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Abstract: In this paper, we analyse the asymptotic property of the optimal quantization of signals used

for system identification in high resolution case. We show an optimal quantization scheme for minimizing

estimation errors under a constraint on the number of subsections of the quantized signals or the expectation

of the optimal code length. The optimal quantization schemes can be given by solving Eular–Lagrange’s

equations and the solutions are functions of the distribution density of the regressor vector. We show ex-

amples of solutions for several cases of the regressor vectors and discuss their meanings with respect to the

possibility of parameter estimations. In the case of the constraint of code length, the necessary information

to attain the optimal identification errors is given as a function of the entropy of the regressor vector.

Keywords: system identification, quantization, least squares method, MA model, entropy

1 Introduction

The recent rapid improvement in the transmission capacity of computer networks makes long-distance auto-

matic control to be more realistic and the necessity of understanding the effects of transmission limitations

on information in control systems has become more widely accepted. In particular, quantization problem of

signals has been discussed actively by several research groups in the last few years and interesting results

have been achieved.

The problem of quantization of signals in control systems has a long history. The early results on the

quantization in control theory are introduced in the book [3] of the 70s and at first, the quantization error is

assumed to be a simple noise. The result by [4], [5] is recognized as a break through, in whose papers the

behaviour of control systems, and their stability or state estimation, are analysed in detail. In the last few

years, stabilization problems of quantized systems have been actively considered, e.g., [11], [12], [1], [8],

[6].

Compared to this activity in the stabilization or estimation problem, the quantization problem for system

identification [7] has not been adequately considered. When a controlled plant with networks is unknown or
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its system parameters may change during the operation, we need a form of adaptation for the control system.

It is also necessary to know the effect of quantization of the I/O data used for the system identification.

From such point of view, this problem was considered in [10] and an optimal quantization scheme for

minimizing estimation errors under a constraint on the number of levels of the quantized signals was given.

The optimal quantization is not uniform and the profile of the resolution was shown. This result is strictly

applicable for any resolution of quantization, however, it has two problems which should be improved. The

first one is a strong assumption on the probability distribution of input signals and the second one is that

data coding is out of view of the paper.

In this paper, we consider this problem in an asymptotic situation of high resolution case and give an

optimal quantization of signals. The key idea is a notion of density of the number of quantized subsections

and by using calculus of variations, analytic solutions are derived. The solutions are simple functions of

the distribution density of input signals and we can easily figure out the profile of the density of the umber

of quantized subsections. Moreover, these results suggest several important insights on system identifica-

tion under the condition of finite information. We illustrate such facts for some cases and discuss on the

complexity of the problem of system identification.

2 Formulation

The objective of this paper is to show the effect of quantizers of I/O signals for system identification on its

performance in analytic and intuitive form as possible. In general, the quantization error behaves as a random

signal when the quantizer has enough high resolution, therefore, such condition has been often assumed in

the area of signal processing. However, of course, the quantization error has strong correlation with the

original quantized signal and in particular for system identification, several kinds of correlation are used for

calculating the estimation. Therefore, such assumptions should be examined carefully. The strict analysis

is desirable for system identification with the case of general model and mild assumption on I/O signals,

however, it may be difficult to derive intuitive understanding results. Under these views, in [10], it is shown

that an intuitive understanding optimal quantizer can be given analytically under strong assumption on input

signal for a simple MA model. Moreover, it is shown that there exists a trade-off between quantization

error and noise error under a condition of constant information used for system identification. In this paper,

we basically follow this idea and consider system identification by least square criterion for a simple MA

model. The plant is:

yo(i) = q(y(i)) + w(i), y(i) = φ(i)θ (1)

φ(i) := [u(i) u(i− 1) · · · u(i− n + 1) ] , θ := [ θ1 θ2 · · · θn ]T , (2)

wherew is a noise andq is a quantizer of the original analogue outputy. In [10], the boundedness ofy or

u is assumed, however, it is not necessarily assumed in this paper except for some cases. The quantizerq is

defined by

q(y) := sgn(y)ȳj , y ∈ Sj , ȳj ≥ 0 (3)
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S0 := {y = 0} , Sj := {y : dj−1 < y ≤ dj} , j > 0, Sj := {y : dj−1 ≤ y < dj} , j < 0 (4)

d0 = 0 < d1 < d2 · · · , d−1 = −d1, d−2 = −d2, . . . , (5)

where sgn(y)ȳj is the assigned quantized value to the subsectionSj . The quantizer is symmetrical with

respect to the origin, and hereafter we may omit references on the negative section if they are obvious from

the context.

The estimated parameterθ̂ using the least squares method with I/O datau(i) andyo(i) is given by

θ̂ = (UTU)−1UT
(
Ỹ + W

)
, (6)

where

U := [ φ(1)T φ(2)T · · · φ(N)T ]T , W := [w(1) w(2) · · · w(N) ]T ,

Ỹ := [ ỹ(1) ỹ(2) · · · ỹ(N) ]T , ỹ(i) := q(y(i)). (7)

Define the quantization error betweenỹ andy by

e(i) := ỹ(i)− y(i), (8)

and the estimated parameterθ̂ can be written as

θ̂ = (UTU)−1UT(Uθ + E + W )

= θ + ∆E + ∆W (9)

E := [ e(1) e(2) · · · e(N) ]T , ∆E := (UTU)−1UTE, ∆W := (UTU)−1UTW. (10)

This shows that the estimation errorθ̂ − θ can be evaluated from the magnitudes of∆E and∆W . The

conventional, and reasonable, method to evaluate∆W is to show the convergence rate of

N(UTU)−1 N→∞−→ 1
σ2

o

I,
1
N

UTW
N→∞−→ O, (11)

whereσo is the covariance ofu, by using the mutual independence of the input signalu and the noisew.

This methodology is also basically applicable to the case of∆E, however, we should note thatu ande are

not independent in general, and the situation is much more complicated. The magnitude of the cross term

UTE is essential for reducing that of∆E whenN →∞ by using the fact:

(UTU)−1UTE
N→∞−→ 1

σ2
o

1
N

UTE. (12)

Therefore, the square error of∆E also converges to

E
[
‖∆E‖2

2

]
= E

[
∆ET∆E

]
N→∞−→ E


 1

σ4
o

n−1∑

k=0

(
1
N

N∑

i=1

u(i− k)e(i)

)2

 . (13)

The right hand side of (13) is rewritten by

E


 1

σ4
o

n−1∑

k=0

(
1
N

N∑

i=1

u(i− k)e(i)

)2

 =

1
σ4

o

E




n−1∑

k=0

(
1
N

N∑

i=1

u(i− k)e(i)

)2



=
1
σ4

o

1
N

E

[
n∑

k=1

φ2
k(i)e

2(i)

]
. (14)
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Similarly, an element of the quantization error term is given by

E
[
∆E2

k

]
=

1
σ4

o

1
N

E
[
φ2

k(i)e
2(i)

]
. (15)

The expectation in the right hand side of (14) or (15) is written by

E

[
n∑

k=1

φ2
k(i)e

2(i)

]
=

∫ (
n∑

k=1

φ2
k(i)

)
e2(i)fo(φ1(i), . . . , φn(i))dφ1(i) · · · dφn(i). (16)

or

E
[
φ2

k(i)e
2(i)

]
=

∫
φ2

k(i)e
2(i)fo(φ1(i), . . . , φn(i))dφ1(i) · · · dφn(i), (17)

wherefo is the joint density ofφ1, φ2, . . . , φn. In the following, we consider to find minimizing quantizer

for (16) or (17).

In order to calculate the expectation (16) or (17), we define subsetsΦj of the regression vectorφ associated

with the subsectionSj by

Φj := {φ : y = φθ ∈ Sj} . (18)

Associated withΦj , we consider the following variable transformation [10]:

y = φθ = φT · T−1θ =: φ̃θ̃, T−1θ =
[
θ̃1

O

]
, (19)

whereT is an orthogonal matrix. Then,Φj is represented as

Φj =
{
φ : φ̃1θ̃1 ∈ (dj−1, dj ]

}
, j > 0. (20)

We also define subsections on the space ofφ̃1:

Ij :=
{
φ̃1 : φ̃1θ̃1 ∈ (dj−1, dj ]

}
, j > 0, (21)

then, the subsectionsSj , Φj , andIj correspond to each other, and the probability distribution ofy depends

only on that ofφ̃1. Therefore, in order to analyse the probability distribution ofy, the variableφ̃1 and its

subsectionIj are convenient to deal with. Moreover, by using the orthogonal transformation ofφ, (16) is

also given by

∫ (
n∑

k=1

φ2
k(i)

)
e2(i)fo(φ1(i), . . . , φn(i))dφ1(i) · · · dφn(i)

=
∫ (

n∑

k=1

φ̃2
k(i)

)
e2(i)fo(φ̃1(i), . . . , φ̃n(i))dφ̃1(i) · · · dφ̃n(i), (22)

wherefo(φ̃1, φ̃2, . . . , φ̃n) is the joint density of̃φ1, φ̃2, . . . , φ̃n. Similarly, the quantization error for̃θ1 is

calculated by ∫
φ̃2

1(i)e
2(i)fo(φ̃1(i), . . . , φ̃n(i))dφ̃1(i) · · · dφ̃n(i). (23)

Here letφ denote

φ := [ φ̃2 φ̃3 · · · φ̃n ]T ,
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then, the marginal distribution densityf(φ̃1) on the space of̃φ1 is defined by

f(φ̃1) :=
∫

fo(
[
φ̃1 φ

T ]T)dφ.

The important point is that if the distribution of the regressor vectorφ is given, it is possible to derive the

distribution densityf(φ̃1) analytically or numerically in an enough accuracy if necessary. With the fact that

the distribution ofe is only given by that of̃φ1, then (22) is represented by

∫
e2

(
n∑

k=1

φ̃2
k

)
fo(φ̃1, . . . , φ̃n)dφ̃1 · · · dφ̃n =

∫
e2 · σ2(φ̃1)f(φ̃1)dφ̃1,

whereσ(φ̃1) is a variance offo at φ̃1 defined by

∫ (
n∑

k=1

φ̃2
k

)
fo(φ̃1, . . . , φ̃n)dφ̃2 · · · dφ̃n =: σ2(φ̃1)f(φ̃1) (24)

Similarly, (23) is calculated by
∫

φ̃2
1(i)e

2(i)fo(φ̃1(i), . . . , φ̃n(i))dφ̃1(i) · · · dφ̃n(i) =
∫

φ̃2
1(i)e

2(i)f(φ̃1(i))dφ̃1(i). (25)

On the other hand, the expectation of∆E should be zero, therefore,

E

[
N∑

i=1

(φk(i) · e(i))
]

= N
∑

j

(∫

Φj

φk(i) · e(i)fo(φ1(i), . . . , φn(i))dφ1(i) · · · dφn(i)

)

=: N
∑

j

EΦj (φk(i) · e(i)) = 0. (26)

With this in mind, we consider the next optimal quantization problem for the signals for system identifica-

tion.

Problem 2.1 For the system (1) with Assumption 3.1, give a quantizerq that minimizes the variance of (16)

such thatEIj (φk(i) · e(i)) = 0 (∀j) under the constraint of quantization number.

3 Special Case [10]

In [10], a special case of the problem is considered. At first assumeθ̃1 = 1 just for the simplification of

expressions and consider to minimize (25). The next is assumed.

Assumption 3.1 φ̃1 obeys a uniform distribution in[−κ, κ].

Then, the following simplified problem is considered.

Problem 3.1 For the system (1) with Assumption 3.1, give a quantizerq that minimizes the variance of (16)

such thatEIj (φ̃1(i) · e(i)) = 0 (∀j) under the constraint of quantization number of[−κ, κ].
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As described in Section 2, the quantization scheme of[−κ, κ] ony is essentially equal to that oñφ1 and

it is composed of the setting of the subsectionsI−M , . . . , I−2, I−1, I0, I1, I2, . . . , IM , and the quantized

values

q(y), y ∈ Sj

= q(φ̃1), φ̃1 ∈ Ij

= ỹj (27)

for each subsectionIj . We define a ratiorj for Ij (= (dj−1, dj ]), Ij+1 (= (dj , dj+1]) where their

boundariesdj , dj+1 have a relation:

dj = rjdj+1, rj ∈ [0, 1]. (28)

From its definition,r1, r2, . . . , rM completely decide the quantization scheme and the optimization problem

can be reduced to find the optimal ratiosrj .

We obtain the following result.

Proposition 3.1 [10] The optimal ratiosrj that minimize the sum of the variances ofI1, I2, . . . , IM , and

alsoI−1, I−2, . . . , I−M , are given by solving the following optimization problem iteratively.

rj := arg min
r∈[0, 1]

Ωj(r) (45)

Ωj(r) := Ωmin
j−1r

5 − 18(1− r)5 + 45(1 + r)2(1− r)3 + 5(1− r)7(1 + r)−2 (46)

Ωmin
j := Ωj(rj), Ωmin

o = 32 (47)

The optimal value of the variance is given by

VM (φ̃1 · e) :=
M∑

j=−M

VIj =
1

2160
κ4Ωmin

M . (48)

Every ratiorj can be explicitly given by (45)∼ (47) iteratively. We can also derive the following series

of lemmas.

Lemma 3.1 [10]

rj < rj+1, ∀j > 0 (49)

rj → 1, j →∞ (50)

Lemma 3.2 [10]

|Ij | > |Ij+1|, ∀j > 0 (51)

Lemma 3.3 [10]
∞∏

j=1

1
rj

= ∞ (52)
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Lemma 3.4 [10]

Ωmin
M → Ψb

a(M), M →∞ (53)

wherea = −5 · 3− 5
2 and b = 3

2 , andΨb
a(m) is a function ofm defined as the solution of the following

recurrence formula with an appropriate initial numberψ(0) = K.

ψ(m)− ψ(m− 1) = aψb(m− 1) (54)

From (48), the varianceVM (u · e) at sufficiently largeM satisfies

VM (u · e) ≤ 2
1

2160
1
2κ

κ5((−3/2 + 1)(−5 · 3− 5
2 + ν)(M − 1))

1
−3/2+1

= Aκ4(M − 1)−2, A :=
1

2160

(
5 · 2−1 · 3− 5

2 − 2−1ν
)−2

. (55)

4 Main Results

The important point of the results of [10] introduced in Section 3 is giving a quantizer which is strictly

optimal regardless of the resolution of the quantization. On the other hand, the following problems or

possible extensions can be pointed out:

1) extension of the minimization of‖∆E1‖2
2 to that of‖∆E‖2

2

2) the assumption on the distribution of input signals is strong, that is, it is a uniform distribution with a

special basis in a space of the regressor vector.

3) it is possible to reduce the necessary information by applying compression with data coding, therefore,

we can extend the similar optimization problem of quantizers for the case of a constraint on that code

length. However, in [10], such extension is not considered.

In this paper, we intend to solve these subjects and show that they are possible for an asymptotic situation

of high resolution of the quantizer.

4.1 Constraint on the Number of Quantization Sections

The key idea to solve these problems is introducing the following concept on the distribution of quantization

subsections.

Definition 4.1 The quantityg(φ̃1) which satisfies the following is called distribution density of the number

of quantized subsections.

g(φ̃1)dφ̃1 = number of quantized subsections indφ̃1

From this definition,g−1(φ̃1) represents the width of the quantization step atφ̃1.
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In [10], the quantized value for each subsection is strictly assigned to satisfy that the quantization error

is zero in each subsection. Such consideration has significance in low resolution case of the quantization,

however, the efficiency becomes trivial in high resolution case. In particular, at the asymptotic situation

of |Ii| → 0, the middle point is reasonable to be assigned as the quantized value. Therefore, we fix such

quantized values in the following of this paper.

Then, we assume the following.

Assumption 4.1 The marginal distribution densityf(φ̃1) andg(φ̃1) are enough smooth.

The “smoothness” means that it satisfies the next approximations. With the “smoothness” of the density

g(φ̃1), we assume that we can select the representative valuegi ∼ g(φ̃1) for the subsectionIi and then, we

define the next.

pi :=
∫

Ii

f(φ̃1)dφ̃1 =: fig
−1
i

Moreover, by using the varianceσ(φ̃1) of fo at φ̃1 defined in (24), we assume that an approximation of (16)

can be derived as follows.
∫

e2

(
n∑

k=1

φ̃2
k

)
fo(φ̃1, . . . , φ̃n)dφ̃1 · · · dφ̃n =

∫
e2 · σ2(φ̃1)f(φ̃1)dφ̃1

=
∑

i

∫

Ii

e2 · σ2(φ̃1)f(φ̃1)dφ̃1

∼
∑

i

∫ φ̃1i+
1
2
g−1

i

φ̃1i− 1
2
g−1

i

(φ̃1i − x)2 · σ2(x)f(x)dx ∼
∑

i

∫ φ̃1+ 1
2
g−1

i

φ̃1− 1
2
g−1

i

(φ̃1i − x)2σ2(φ̃1i)fidx

∼
∑

i

1
12

g−3
i σ2(φ̃1i)fi ∼

∑

i

∫ φ̃1+
1
2
g−1

i

φ̃1− 1
2
g−1

i

1
12

g−2
i σ2(φ̃1i)fidx

∼
∑

i

∫ φ̃1+ 1
2
g−1

i

φ̃1− 1
2
g−1

i

1
12

g−2(φ̃1)σ2(φ̃1)f(φ̃1)dφ̃1

=
∫ 1

12
g−2(φ̃1)σ2(φ̃1)f(φ̃1)dφ̃1

From the above approximation, the original optimization problem:

minE
[
‖∆E‖2

2

]

can be replaced by the following whenN →∞ and high resolution case:

gopt-n(φ̃1) := arg min
g

∫
F(g(φ̃1), G(φ̃1))dφ̃1 (56)

such that G(φ̃min
1 ) = 0, G(φ̃max

1 ) = M, (57)

where

F(g(φ̃1), G(φ̃1)) :=

(
1

g(φ̃1)

)2

σ2(φ̃1)f(φ̃1) (58)

d

dφ̃1

G(φ̃1) = g(φ̃1). (59)

We can derive the next result.

8



Proposition 4.1 The solution of (56) is:

gopt-n(φ̃1) = Kσ
2
3 (φ̃1)f

1
3 (φ̃1) (60)

K = D−1M (61)

D =
∫

σ
2
3 (φ̃1)f

1
3 dφ̃1. (62)

Moreover, the optimized value is given by
∫
F(gopt-n(φ̃1), Gopt-n(φ̃1))dφ̃1 = D3M−2. (63)

Proof By using calculus of variations, the optimal solution can be given. That is, from the following

Euler–Lagrange’s equation:
d

dφ̃1

(
∂F
∂g

)
− ∂F

∂G
= 0,

we can get a differential equation:

d

dφ̃1

(
−2g−3(φ̃1)σ2(φ̃1)f(φ̃1)

)
= 0,

and by solving it, we get

g(φ̃1) = Kσ
2
3 (φ̃1)f

1
3 (φ̃1), K : constant. (64)

The constant numberK is directly calculated by the condition (57), on the hand, the value of the objective

function is derived as follows.
∫
F(gopt-n(φ̃1), Gopt-n(φ̃1))dφ̃1 =

∫
(Kσ

2
3 (φ̃1)f

1
3 (φ̃1))−2σ2(φ̃1)f(φ̃1)dφ̃1

=
∫

K−2σ
2
3 (φ̃1)f(φ̃1)

1
3 dφ̃1 = K−2D

= D3M−2 (65)

From this result, the asymptotic optimal quantization at high resolution case, is easily calculated if the

marginal distribution of the regressor vectorf(φ̃1) is known.

Note 4.1 Whenfo is a multidimensional normal distribution:

fo(φ̃1, φ̃2, . . . , φ̃n) =
1

(2π)
n
2 (det Γ)

1
2

exp
(
−1

2
φ̃TΓ−1φ̃

)
, Γ = diag(σ1, σ2, . . . , σn),

then

σ2(φ̃1) = φ̃2
1 +

n∑

i=2

σ2
i .

This means that whenn, the order of the MA model, is large,σ(φ̃1) can be approximated as a constant. If

σi = σo, ∀i, then,

σ(φ̃1) ∼ n
1
2 σo, (66)

therefore,

D = n
1
3 σ

2
3
o

∫
f

1
3 dφ̃1

9



and

gopt−n(φ̃1) = M

(∫
f

1
3 dφ̃1

)−1

f
1
3 ,

∫
F(gopt-n(φ̃1), Gopt-n(φ̃1))dφ̃1 =

(∫
f

1
3 dφ̃1

)3

nσ2
oM

−2

= 6
√

3πnσ4
oM

−2 ∼ 10.39πnσ4
oM

−2. (67)

We illustrategopt-efor the cases thatf(φ̃1) is normal distribution, uniform distribution and power law as

follows.

0 1 2 3 4 5 6 7
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

φ̃1

f(φ̃1)

g(φ̃1)

Fig. 1: Uniform distributionf(φ̃1) (solid line) and the optimal distribution
g(φ̃1) (dashed line) in the caseσ(φ̃1) = φ̃1

In Section 3, we introduce the strictly optimal quantization for any case of resolution whenf(φ̃1) is

uniform distribution. Lemma 3.2 shows that the optimal quantization is coarse around the origin ofφ̃1, on

the other hand, it is high resolution near the bound ofφ̃1. Such feature of the optimal quantization can be

seen in this proposition which is for high resolution case (see Fig. 1). Fig. 1 is an example of a simple case

σ(φ̃1) = φ̃1, and the proposition shows that the growing rate of the resolution againstφ̃1 is known when

σ(φ̃1) is given analytically. In this case, the order of the growing rate isφ̃
2
3
1 , which is unknown from the

results of the previous section.
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0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

φ̃1

f(φ̃1)
g(φ̃1)

Fig. 2: Normal distributionf(φ̃1) (solid line) and the optimal distribution
g(φ̃1) (dashed line) in the caseσ(φ̃1) = φ̃1

In the case thatf(φ̃1) is normal distribution, the profile of the densityf(φ̃1) around the origin is flat,

therefore, the optimal quantizer must have the similar feature of uniform distribution around the origin

which case is discussed in Section 3 and the previous example. That is, the resolution should grow around

it, and we can see such feature ofgopt-e. On the other hand, in the area of the tail off(φ̃1), g(φ̃1) also goes

down, however, against our intuition, the resolution remains high such asg(3)∼ 0.201∼ 51% of max g(φ̃1)

(∼ 0.391) or g(4) ∼ 0.0758 ∼ 19% of max g(φ̃1), wheref(φ̃1) is enough small.
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0.8

0.9

1

φ̃1

f(φ̃1)

g(φ̃1)

Fig. 3: Power law (O(φ̃−2
1 )) f(φ̃1) (solid line) and the optimal distribution

g(φ̃1) (dashed line) in the caseσ(φ̃1) = φ̃1

Next, we show the case off(φ̃1) ∼ φ̃−2
1 at enough largẽφ1 as an example of power law. In this case,

gopt-n is constant and it is marginal for the existence of the solution. This result shows the difficulty of the

system identification in an enough accuracy by using finite information on the system when the tail of the

distribution densityf(φ̃1) is heavier thanO(φ̃−2
1 ). This result explains the complexity of power law from

the view point of parameter estimation of system identification.
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4.2 Constraints on the Code Length of Signals

In the previous subsection, we derive an optimal quantizer to minimize the identification error under con-

straint of the number of quantization steps in the case of high resolution. The result is itself meaningful,

however, for the purpose to reduce the information of the observed data from the identified system, it is

more reasonable to apply coding for the quantized signals and measure the code length as the quantity of the

information. According to this observation, we consider the minimization problem of identification error

under constraint of the expectation of the optimal code length in high resolution case.

Let E(·) be an encoder which is a mapping from source alphabets to code alphabets andl(·) the code

length. We regardq(φ̃1) as the corresponding source alphabets, then,l(E(q(φ̃1))) represents the code

length of the code alphabets. The expectation of the code length for a quantized signal has relation with

entropy from the following well-known proposition.

Proposition 4.2 [9, 2] Letx be source alphabets, then,

E[l(E(x))] ≥ H(x). (68)

Moreover, there exists an optimal quantizerE which attains the lower bound.

By applying this proposition, the optimization problem of the quantizer for the code length is reduced to the

same problem under constraint of entropy of the quantized signals.

On the other hand, the basic idea and tools to represent the quantizer in high resolution case are the same

of the previous subsection. That is, under Assumption 4.1, we usegi as the approximation ofg in the

subsectionIi. In this case, we can get the asymptotic approximation of the entropy of the quantized signal.

H(f, g) :=
∑

i

−pi log pi (69)

=
∑

i

−
∫

Ii

f(φ̃1)dφ̃1 log fig
−1
i (70)

=
∫
−f(φ̃1) log fig

−1
i dφ̃1 (71)

∼
∫
−f(φ̃1) log

(
f(φ̃1)g−1(φ̃1)

)
dφ̃1 (72)

= H(f) +
∫
−f(φ̃1) log

(
g−1(φ̃1)

)
dφ̃1 (73)

By using this asymptotic approximation of the entropy (73), we consider the following problem for high

resolution case.

gopt-e(φ̃1) := arg min
g

∫
F(g(φ̃1), G(φ̃1))dφ̃1 (74)

such that H(f, g) = log M (75)

Note thatM is an expected number of quantization steps in the sense of (75) itself.

We can derive the following proposition.
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Proposition 4.3 The solution of (74) is:

gopt-e(φ̃1) = KMσ(φ̃1) (76)

K = expL (77)

L := −H(f)−
∫

f log σ(φ̃1)dφ̃1 =
∫

f(φ̃1) log
f(φ̃1)
σ(φ̃1)

dφ̃1 (78)

Moreover, the optimized value is given by
∫
F(gopt-e(φ̃1), Gopt-e(φ̃1))dφ̃1 = K−2M−2. (79)

Proof Let λ be a Lagrange multiplier and consider the minimization problem of the following quantity.
∫
F(g(φ̃1), G(φ̃1))dφ̃1 + λH(f, g)

=
∫ (

1
g(φ̃1)

)2

σ2(φ̃1)f(φ̃1)− λf(φ̃1) log
(
g−1(φ̃1)

)
dφ̃1 + λH(f)

=
∫

f(φ̃1)
(
g−2(φ̃1)σ2(φ̃1) + λ log g(φ̃1)

)
dφ̃1 + λH(f)

From Eular–Lagrange’s differential equation, we get

∂

∂g

(
g−2σ2(φ̃1) + λ log g

)
= −2g−3σ2(φ̃1) + λg−1 = constant.

Fix the constant to be zero, then,

g =
(

2
λ

) 1
2

σ(φ̃1),

and by substituting it forH(f, g), we get

H(f, g) =
∫
−f log g−1fdφ̃1 (80)

= log
(

2
λ

) 1
2

+
∫
−f log

f

σ(φ̃1)
dφ̃1 = log M. (81)

Therefore,

(
2
λ

) 1
2

= exp

(∫
f log

f

σ(φ̃1)
dφ̃1 + log M

)
, (82)

and (76) is derived. By substitutinggopt-efor the objective integral, the following is calculated.

∫
g−2
opt−e(φ̃1)σ2(φ̃1)f(φ̃1)dφ̃1 =

λ

2
= K−2M−2

Note 4.2 The optimalgopt-e is a linear function ofσ(φ̃1) and its ratio is given byf and the expected

number of the quantization stepsM . On the other hand, the convergence rate of the minimized variance of
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the quantization error term isM−2. Whenfo is a multidimensional normal distribution andn is large as

considered in Note 4.1, by using (66),

L = −H(f)− log(σon
1
2 ), K = exp(−H(f)) · (σon

1
2 )−1,

and

gopt−e(φ̃1) = KMσ(φ̃1)

= M · exp(−H(f)) · (σon
1
2 )−1 · σon

1
2

= M · exp(−H(f))

∫
F(gopt-e(φ̃1), Gopt-e(φ̃1))dφ̃1 = exp(2H(f))nσ2

oM
−2

= 2eπnσ4
oM

−2 ∼ 5.44πnσ4
oM

−2. (83)

The comparison of (67) and (83) tells us that the case of the optimal coding attains about a half magnitude of

the variance of the quantization error compared withgopt−n. Of course the definitions ofM in Note 4.1 and

here are slightly different, however, we can estimate the effect of coding on the total amount of information

necessary for parameter estimation.

5 Conclusion

In this paper, we extended the results of optimal quantization problem for system identification in [10].

We consider two cases of the optimization: constraints on the number of quantization such as [10] and the

code length. In [10], a strong condition is assumed, that is, the regressor vector has a special distribution

density. On the other hand, in this paper, by employing a concept of quantization density for high resolution

case, such assumption can be removed. We explicitly derived the optimal quantizations and the minimized

quantization errors for these two cases. We also discussed on the general difficulties of parameter estimation

with respect to the complexity of the stochastic processes.
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