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Abstract

We show that there is a Lyapunov functional for the neural field
equation, a neural network model which represents highly dense cor-
tical neurons as a spatially continuous field, and that the system nec-
essarily converges to an equilibrium point as far as the length of the
field is finite. We also show that the Lyapunov functional is a natural
extension of the Lyapunov function of the Hopfield model. The results
suggest that the two models have generally common global dynamics
characterized by the intimately related Lyapunov functional/function.

1 Introduction

The neural field is a mathematical model of the cortex which describes the
dynamics of the cortical neurons in the continuum limit, and a number of
analytical studies have been performed [1–5]. Most of these studies have
concerned the existence and stability of characteristic solutions, such as
localized excitation [1, 2] or traveling front [3, 4], while global dynamics,
behavior when the system starts under arbitrary initial conditions, has not
been sufficiently analyzed.

On the other hand, it is well known that the Hopfield model [6, 7] with
symmetric connections shows global convergence, which is assured by the
existence of the Lyapunov function. The neural field equation and the analog
Hopfield model [7] agree on the point that the time-averaged activity of
neurons, i.e., the firing rate, is considered as neural outputs, whereas the
spatial arrangement of neurons is treated differently as a continuum in the
field equation, versus the discrete elements in the Hopfield model. It is
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important to understand the relation between these two neural systems to
reconstruct our knowledge.

From these viewpoints, we set two main goals. First, we show the exis-
tence of a Lyapunov functional for the neural field equation with symmetric
connections, which ensures global convergence of the system. Second, we
show that this Lyapunov functional can be considered as an extension of
the Lyapunov function of the analog Hopfield model to the continuous neu-
ral field.

2 Lyapunov Functional for Neural Field Equation

We consider one-dimensional neural field equation described as

τ
∂u(x, t)

∂t
= −u(x, t) +

∫ xmax

xmin

w(x, y)f [u(y, t)]dy + S(x)− h, (1)

where the finite interval [xmin, xmax] denotes the domain of the field, u(x, t)
is the average membrane potential of neurons at position x at time t , τ(> 0)
is the time constant, w(x, y) is the connectivity function which represents
the average intensity of connections from neurons at place y to neurons
at place x, f(u) is the output function which determines the firing rate of
the neuron dependent on its membrane potential, S(x) is the input stimu-
lus externally applied to neurons at position x, and h is the threshold (or
equivalent homogeneous input). Let us define

z(x, t) = f [u(x, t)] (2)

to be the firing rate of neurons at place x at time t, and assume that f(u)
is a monotone increasing sigmoid function taking a value between 0 and
zmax(> 0), so that, for all u,

f ′(u) > 0. (3)

We also assume | ∫ z
0 f−1(z′)dz′| < ∞ for 0 ≤ z ≤ zmax . A typical example

of f(u) is 1/[1 + exp(−u/ε)], but we do not restrict the discussion to this
case. The connection is assumed to be symmetric so that

w(x, y) = w(y, x). (4)

We define E(= E[z(x)]) to be a functional of z(x) described as

E =
∫ xmax

xmin

{
− 1

2
z(x)

∫ xmax

xmin

w(x, y)z(y)dy +
∫ z(x)

0
f−1(z′)dz′

− [S(x)− h]z(x)
}

dx. (5)
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The differentiation yields

dE

dt
=

∫ xmax

xmin

∂z(x, t)
∂t

{
− 1

2

∫ xmax

xmin

[w(x, y) + w(y, x)]z(y)dy

+ f−1[z(x)]− [S(x)− h]
}

dx. (6)

From (2) and (4), we have

dE

dt
= −

∫ xmax

xmin

∂z(x, t)
∂t

{∫ xmax

xmin

w(x, y)f [u(y)]dy − u(x) + S(x)− h

}
dx.

(7)

Since the term in curly brackets is the same as the right-hand side of (1),
we find

dE

dt
= −τ

∫ xmax

xmin

∂z(x, t)
∂t

∂u(x, t)
∂t

dx

= −τ

∫ xmax

xmin

f ′[u(x)]
(

∂u(x, t)
∂t

)2

dx. (8)

By considering (3), we obtain the following relationship:

dE

dt
≤ 0;

dE

dt
= 0 ⇔ ∂u(x, t)

∂t
= 0 for all x. (9)

Therefore, E is a Lyapunov functional of the field equation (1). Since E is
bounded, the state of the field necessarily converges to an equilibrium point.

We define the variation of z(x) as δz(x) = εη(x), and the corresponding
first variation of E[z(x)] as δE. By neglecting the terms of order εn with
n ≥ 2 , we have

E[z(x) + εη(x)]

= E[z(x)] +
∫ xmax

xmin

εη(x)
{
− 1

2

∫ xmax

xmin

[w(x, y) + w(y, x)]z(y)dy

+ f−1[z(x)]− [S(x)− h]
}

dx. (10)

With (2) and (4), δE can be written as

δE = E[z(x) + εη(x)]−E[z(x)]

= −
∫ xmax

xmin

εη(x)
{∫ xmax

xmin

w(x, y)f [u(y)]dy − u(x) + S(x)− h

}
dx.

(11)

Again, the term in curly brackets is the same as the right-hand side of (1).
Hence, at equilibrium, this term becomes 0 for all x, so that δE = 0 for any

3



variation εη(x). Furthermore, if δE = 0 for any variation εη(x), the term in
curly brackets must be 0 for all x, indicating the equilibrium state. Thus,
the system is at equilibrium, if and only if the first variation of the Lyapunov
functional δE becomes 0 for any variation δz(x). In other words, z(x) at an
equilibrium state is equivalent to the stationary function of the functional
E. Therefore, the value of the Lyapunov functional E keeps decreasing until
the system reaches a point where any small changes cannot affect the value
of the functional.

Since the only assumption necessary for connectivity function w(x, y) is
symmetry, all the discussion above can still hold independent of whether
the domain of the field is periodic. Note that for the infinite domain, the
system does not always converge to an equilibrium because it is possible for
the activity of neurons to expand into the whole field without limitation [1].

3 Relation between Lyapunov Functional of Field
Equation and Lyapunov function of Hopfield
Model

Here, to explore the relation between the Lyapunov functional and the Lya-
punov function of the analog Hopfield model [7], let us divide the domain of
the field [xmin, xmax] into N intervals [xi−1, xi](i = 1, ...N) with length ∆x,
where

xi = xmin + i∆x (i = 0, ..., N) (12)

and

∆x = (xmax − xmin)/N. (13)

Let ui(i = 1, ..., N) be the average membrane potential of neurons in the
interval [xi−1, xi], wij(i = 1, ..., N, j = 1, ..., N) be the average intensity of
connections from neurons in the interval [xj−1, xj ] to neurons in the interval
[xi−1, xi], and Si(i = 1, ..., N) be the input stimulus externally applied to
neurons in the interval [xi−1, xi].

Let us do the following replacement in the field equation (1):

u(x) → ui, u(y) → uj , w(x, y) → wij , S(x) → Si, (14)

and also replace the integral by a summation. Then, we obtain

τ
dui

dt
= −ui +

N∑

j=1

wijf(uj)∆x + Si − h. (15)
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Note that the condition of symmetric connection (4) is also replaced by
wij = wji. Let us define Tij(i = 1, ..., N, j = 1, ..., N) and zi(i = 1, ..., N) as

Tij = wij∆x (16)

and

zi = f(ui), (17)

respectively. Then, Eq. (15) can be rewritten as

τ
dui

dt
= −ui +

N∑

j=1

Tijzj + Si − h. (18)

This equation is exactly the same as the analog Hopfield model [7]. Since
Tij = Tji , the Lyapunov function

I = −1
2

N∑

i=1

N∑

j=1

Tijzizj +
N∑

i=1

∫ zi

0
f−1(z′)dz′ −

N∑

i=1

(Si − h)zi (19)

exists for (18), and satisfies dI/dt ≤ 0 [7]. We multiply (19) by ∆x and use
(16) to obtain

I∆x =− 1
2

N∑

i=1

N∑

j=1

wijzizj(∆x)2 +
N∑

i=1

[∫ zi

0
f−1(z′)dz′

]
∆x

−
N∑

i=1

(Si − h)zi∆x. (20)

In the limit of N → ∞, if we use the inverse transformation of (14)
(from (2) and (17), replacement of ui → u(x) and uj → u(y) leads to the
replacement of zi → z(x) and zj → z(y), respectively) and also replace the
summation by the integral, (20) becomes

I∆x →− 1
2

∫ xmax

xmin

∫ xmax

xmin

w(x, y)z(x)z(y)dxdy +
∫ xmax

xmin

∫ z(x)

0
f−1(z′)dz′dx

−
∫ xmax

xmin

[S(x)− h]z(x)dx = E. (21)

This equation means that I∆x agrees with E in the limit of N →∞ . Thus,
we can understand that the Lyapunov functional of the field equation is an
extension of the Lyapunov function of the Hopfield model to continuously
distributed neurons.
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4 Lyapunov Functional in the Field with Lateral-
Inhibitory Connection

The existence of the Lyapunov functional not only ensures global conver-
gence, but also provides a new analytical method for the theoretical study
of pattern formation of the neural field, since we can find a stable (unstable)
equilibrium solution by simply seeking out a local minimum (maximum) of
the Lyapunov functional. As an example, here we apply the Lyapunov func-
tional to the field with lateral-inhibitory connections. This type of field has
been analyzed by Amari [1], and the existence of various types of pattern
dynamics has been demonstrated. Now, we give a unified explanation for
the pattern dynamics as the changing property of the Lyapunov functional.

Let us assume the connectivity function is homogeneous, i.e., w(x, y) =
w(x − y), as well as symmetric. Since the connection is lateral-inhibitory,
w(x) satisfies w(x) > 0 for |x| < xm and w(x) < 0 for |x| > xm with xm > 0.
We also assume lim

x→∞w(x) = 0 and W∞ ≡ ∫∞
0 w(x)dx > 0. An example of

w(x) is shown in Fig. 1(a). The output function f(u) is assumed to be the
step-function satisfying f(u) = 0 for u ≤ 0 and f(u) = 1 for u > 0. We
consider the localized excitation of the field, which is defined as the state
where only the neurons in a finite interval (x1, x2) are active so that

{x|u(x) > 0} = (x1, x2). (22)

We also consider the field without external input so that S(x) = 0.
Let fs(u) be a general sigmoid function taking a value between 0 and 1.

Then, the following relationship holds with fε(u) ≡ fs(u/ε):
∫ z

0
f−1

ε (z′)dz′ = ε

∫ z

0
f−1

s (z′)dz′. (23)

Since fε(u) agrees with the step-function f(u) in the limit of ε → 0, the
second term in curly brackets in (5) is 0. We also find the relations z(x) = 1
for x ∈ (x1, x2) and z(x) = 0 for x /∈ (x1, x2) from (22). Hence, (5) can be
written as

E = −1
2

∫ x2

x1

∫ x2

x1

w(x− y)dxdy + h(x2 − x1). (24)

When we define W (x) ≡ ∫ x
0 w(x′)dx′, (24) can be reduced to

E = −
∫ x2−x1

0
W (x)dx + h(x2 − x1). (25)

Furthermore, if we define the length of the excited region a ≡ x2 − x1, we
have

E = −
∫ a

0
W (x)dx + ha. (26)
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Figure 1: Example of the Lyapunov functional of the field equation
with lateral-inhibitory connections, where w(x) = 3 exp[−x2/(2 · 2.22)] −
1.2 exp[−x2/(2 · 3.92)]. (a) Connectivity function w(x). (b) Integral of con-
nectivity function W (a). (c) Relation between the Lyapunov functional E
and the length of excited region a for four cases. The value of the threshold
h for case 1-4 is 4, 3, 2, and -0.5, respectively.

E is only a function of a, so that we express this relation as E(a). Differ-
entiation of (26) with respect to a yields

dE

da
= −W (a) + h. (27)

Since w(x) is a lateral-inhibitory function, W (a)(a > 0) has one peak and
converges to W∞ in the limit of a → ∞, as shown in Fig. 1(b). We define
Wm ≡ max

a>0
W (a) to be the maximum value of W (a). Equation (27) indicates

the relations dE/da > 0 for W (a) < h and dE/da < 0 for W (a) > h.
Thus, E(a) has a shape shown in Fig. 1(c) for case 1 : h > Wm, case 2 :
W∞ < h < Wm, case 3 : 0 < h < W∞, and case 4 : h < 0, respectively.
In case 1, E(a) is a monotone increasing function, so that the value of a
decreases with time and converges to 0. Thus, neurons in the whole field
finally become quiescent. In case 2, E(a) has one local maximum and one
local minimum, which correspond to the unstable and stable equilibrium
solution of the localized excitation, respectively. Thus, the system converges
either to this stable equilibrium solution or to the state of a = 0 dependent
on the initial value of a . In case 3, E(a) has one local maximum, and this
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state corresponds to the unstable equilibrium solution, so that the system
converges either to the state of a = 0 or to the state where neurons in the
whole field are active dependent on the initial value of a. In case 4, since
E(a) is a monotone decreasing function, the value of a increases with time
and finally neurons in the whole field become active. Thus, the Lyapunov
functional provides a unified and intuitive approach to understanding each
type of pattern dynamics.

5 Discussion

We have demonstrated that there exists a Lyapunov functional for the field
equation which is an extension of Lyapunov function of the Hopfield model.
The existence of the Lyapunov functional tells us that the global dynamics
of the field equation can be simply understood as the behavior that searches
for the local minimum of the functional. Thus, it might be possible to use
the Lyapunov functional for an optimization problem just like the Hopfield
model [8]. Once the objective functional has been given in the form of the
Lyapunov functional, we can at least find local minimum solutions by solving
the corresponding field equation numerically.

The fact that the Lyapunov functional of the field equation is a natural
extension of the Lyapunov function of the Hopfield model to the spatially
continuous neural field is important, since this relation implies that both
neural networks have generally common global dynamics characterized by
the Lyapunov functional/function. Therefore, we expect that part of the
analytical results regarding global stability of the Hopfield model with some
types of asymmetric connections [9] or delays [10] can also be extended to the
field equation with corresponding asymmetric connections or delays. This
is a problem for the future work.
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