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Discrete Fixed Point Theorem Reconsidered
∗

Takuya IIMURA† Kazuo MUROTA‡ Akihisa TAMURA§

February 23, 2004

Abstract

The aim of this note is to indicate an example that demonstrates the incorrectness

of Iimura’s discrete fixed point theorem [J. Mathematical Economics 39 (2003) 725]

and to present a corrected statement using the concept of integrally convex sets.

1 Introduction

Iimura (2003) gave a discrete fixed point theorem for correspondences (set-valued map-

pings) on discrete sets. The theorem claims that a discretely convex-valued direction-

preserving correspondence defined on a contiguously convex set to itself has a fixed point

(see Section 2 for the precise statement). In this note we indicate an example that demon-

strates the incorrectness of this statement, and rectify the statement using the concept of

integrally convex sets introduced by Favati and Tardella (1990).

2 A counterexample for contiguously convex sets

Let R and Z denote the sets of all reals and all integers, respectively. Given a positive

integer n, we denote by Z
n the set of all integer vectors z = (zi ∈ Z : i = 1, . . . , n). A

finite set X ⊆ Z
n is called discretely convex (or hole free, Murota, 2003) if

X = X ∩ Z
n, (1)
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where X denotes the convex hull of X in R
n. A finite set X ⊆ Z

n is said to be contiguously

convex (Iimura, 2003) if

∀y ∈ X, ∃x ∈ X : ||x − y||∞ < 1, (2)

where ||x−y||∞ = max{|xi −yi| | i = 1, . . . , n}. By the definitions, a contiguously convex

set is discretely convex. For two integer vectors z and z ′, we define a relation z ' z ′ as

z ' z′ ⇔ ||z − z′||∞ ≤ 1. (3)

Let X be a nonempty finite subset of Z
n and Γ : X →→ X be a nonempty-valued

correspondence. A point x ∈ X is said to be a fixed point if x ∈ Γ(x). For each x ∈ X,

let πΓ(x) denote the projection of x onto Γ(x), i.e.,

||πΓ(x) − x||2 = min
y∈Γ(x)

||y − x||2, (4)

where ||y − x||2 =
(
∑n

i=1(yi − xi)
2
)1/2

. We denote πΓ(x) − x by τ(x), and define

σ(x) = (sign(τi(x)) ∈ {+1, 0,−1} : i = 1, . . . , n), (5)

where τi(x) denotes the ith component of τ(x).

According to Iimura (2003), a correspondence Γ : X →→ X is said to be direction

preserving1 if for all x, x′ ∈ X with x ' x′,

σi(x) > 0 =⇒ σi(x
′) ≥ 0 (i = 1, . . . , n), (6)

where σi(x) denotes the ith component of σ(x). The condition is equivalent to

σi(x) < 0 =⇒ σi(x
′) ≤ 0 (i = 1, . . . , n). (7)

Iimura (2003) made the following statement.

Statement: Let X ⊂ Z
n be a nonempty finite contiguously convex set. If Γ : X →→ X

is a nonempty- and discretely convex-valued direction preserving correspondence, then Γ

has a fixed point.

A counterexample exists to the above statement. Consider the finite set X ⊆ Z
3

defined as

X = {a = (0, 1, 0), b = (1, 0, 0), c = (2, 0, 0), d = (3, 0, 0), e = (4, 0, 1)} (8)

and the correspondence Γ : X →→ X defined as

Γ(a) = Γ(b) = {e}, Γ(c) = {a, e}, Γ(d) = Γ(e) = {a}. (9)
1We note that “direction preserving” can also be defined in terms of τ as: if for all x, x′ ∈ X with

x ' x′, τi(x) > 0 =⇒ τi(x
′) ≥ 0 for all i = 1, . . . , n.
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Figure 1: A contiguously convex set X = {a = (0, 1, 0), b = (1, 0, 0), c = (2, 0, 0), d =

(3, 0, 0), e = (4, 0, 1)} for the counterexample with Γ(a) = Γ(b) = {e}, Γ(c) =

{a, e}, Γ(d) = Γ(e) = {a}.

Figure 1 shows that X is a contiguously convex set and Γ is a nonempty- and discretely

convex-valued correspondence. Furthermore, Γ is direction preserving, because

a ' b, b ' c, c ' d, d ' e, (10)

the other pairs of distinct points are not in the relation ', and τ and σ are calculated as

τ(a) = ( 4, −1, 1)

τ(b) = ( 3, 0, 1)

τ(c) = ( 0, 1/2, 1/2)

τ(d) = (−3, 1, 0)

τ(e) = (−4, 1, −1)
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σ(a) = (+1, −1, +1)

σ(b) = (+1, 0, +1)

σ(c) = ( 0, +1, +1)

σ(d) = (−1, +1, 0)

σ(e) = (−1, +1, −1).

(11)

Obviously, Γ has no fixed point.

3 Theorem for integrally convex sets

In this section, we give a discrete fixed point theorem for integrally convex sets.

For y ∈ R
n, we define a neighborhood N(y) of y by

N(y) = {z ∈ Z
n | ||z − y||∞ < 1}. (12)

A finite set of integer points X ⊆ Z
n is said to be integrally convex if it satisfies

y ∈ X =⇒ y ∈ X ∩ N(y) (∀y ∈ R
n), (13)

i.e., any point y ∈ X can be represented as a convex combination of integer points in

N(y) (Favati and Tardella, 1990, see also Murota, 2003, Section 3.4). By the definitions,

an integrally convex set is contiguously convex.

An integrally convex set admits a nice simplicial decomposition, which is the key

property for establishing the discrete fixed point theorem for integrally convex sets.
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Lemma 1. For any finite integrally convex set X ⊂ Z
n, there exists a simplicial de-

composition2 S of X such that for each y ∈ X, all the vertices of the smallest simplex

S(y) ∈ S containing y belong to N(y). For such S we have y ∈ S(y) ∩ N(y) for all y ∈ X

and {x} ∈ S for all x ∈ X.

The proof is given at the end of this section.

Theorem 2. Let X ⊂ Z
n be a nonempty finite integrally convex set. If Γ : X →→ X

is a nonempty- and discretely convex-valued direction preserving correspondence, then Γ

has a fixed point.

Proof. We make use of Brouwer’s fixed point theorem, which says that every continuous

mapping from a compact convex set of R
n to itself has a fixed point. We define a

continuous mapping γ from X to X . For each point x ∈ X, we define γ(x) = πΓ(x).

Since X is a finite integrally convex set, there exists a simplicial decomposition S of X

satisfying the conditions in Lemma 1. Let y be an arbitrary point in X. By Lemma 1,

we have y ∈ S(y) ∩ N(y). Let

y =
∑

x∈S(y)∩N(y)

λxx,
∑

λx = 1, λx ≥ 0, (14)

be the uniquely determined convex combination. That is, (λx : x ∈ S(y) ∩ N(y)) is the

barycentric coordinate of y in S(y) ∩ N(y). Then, we define γ(y) by

γ(y) =
∑

x∈S(y)∩N(y)

λxπΓ(x). (15)

Since πΓ(x) ∈ X for all x ∈ X, we have γ(y) ∈ X for all y ∈ X . Moreover, since S

is a simplicial decomposition satisfying the conditions in Lemma 1, γ is continuous. By

Brouwer’s fixed point theorem, γ has a fixed point, say, y ∈ X.

We next show that γ has an integral fixed point. We have

∑

x∈S(y)∩N(y)

λxx = y = γ(y) =
∑

x∈S(y)∩N(y)

λxπΓ(x). (16)

This says that

∑

x∈S(y)∩N(y)

λx(πΓ(x) − x) =
∑

x∈S(y)∩N(y)

λxτ(x) = 0, (17)

where 0 denotes the zero vector in R
n. Since Γ is direction preserving, we have τ(x) = 0

if λx > 0. Therefore, there exists at least one x ∈ S(y) ∩ N(y) with τ(x) = 0. Such x is

a fixed point of Γ, since τ(x) = 0 implies x ∈ Γ(x) ∩ Z
n = Γ(x).

2A simplicial decomposition S is a collection of simplices satisfying (a) X =
S

S∈S
S, (b) S ∈ S, S′: a

face of S =⇒ S′ ∈ S, and (c) S1, S2 ∈ S with S1 ∩ S2 6= ∅ =⇒ S1 ∩ S2: a face of S1 and S2.
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We finally show Lemma 1. For f : Z
n → R ∪ {+∞}, its convex closure is defined as

the piecewise linear function f : R
n → R ∪ {+∞} such that the epigraph of f coincides

with the convex hull of {(z, α) ∈ Z
n × R | α ≥ f(z),∀z ∈ Z

n}. For p ∈ R
n, we denote

the inner product of p and y by 〈p, y〉, define a function f [−p] by

f [−p](y) = f(y) − 〈p, y〉 (∀y ∈ R
n), (18)

and denote the set of minimizers of f [−p] by arg min f [−p], i.e.,

arg min f [−p] = {y ∈ R
n | f [−p](y) ≤ f [−p](y′),∀y′ ∈ R

n}. (19)

The indicator function δX : Z
n → {0,+∞} is defined as δX(x) = 0 if x ∈ X; otherwise

δX(x) = +∞.

Proof of Lemma 1. We construct a simplicial decomposition of X through the pro-

jection of faces of a piecewise linear function.

Let δX be the indicator function of X and g : Zn → R ∪ {+∞} be defined as

g(x) = δX(x) +

n
∑

i=1

xi
2 (∀x ∈ Z

n). (20)

Its convex closure g is a piecewise linear function. Since the second term of g is a sep-

arable quadratic function, the projection of each face of g, which can be represented as

arg min g[−p] for some p ∈ R
n, is included in the intersection of X with a hypercube

{y ∈ R
n | z ≤ y ≤ z + 1} for some z ∈ Z

n, where 1 denotes the vector of all ones. Note

that arg min g[−p] generated by p ∈ R
n are not necessarily simplices, so let us slightly

perturb g as follows.

Let d be an integer vector such that if x 6= x′ then 〈d, x〉 6= 〈d, x′〉 for all x, x′ ∈ X.

Since X is a finite set, we can always choose such d, e.g., by letting d = (1, L, L2, . . . , Ln−1)

with a sufficiently large positive integer L (this gives a kind of lexicographic valuation in

terms of 〈d, x〉 for all x in X). Let ε > 0 and hε : Zn → R ∪ {+∞} be defined as

hε(x) = g(x) + ε exp〈d, x〉 (∀x ∈ Z
n). (21)

Its convex closure hε is a piecewise linear function, and, since X is finite and arg min g[−p]

is included in a hypercube for each p ∈ R
n, there exists a sufficiently small ε > 0 such

that for all p ∈ R
n, arg minhε[−p] are also included in hypercubes. The vertices of

arg minhε[−p] belong to X. Moreover, for each p ∈ R
n, S = arg minhε[−p] is a simplex.

To see this, suppose, by way of contradiction, that S is not a simplex. Then, the vertices of

S are affinely dependent, and hence, there exist two disjoint families {xi ∈ S∩Z
n | i ∈ I}

and {xj ∈ S ∩Z
n | j ∈ J} of integer vectors and two families {λi | i ∈ I} and {λj | j ∈ J}

of positive rational numbers, representing a rational point y ∈ S as two different convex
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combinations, such that

∑

i∈I

λi = 1 =
∑

j∈J

λj, (22)

∑

i∈I

λix
i = y =

∑

j∈J

λjx
j , (23)

∑

i∈I

λihε(x
i) = hε(y) =

∑

j∈J

λjhε(x
j). (24)

Since g is linear on S, we must have
∑

i∈I λig(xi) =
∑

j∈J λjg(xj) and

∑

i∈I

λi exp〈d, xi〉 =
∑

j∈J

λj exp〈d, xj〉. (25)

This means that the base of the natural logarithm e satisfies F (e) = 0 for

F (t) =
∑

i∈I

λit
〈d,xi〉 −

∑

j∈J

λjt
〈d,xj〉, (26)

which is a nonvanishing polynomial in t over the field of rational numbers. This contradicts

the transcendentality of e. Thus S must be a simplex.

The desired simplicial decomposition is obtained by

S = {arg minhε[−p] | p ∈ R
n}. (27)

It is easy to verify (a) X =
⋃

S∈S S; (b) if S ∈ S and S ′ is a face of S then S ′ ∈ S;

and (c) if S1, S2 ∈ S and S1 ∩ S2 6= ∅ then S1 ∩ S2 ∈ S. It remains to show that, for

each y ∈ X , the vertices of the smallest simplex S(y) ∈ S containing y (the existence

of which is secured by (c)) all belong to N(y). Suppose not. Then there exists a vertex

x of S(y) with x 6∈ N(y). Since S(y) is included in a hypercube and x is an integer

vector, S(y) ∩ N(y) is a proper face of S(y) containing y. However, this contradicts the

minimality of S(y). Hence, all the vertices of S(y) belong to N(y). This together with

the definition of N(y) implies that y ∈ S(y) ∩ N(y) for all y ∈ X and {x} ∈ S for all

x ∈ X.

Concluding remark

We emphasize that Theorem 2 is valid for two applications in Iimura (2003), namely, exis-

tence of Walrasian equilibrium with indivisible commodities, and discrete non-cooperative

games, because they are actually dealing with a direction preserving correspondence on

a rectangular set, which is integrally convex.

After the completion of the manuscript, the authors learned that a Russian group of

Danilov and Koshevoy (2004) also noticed the incorrectness of the proof in Iimura (2003)

and gave a theorem similar to ours.
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