170, June 1984.

[Gie88] Robert Giegerich. Composition and evaluation of attribute coupled grammars.Acta
Informatica, 25(4):355–423, May 1988.

[HT85] Susan Horwitz and Tim Teitelbaum. Relations and attributes: a symbiotic basis
for editing environments. InACM SIGPLAN ’85 Symp. on Language Issues in
Programming Environments, pages 93–106. ACM press, Seattle, WA, June 1985.
Published as ACM SIGPLAN Notices, volume 20, number 7.

[Joh87] Thomas Johnsson. Attribute grammars as a functional programming paradigm.
In Gilles Kahn, editor,Proceedings of the Conference on Functional Program-
ming Languages and Computer Architecture, volume 274 ofLNCS, pages 154–173.
Springer Verlag, 1987.

[KHZ82] U. Kastens, B. Hutt, and E. Zimmermann.GAG: A Practical Compiler Generator.
Number 141 in Lecture Notes in Computer Science. Springer Verlag, 1982.

31

[Knu68] Donald E. Knuth. Semantics of context-free languages.Mathematical Systems
Theory, 2(2):127–145, 1968.

[Knu71] Donald E. Knuth. Correction: Semantics of context-free languages.Mathematical
Systems Theory, 5(1):95–96, 1971.

[Küh98] A. Kühnemann. Benefits of tree transducers for optimizing functional programs.
Lecture Notes in Computer Science, 1530:146–157, 1998.

[KV94] Armin K ühnemann and Heiko Vogler. Synthesized and inherited functions. A new
computational model for syntax-directed semantics.Acta Informatica, 31(5):431–
477, 1994.

[NN01] Keisuke Nakano and Susumu Nishimura. Deriving event-based document trans-
formers from tree-based specifications. InLDTA’2001 Workshop on Lan-
guage Descriptions, Tools and Applications, volume 44 of Electronic Notes
in Theoretical Computer Science. Elsevier Science, 2001. available on-
line: http://www.elsevier.nl/gej-ng/31/29/23/73/27/show/
Products/notes/index.htt .

[Rep84] T. Reps.Generating Language-based Environments. MIT Press, Cambridge, Ma,
1984.

[RM89] P. Rechenberg and H. Moessenboeck.A compiler generator for microcomputers.
Prentice-Hall, Englewood Cliffs, NJ, 1989.

[Rou70] William C. Rounds. Mappings and grammars on trees.Mathematical Systems
Theory, 4(3):257–287, 1970.

[Voi01] Janis Voigtl̈ander. Composition of restricted macro tree transducers. Master’s thesis,
Dresden University of Technology, Germany, March 2001.

[W3C] Extensible markup language (XML).http://www.w3c.org/XML/ .

32

