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A Proof of the M-Convex Intersection Theorem

Kazuo MUROTA∗

Abstract

This short note gives an alternative proof of the M-convex intersection theorem,
which is one of the central results in discrete convex analysis. This note is intended
to provide a direct simpler proof accessible to nonexperts.

1 M-Convex Intersection Theorem

The M-convex intersection theorem [3, Theorem 8.17] reads as follows, where V is a
nonempty finite set, and Z and R are the sets of integers and reals, respectively; see §3
for the definitions of M\-convex functions and notation arg min. This theorem is equivalent
to the M-separation theorem, to the Fenchel-type min-max duality theorem, and to an
optimality criterion of the M-convex submodular flow problem.

Theorem 1 (M-convex intersection theorem). For M\-convex functions f1, f2 and
a point x∗ ∈ domf1 ∩ domf2 we have

f1(x∗) + f2(x∗) ≤ f1(x) + f2(x) (∀x ∈ ZV ) (1)

if and only if there exists p∗ ∈ RV such that1

f1[−p∗](x∗) ≤ f1[−p∗](x) (∀x ∈ ZV ), (2)

f2[+p∗](x∗) ≤ f2[+p∗](x) (∀x ∈ ZV ). (3)

For such p∗ we have

arg min(f1 + f2) = arg minf1[−p∗] ∩ arg minf2[+p∗]. (4)

Moreover, if f1 and f2 are integer-valued, we can choose integer-valued p∗ ∈ ZV .

We shall give a constructive proof of Theorem 1 based on the successive shortest path
algorithm. Different proofs available in [3] are:

∗Graduate School of Information Science and Technology, University of Tokyo, Tokyo 113-8656, Japan

E-mail: murota@mist.i.u-tokyo.ac.jp
1Notation: f1[−p∗](x) = f1(x)−

X
v∈V

p∗(v)x(v), f2[+p∗](x) = f2(x) +
X
v∈V

p∗(v)x(v).
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1. original proof based on negative-cycle cancelling for the M-convex submodular flow
problem (§9.5 and Note 9.21 of [3]), and

2. polyhedral proof for the discrete separation theorem based on the separation in
convex analysis (Proof of Theorem 8.15 of [3]).

2 Essence of Theorem 1

The essence of Theorem 1 consists of two assertions:

1. optimality of x∗ ⇒ existence of p∗,

2. integrality of f1, f2 ⇒ integrality of p∗.

To see this we make easier observations in this section.
Observation 1: Existence of p∗ with (2) and (3) ⇒ optimality (1) of x∗.

(Proof)

f1(x∗) + f2(x∗) = f1[−p∗](x∗) + f2[+p∗](x∗)

≤ f1[−p∗](x) + f2[+p∗](x) = f1(x) + f2(x).

Observation 2: For any p∗ ∈ RV we have

arg min(f1 + f2) ⊇ arg minf1[−p∗] ∩ arg minf2[+p∗]. (5)

(Proof) This follows from the inequality shown in the proof of Observation 1.
Observation 3: If

f1[−p∗](x◦) ≤ f1[−p∗](x) (∀x ∈ ZV ), (6)

f2[+p∗](x◦) ≤ f2[+p∗](x) (∀x ∈ ZV ) (7)

for some x◦ and p∗, then

f1[−p∗](x∗) ≤ f1[−p∗](x) (∀x ∈ ZV ), (8)

f2[+p∗](x∗) ≤ f2[+p∗](x) (∀x ∈ ZV ) (9)

for every x∗ ∈ arg min(f1 + f2). Hence,

arg min(f1 + f2) ⊆ arg minf1[−p∗] ∩ arg minf2[+p∗]. (10)

(Proof) Put x = x∗ in (6) and (7) to obtain

f1[−p∗](x◦) ≤ f1[−p∗](x∗), (11)

f2[+p∗](x◦) ≤ f2[+p∗](x∗). (12)
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Adding these yields

f1(x◦) + f2(x◦) = f1[−p∗](x◦) + f2[+p∗](x◦)

≤ f1[−p∗](x∗) + f2[+p∗](x∗) = f1(x∗) + f2(x∗),

whereas x∗ ∈ arg min(f1 + f2). Hence we have equalities in (11) and (12).
Observation 4: It suffices to consider M-convex functions rather than M\-convex func-
tions.

(Proof) This follows from the equivalence between M\-convexity and M-convexity; see
[3, §6.1].

Thus the proof of Theorem 1 is reduced to showing the following.

Proposition 2. For M-convex functions f1, f2 with arg min(f1 + f2) 6= ∅, there exist
x◦ ∈ arg min(f1 + f2) and p∗ ∈ RV such that

f1[−p∗](x◦) ≤ f1[−p∗](x) (∀x ∈ ZV ), (13)

f2[+p∗](x◦) ≤ f2[+p∗](x) (∀x ∈ ZV ). (14)

If f1 and f2 are integer-valued, we can choose integer-valued p∗ ∈ ZV .

3 Notation and Basic Facts

We denote by ZV the set of integral vectors indexed by V , and by RV the set of real vectors
indexed by V . For a vector x = (x(v) : v ∈ V ) ∈ ZV , where x(v) is the vth component of
x, we define the positive support supp+(x) and the negative support supp−(x) by

supp+(x) = {v ∈ V | x(v) > 0}, supp−(x) = {v ∈ V | x(v) < 0}.

We use notation x(S) =
∑

v∈S x(v) for a subset S of V . For each S ⊆ V , we denote by
χS the characteristic vector of S defined by: χS(v) = 1 if v ∈ S and χS(v) = 0 otherwise,
and write χv for χ{v} for all v ∈ V . For a vector p = (p(v) : v ∈ V ) ∈ RV and a function
f : ZV → R ∪ {+∞}, we define functions 〈p, x〉 and f [p](x) in x ∈ ZV by

〈p, x〉 =
∑

v∈V

p(v)x(v), f [p](x) = f(x) + 〈p, x〉.

We also denote the set of minimizers of f and the effective domain of f by

arg min f = {x ∈ ZV | f(x) ≤ f(y) (∀y ∈ ZV )},
dom f = {x ∈ ZV | f(x) < +∞}.

A function f : ZV → R ∪ {+∞} with dom f 6= ∅ is called M\-convex if it satisfies
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(M\-EXC) for all x, y ∈ dom f and all u ∈ supp+(x− y), there exists v ∈ supp−(x− y)∪
{0} such that

f(x) + f(y) ≥ f(x− χu + χv) + f(y + χu − χv),

where χ0 is defined to be the zero vector in ZV .

A function f : ZV → R ∪ {+∞} with dom f 6= ∅ is called M-convex if it satisfies

(M-EXC) for all x, y ∈ dom f and all u ∈ supp+(x − y), there exists v ∈ supp−(x − y)
such that

f(x) + f(y) ≥ f(x− χu + χv) + f(y + χu − χv).

A nonempty set B ⊆ ZV is called M-convex if it satisfies

(B-EXC) for all x, y ∈ B and all u ∈ supp+(x − y), there exists v ∈ supp−(x − y) such
that x− χu + χv, y + χu − χv ∈ B.

The minimizers of an M-convex function have a good characterization.

Lemma 3 ([3, Theorem 6.26]). For an M-convex function f and x ∈ dom f , x ∈
arg min f if and only if f(x) ≤ f(x− χu + χv) for all u, v ∈ V .

Lemma 4 ([3, Proposition 6.29]). For an M-convex function f , arg minf is an M-
convex set if not empty.

An M-convex set has the following property. (See [1, Lemma 4.5] and [2, Lemma
2.3.22, Remark 3.3.24]. This is a special case of [3, Proposition 9.23].)

Lemma 5 (“no-short cut lemma” ). Let B be an M-convex set. For any x ∈ B and
any distinct u1, v1, u2, v2, · · · , ur, vr ∈ V , if x − χui + χvi ∈ B for all i = 1, · · · , r and
x− χui + χvj 6∈ B for all i, j with i < j, then y = x−∑r

i=1(χui − χvi) ∈ B.

4 Proof of Proposition 2 by SSP

We give a proof of Proposition 2 on the basis of the successive shortest path algorithm
(SSP) [3, §10.3.4] as adapted to finding a minimizer of f1 + f2. We may assume that the
effective domains of f1 and f2 are bounded.

Let x1 and x2 be arbitrary minimizers of f1 and f2, respectively. We construct a
directed graph G(f1, f2, x1, x2) = (V, A) and an arc length ` ∈ RA as follows. Arc set A

is the union of two disjoint parts:

A1 = {(u, v) | u, v ∈ V, u 6= v, x1 − χu + χv ∈ dom f1},
A2 = {(v, u) | u, v ∈ V, u 6= v, x2 − χu + χv ∈ dom f2},

(15)
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and ` ∈ RA is defined by

`(a) =

{
f1(x1 − χu + χv)− f1(x1) if a = (u, v) ∈ A1,

f2(x2 − χu + χv)− f2(x2) if a = (v, u) ∈ A2.
(16)

The length function ` is nonnegative due to Lemma 3.
Put S = supp+(x1 − x2) and T = supp−(x1 − x2). A path exists from S to T by

Lemma 6 below. Let P be a shortest path from S to T in G with a minimum number of
arcs, and let t ∈ T be the terminal vertex of P .

Let d : V → R∪{+∞} denote the shortest distance from S to all vertices with respect
to `. Then we have

`(a) + d(u)− d(v) ≥ 0

for all arcs a = (u, v) ∈ A. Define p ∈ RV by p(v) = min{d(v), d(t)} for all v ∈ V . It
follows from the nonnegativity of ` that

`(a) + p(u)− p(v) ≥ 0

for all arcs a = (u, v) ∈ A. The above system of inequalities is equivalent to

f1(x1 − χu + χv)− f1(x1) + p(u)− p(v) ≥ 0,

f2(x2 − χu + χv)− f2(x2)− p(u) + p(v) ≥ 0

for all u, v ∈ V , which is further equivalent to

x1 ∈ arg min f1[−p], x2 ∈ arg min f2[+p],

by Lemma 3. Note that for all arcs a = (u, v) ∈ A,

`p(a) = `(a) + p(u)− p(v)

are the lengths of a in the graph G(f1[−p], f2[+p], x1, x2) associated with f1[−p], f2[+p],
x1, and x2.

Since `p(a) = 0 for all a ∈ P , we have

x1 − χu + χv ∈ arg min f1[−p] for all (u, v) ∈ P ∩A1,

x2 − χu + χv ∈ arg min f2[+p] for all (v, u) ∈ P ∩A2.
(17)

Since P has a minimum number of arcs, we also have

x1−χu+χw 6∈ arg min f1[−p], x2−χw+χu 6∈ arg min f2[+p] (18)

for all vertices u and w of P such that (u, w) 6∈ P and u appears earlier than w in P .
Furthermore, arcs of A1 and A2 appear alternately in P . This can be proved as

follows. Suppose that consecutive two arcs (u, v), (v, w) ∈ P belong to, say, A1. Then, by
(M-EXC),

f1(x1+χu−χv) + f1(x1+χv−χw) ≥ f1(x1) + f1(x1+χu−χw),
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which yields

`(u, v) + `(v, w) ≥ `(u,w),

a contradiction to the minimality (with respect to the number of arcs) of P . Consequently,
we have

a1=(u1, v1), a2=(u2, v2) ∈ P∩A1, a1 6= a2 =⇒ {u1, v1} ∩ {u2, v2} = ∅,
a1=(u1, v1), a2=(u2, v2) ∈ P∩A2, a1 6= a2 =⇒ {u1, v1} ∩ {u2, v2} = ∅. (19)

From Lemmas 4 and 5 together with (17), (18), and (19), we have

x′1 ≡ x1 −
∑

(u,v)∈P∩A1

(χu − χv) ∈ arg min f1[−p], (20)

x′2 ≡ x2 −
∑

(v,u)∈P∩A2

(χu − χv) ∈ arg min f2[+p]. (21)

Thus the modification of (f1, f2, x1, x2) to (f ′1, f
′
2, x

′
1, x

′
2), where f ′1 = f1[−p] and f ′2 =

f2[+p], keeps the conditions

x′1 ∈ arg min f ′1, x′2 ∈ arg min f ′2.

We have

x′1 − x′2 = (x1 − x2)− (χs − χt)

with s ∈ supp+(x1 − x2) and t ∈ supp−(x1 − x2), since P is a path from supp+(x1 − x2)
to supp−(x1 − x2) and arcs of A1 and A2 appear alternately in P . This implies that∑

v∈V |x1(v)−x2(v)| is decreased by two. Repeating the modification above we eventually
arrive at x1 = x2, when we have

x1 ∈ arg minf1[−p] ∩ arg minf2[+p].

Finally note that, if the functions f1 and f2 are integer-valued, the length function `

is integer-valued, and hence p is also integer-valued.
The SSP algorithm is summarized below.

Algorithm SSP (f1, f2: M-convex)

Step 0. Find x1 ∈ arg min f1 and x2 ∈ arg min f2. Set p := 0.

Step 1. If x1 = x2 then stop.

Step 2. Construct G and compute ` for f1[−p], f2[+p], x1 and x2 by (15) and (16).
Set S := supp+(x1 − x2), T := supp−(x1 − x2).

Step 3. Compute the shortest distances d(v) from S to all v ∈ V in G with respect to `.
Find a shortest path P from S to T with a minimum number of arcs, and let t be
the terminal vertex of P .
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Step 4. For all v ∈ V , set p(v) := p(v) + min{d(v), d(t)}.
Update x1 and x2 by (20) and (21).
Go to Step 1.

Lemma 6. If dom f1 ∩ dom f2 6= ∅ and x1 6= x2, then there exists a path from S =
supp+(x1 − x2) to T = supp−(x1 − x2).

Proof: To prove by contradiction, suppose that there exists no path from S to T and
let W be the set of the vertices reachable from S. Then W ⊇ S and W ∩ T = ∅.

Define set functions ρi : 2V → Z ∪ {+∞} as

ρi(X) = sup{z(X) | z ∈ dom fi}

for i = 1, 2. For z ∈ dom fi we obviously have2

z(X) ≤ ρi(X) (∀X ⊆ V ).

We also have z(V ) = ρi(V ) since y(V ) is constant for all y ∈ dom fi. Hence, for all
z ∈ dom f1 ∩ dom f2 we have

ρ1(V ) = z(V ) = z(V \X) + z(X) ≤ ρ1(V \X) + ρ2(X) (∀X ⊆ V ). (22)

Since x1 ∈ dom f1 and there exists no arc of A1 from W to V \W , we have

x1(V \W ) = ρ1(V \W )

by Lemma 3 applied to an M-convex function

f(z) =

{
−z(V \W ) if z ∈ dom f1,

+∞ otherwise.

Symmetrically, since x2 ∈ dom f2 and there exists no arc of A2 from W to V \ W , we
have

x2(W ) = ρ2(W ).

Adding these yields

x1(V )− [x1(W )− x2(W )] = ρ1(V \W ) + ρ2(W ).

This contradicts (22), since x1(V ) = ρ1(V ) and [x1(W ) − x2(W )] > 0 by W ⊇ S and
W ∩ T = ∅.

Acknowledgement The author thanks Akihisa Tamura for helpful comments.
2As is well known (see [3, §4.4]), the M-convexity of dom fi implies that ρi is submodular and

dom fi = {z ∈ ZV | z(X) ≤ ρi(X) (∀X ⊂ V ), z(V ) = ρi(V )}.

However, we do not need this fact for the proof of Lemma 6.
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