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Abstract

The general theory of elastic stability invented by Koiter, 1945
[311] motivated the development of a series of asymptotic approaches
to deal with initial postbuckling behavior of structures. These ap-
proaches, which played a pivotal role in the pre-computer age, are
somewhat overshadowed by the progress of computational environ-
ment. Recently, the importance of the asymptotic approaches has
been revived through the extension of their theoretical framework and
the combination with group-theoretic bifurcation theory in nonlinear
mathematics. The approaches serve as efficient and insightful strategy
to tackle various aspects of buckling behaviors, including: probabilis-
tic scatter of critical loads and experimentally observed bifurcation
diagram. In particular, complex imperfect behaviors at double criti-
cal points of systems with dihedral-group symmetry, which labels the
symmetry of cylindrical shells and reticulated polygonal domes, are in-
vestigated in a systematic manner. We review, through the perspective
of theoretical engineers, the historical development and recent revival
of the asymptotic approaches for imperfection-sensitive structures and
materials.



1 Introduction

Koiter’s asymptotic theory! of general nonlinear theory of stability? emerged
as a pertinent tool to analyze the initial postbuckling behavior and imper-
fection sensitivity of structures. The asymptotic theory, however, seems
somewhat overshadowed by numerical approaches in the computer age.

In nonlinear mathematics, catastrophe theory® and group-theoretic bi-
furcation theory* were developed to describe the qualitative characteristics
of bifurcation behaviors, especially for coincidental and compound bifurca-
tions. While catastrophe theory was quickly implemented into the frame-
work of elastic stability theory,” the group-theoretic study of bifurcation was
not necessarily common in structural engineering.

Recently, the importance of the asymptotic approaches has been revived
through the extension of the framework of the Koiter theory and the com-
bination with group-theoretic bifurcation theory. Theoretical procedures
to determine the most influential (worst) initial imperfection® and to obtain
the probability density function of critical loads for initial imperfections with
known probabilistic characteristics” were developed. Weibull-like probabil-
ity density function of critical loads was derived for initial imperfections
subjected to a multivariate normal distribution.® These procedures were
extended to experimentally observed bifurcation diagram and to a system
with dihedral-group symmetry,” and, in turn, were applied to the descrip-
tion of the strength of structures and materials, such as shells, steels, soils,
and concretes.!® Bifurcation mechanism of deformation of materials was
elucidated in the light of the asymptotic and group-theoretic approaches.'!

'The word asymptotic means that all results are local, valid only for sufficiently small
values of initial imperfection parameters, and in a sufficiently close neighborhood of the
critical point under consideration. Asymptotic theory appears in various fields of research
(see, e.g., the reviews of Chernyschenko, 1998 [96]; Andrianov and Awrejcewicz, 2001 [16];
Andrianov, Awrejcewicz, and Barantsev, 2003 [17]).

?Koiter, 1945 [311]

#Chillingworth, 1975 [97]; Thom, 1975 [504]; Zeeman, 1976, 1976, 1977 [576, 577, 578];
Poston and Stewart, 1978 [429]; Saunders, 1980 [458]; Gilmore, 1981 [188]; Stewart, 1981
[490]; Callahan, 1982 [88]; Thompson, 1982 [513] Arnold, 1984 [35]; Arnold et al., 1994
[36]

*Sattinger, 1979 [456]; Golubitsky and Schaeffer, 1985 [195]; Golubitsky, Stewart, and
Schaeffer, 1988 [198]

SThompson, 1982, 1984 [513, 514]

®lkeda and Murota, 1990, 1990 [262, 263]

"Tkeda and Murota, 1991 [264]

#lkeda and Murota, 1993 [266]

®Murota and lkeda, 1991, 1992 [367, 368]; Ikeda and Murota, 1999 [269]

7keda, Murota, and Elishakoff, 1996 [271]; Ikeda, Chida, and Yanagisawa, 1997 [258];
Tkeda et al., 1997 [260]; Okazawa et al., 2002 [390]

"Tkeda, Murota, and Nakano, 1994 [273]; lkeda et al., 1997, 2001, 2001 [274, 261, 278];
Murota, Tkeda, and Terada, 1999 [369]; Ikeda and Murota, 2002 [270]; Tanaka, Saiki, and
Tkeda, 2002 [499]



In this paper, the development of asymptotic approaches to describe the
probabilistic scatter of the strength of structures and their recent combina-
tion with group-theoretic bifurcation theory are reviewed as a summary of
[270, 277, 390]. We shed light on a modern view of bifurcation theory in
nonlinear mathematics by minimizing mathematical details so as to make it
accessible for engineers. Emphasis is placed not on experimental and compu-
tational but on analytical approaches. We emphasize methodology, instead
of studies on particular structures.!> We deal mainly with imperfection-
sensitive structures subjected to static bifurcation and buckling, and do
not emphasize stochastic properties of structures or imperfection-insensitive
structures with stockier proportions.!'® The research works in the Russian
language are not contained due to our lack of command of the language.

The historical development of asymptotic and group-theoretic approaches
is reviewed in Section 2. In Section 3, the general framework of the asymp-
totic approach is presented and is applied to simple critical points to arrive
at bifurcation equation, imperfection sensitivity laws, probabilistic variation
of strength, and experimentally observed bifurcation diagram. Such appli-
cation is extended to hilltop branching points in Section 4. With the help
of group-theoretic method presented in Section 5, it is extended to double
critical points of structures with dihedral-group symmetry in Section 6.

2 HISTORICAL DEVELOPMENT

The experimental buckling loads of long thin-walled cylinders were found to
fall markedly below the stability limit computed by the classical linearized
theory of bifurcations.!* In order to resolve such inadequacy, nonlinearity'®
and initial imperfections were implemented into the theory of elastic stability
of shells.'® Combined experimental, analytical and computational studies
of imperfection-sensitive structures were motivated in this manner.

2.1 General theory of elastic stability

The mechanism of postbuckling behavior was fully understood by general
nonlinear theory of stability in the masterful thesis of Koiter.'” Nonlinear

12For shells, for example, see the reviews of Singer, 1980, 1999 [478, 479]; Simitses, 1986
[475]; Soldatos, 1994 [483]; Teng, 1996 [500].

Y mperfection-insensitive structures, which have stockier proportions and undergo
elasto-plastic behavior, are studied intensively in ship and civil engineering.

MEuler, 1744 [164)

5The importance of nonlinearity in physical behavior was acknowledged at the be-
ginning of the 20th century through the development of classical nonlinear mathematics
(Poincaré, 1892-1899 [425]; Liapunov, 1906 [334]; Schmidt, 1910 [461]).

Y ligge, 1932 [171]; Donnel, 1934 [132]; von Karmdn and Tsien, 1939 [557]; Cox, 1940
[116]; von K&rman, Dunn, and Tsien, 1940 [556]; Donnel and Wan, 1950 [133]

1"Koiter, 1945 [311]



governing equations of structures subjected to buckling in general involve
a large number of independent variables and nonlinear terms and, hence,
are highly complex. In the general nonlinear theory of stability, to obtain
asymptotic general forms of imperfect systems in the neighborhood of critical
points, the nonlinear governing equation was simplified twofold:

e The governing equation is reduced!® to the bifurcation equation with
only a few active independent variables.

e The higher order terms of the bifurcation equation are truncated by
the asymptotic assumption.

The general theory thus obtained was a pertinent and strong analytical tool
to tackle nonlinear behavior of imperfect structural systems. Imperfection
sensitivity laws!? were derived to explain the mechanism of the erosion of
the strength due to initial imperfections. The importance of this theory,
however, was not recognized until the early 1960’s when research on initial
postbuckling behaviors sprung up worldwide.

It was noted that even small imperfections can sharply erode the strength
of structural systems undergoing bifurcation: including, shells, beams, trusses,
arches, frames, and so on.?’ In the United States, Koiter’s original work
was reconstructed in a form suitable for elastic continua and was applied to
imperfection-sensitive structures.?! Excellent reviews?? provide an overview
of the early development of postbuckling theory led by Koiter.??

In Europe, mainly in England, initial postbuckling behavior and related
theories started to draw attention in the 1960’s.2* The direct experimental
validation of imperfection sensitivity of structures was conducted.?® The

8This reduction procedure is called the Liapunov—Schmidt reduction (Sattinger, 1979
[456]; Chow and Hale, 1982 [102]; Golubitsky and Schaeffer, 1985 [195]), the Liapunov—-
Schmidt-Koiter reduction (Peek and Kheyrkhahan, 1993 [415]), or the elimination of pas-
sive coordinates (Thompson and Hunt, 1973 [518]).

YImperfection sensitivity laws mean interrelationships between the buckling load and
imperfection magnitude.

20Koiter, 1963 [314]; Horton and Durham, 1965 [229]

?!Budiansky and Hutchinson, 1964, 1966 [74, 75]; Budiansky, 1965, 1969 [70, 71];
Hutchinson, 1967 [250]; Hutchinson and Amazigo, 1967 [254]; Budiansky and Amazigo,
1968 [73]; Cohen, 1968 [112]; Fitch, 1968 [170]; Hutchinson and Koiter, 1970 [255]

#2Hutchinson and Koiter, 1970 [255]; Budiansky, 1974 [72]; Koiter, 1976 [317]; Pig-
nataro, Rizzi, and Luongo, 1991 [422]

22K oiter, 1956, 1963, 1963, 1966, 1967 [312, 313, 314, 315, 316]

#Britvec, 1963 [64]; Britvec and Chilver, 1963 [67]; Roorda, 1965, 1965, 1965, 1968
[440, 441, 442, 443]; Sewell, 1965, 1966, 1968 [466, 467, 468]; Thompson, 1965, 1968, 1969,
1969 [507, 508, 510, 511]; Chilver, 1967 [98]; Supple, 1967, 1968, 1969 [494, 495, 496];
Thompson and Walker, 1968 [528]; Pope, 1968 [428]; Thompson and Walker, 1968 [528];
Thompson and Hunt, 1969, 1969 [516, 517]; Huseyin, 1970 [246]; Roorda and Chilver,
1970 [447]

2*Roorda, 1965, 1965 [440, 442]; Thompson, Tulk, and Walker, 1976 [527]



perturbation technique?® was applied to the total potential energy func-
tion of a finite-dimensional system to derive asymptotic information on
bifurcation buckling. A large number of imperfection modes were taken
into account in the formulation by CIM (critical-imperfection-magnitude)
method.?”

The simultaneous buckling was studied in association with optimization.
The principle of simultaneous mode design states, “A given form will be
optimum if all failure modes which can possibly intersect occur simultane-
ously.”?® The danger of naive optimization without due regard to imperfec-
tion sensitivity and the erosion of optimization by compound branching were
pointed out.? Various kinds of structures were found highly imperfection-
sensitive when two or more bifurcation points are nearly or strictly coin-
cident, and are subjected to interaction of buckling modes, such as local
and global modes.?® The study of coincidental buckling and the interaction
between local and overall initial imperfections was thus motivated.?!

Critical points were classified by investigating the linear, quadratic, cu-
bic, quartic, ... terms of the potential function.®? In particular, the normal
forms of coincidental critical points were determined to show the diver-

26 Bellman, 1964 [47]; Keller, 1968 [298]; Nayfeh, 1973 [374]; Simmonds and Mann, 1986
[477]; Bush, 1994 [79]; Kevorkian and Cole, 1996 [300]

2TPalassopoulos, 1973, 1993, 1997 [398, 404, 406]; Palassopoulos and Shinozuka, 1973
[407]

28Spunt, 1971 [485]

#Koiter and Skaloud, 1963 [322]; Thompson and Supple, 1973 [526]; Thompson and
Hunt, 1974 [519]

#0Koiter and Skaloud, 1963 [322]; Hutchinson and Amazigo, 1967 [254]; van der Neut,
1968 [544]; Koiter and Kuiken, 1971 [319]; Thompson and Lewis, 1972 [524]; Tvergaard,
1973, 1973 [537, 538]; Byskov and Hutchinson, 1977 [86]; Gaspdr, 1985 [179]; Sridharan
and Ali, 1985 [487]; Kolakowski, 1987 [323]; Pignataro and Luongo, 1987 [420]; Rasmussen
and Hancock, 1988 [435]; Menken, Groot, and Stallenberg, 1991 [359]; Batista and Batista,
1994 [44]; Pignataro, Pasca, and Franchin, 2000 [421]

#1Chilver, 1967 [98]; Supple, 1967, 1968 [494, 495]; Sewell, 1970 [469]; Johns and Chilver,
1971 [288]; Ho, 1972, 1974 [226, 227]; Thompson and Hunt, 1973, 1975, 1984 [518, 520,
523]; Gilbert and Calladine, 1974 [187]; Johns, 1974 [286]; Keener, 1974, 1979 [295, 296];
Bauer, Keller, and Reiss, 1975 [45]; Huseyin, 1975 [247]; Svensson and Croll, 1975 [497];
Thompson and Schorrock, 1975 [525]; Koiter and Pignataro, 1976, 1976 [320, 321]; Maquoi
and Massonnet, 1976 [352]; Tvergaard and Needleman, 1976 [541]; van der Neut, 1976
[546]; Byskov and Hutchinson, 1977 [86]; Hunt, 1977, 1979, 1981, 1986 [240, 241, 242,
243]; Huseyin and Mandadi, 1977 [249]; Maewal and Nachbar, 1977 [349]; Olhoff and
Rasmussen, 1977 [393]; Byskov, 1979 [81]; Budiansky and Hutchinson, 1979 [76]; Reis
and Roorda, 1979 [436]; Byskov and Hansen, 1980 [85]; Samuels, 1980 [454]; Foster, 1981
[172]; Hui, Tennyson, and Hansen, 1981 [239]; Haug and Choi, 1982 [217]; Thompson, 1982
[513]; Usami and Fukumoto, 1982 [543]; Sridharan, 1983 [486]; Golubitsky, Marsden, and
Shaeffer, 1984 [192]; Hui, 1984 [231]; Masur, 1984 [355]; Benito and Sridharan, 1984-85
[52]; Cowell, 1986 [114]; Hunt, Williams, and Cowell, 1986 [245]; Byskov, Damkilde, and
Jensen, 1988-89 [84]; Bousfield and Samuels, 1989 [61]; Abdelmoula, Damil, and Potier-
Ferry, 1992 [1]; Tkeda, Providéncia, and Hunt, 1993 [279]; Ohsaki, 2000, 2003 [383, 387]

#2Thompson, 1963, 1965, 1969 [505, 507, 510]; Sewell, 1966, 1968 [467, 468]; Thompson
and Hunt, 1973 [518]



sity and complexity of these points, thereby overshadowing the systemat-
ics of static perturbation method. The emergence of catastrophe theory33
was quite timely and was quickly introduced into elastic stability theory
to generalize the classification of critical points.®* The seven elementary
catastrophes were correlated with structural problems. The fold catastro-
phe corresponds to a limit point or an asymmetric point of bifurcation,
and the cusp catastrophe corresponds to a symmetric point of bifurcation.?
Structural examples of the swallowtail and butterfly cuspoids,®® hyperbolic
umbilic,®” hyperbolic umbilic and elliptic umbilic,*® and parabolic umbilic
catastrophes®® were found and investigated in detail. The set of umbilic
catastrophes were classified*® with reference to Zeeman’s umbilic bracelet.*!
Higher-order singularities, such as double-cusp catastrophe, falling beyond
the seven elementary catastrophes, were found for structures.*?

The general theory of elastic stability, developed in this manner, played
a pivotal role in dealing with initial postbuckling behavior, especially from
an analytical standpoint, and led to excellent textbooks.*®> The concept of
imperfection sensitivity was quite pertinent in gathering knowledge as to
the behavior of imperfect structures. Thereafter research of initial post-
buckling behavior and imperfection sensitivity of structures mushroomed

32 Chillingworth, 1975 [97]; Thom, 1975 [504]; Wassermann, 1976 [560]; Zeeman, 1976,
1976, 1977 [576, 577, 578]; Poston and Stewart, 1978 [429]; Saunders, 1980 [458]; Gilmore,
1981 [188]; Stewart, 1981 [490]; Callahan, 1982 [88]; Thompson, 1982 [513]; Arnold, 1984
[35]; Arnold et al., 1994 [36]

#Thompson and Hunt, 1975 [520]

#Thompson, 1975 [512]

% Hui and Hansen, 1980 [236]

*"Thompson and Hunt, 1975, 1984 [520, 523]; Thompson and Schorrock, 1975 [525];
Thompson, 1982 [513]

B Thompson and Hunt, 1975 [520]; Hansen, 1977 [215]; Hunt, 1977, 1979, 1981 [240,
241, 242]; Huseyin and Mandadi, 1977 [249]

#Hui and Hansen, 1980, 1981 [237, 238]

“*Thompson and Gaspar, 1977 [515]; Samuels, 1979 [453]

17eeman, 1976 [576]

2Thompson and Hunt, 1977 [521]; Poston and Stewart, 1978 [429]; Hui, 1986 [233]

*3Britvec, 1973 [65]; Thompson and Hunt, 1973, 1984 [518, 523]; Budiansky, 1974 [72];
Huseyin, 1975, 1986 [247, 248]; Thompson, 1982 [513]; Potier-Ferry, 1987 [430]; El Naschie,
1990 [137]; Pignataro, Rizzi, and Luongo, 1991 [422]; Godoy, 2000 [189]



worldwide,* and was extended to plastic bifurcation of structures.*®

2.2 Search for prototype initial imperfections

The studies of imperfect structures presented above dealt with pre-specified
imperfection modes. There arose a question, “What is the imperfection to be
employed?” The geometrical imperfection in the shape of the relevant buck-
ling mode was used initially.%® For example, classical axisymmetric buckling
modes were used as initial shape imperfections for cylindrical shells,*” and
checkerboard imperfections were assumed for spherical shells.*® The un-
derlying belief that such initial imperfections realize the worst-case-scenario
was addressed later.*® In addition, dimple imperfections were employed as
realistic imperfections.®

In this connection, study on the worst imperfection drew considerable
attention.”® The worst imperfection vector of an imperfect cubic potential
system was proved to be in the direction of the perfect bifurcated path of
the largest slope.®? The worst imperfection shape of structures was studied

“Khot, 1970, 1970 [301, 302]; Amazigo and Fraser, 1971 [15]; Stephens, 1971 [489];
Masur, 1973 [354]; van der Neut, 1973 [545]; Bauld, 1974 [46]; Budiansky, 1974 [72]; Tver-
gaard, 1976 [539]; Budiansky and Hutchinson, 1979 [76]; Elishakoff, 1980 [140]; Almroth
and Rankin, 1983 [7]; Loughlan, 1983 [346]; Thompson and Hunt, 1983 [522]; Yamaki,
1984 [573]; Simitses, Shaw, and Sheinman, 1985 [476]; Hui, 1986, 1986 [232, 233]; Hui
and Chen, 1987 [234]; Hui and Du, 1987 [235]; Cohen and Haftka, 1989 [113]; Fan, 1989
[166]; Oyesanya, 1990 [396]; Padney and Sherbourne, 1991 [397]; Librescu and Chang,
1992 [335]; Kardomateas, 1993, 1997 [293, 294]; Ohsaki and Nakamura, 1994 [388]; Palas-
sopoulos, 1994 [405]; Britvec, 1995 [66]; Calladine, 1995 [87]; Fu and Waas, 1995 [175];
Sori¢, 1995 [484]; Triantafyllidis and Peek, 1995 [534]; Elishakoff, Li, and Starnes, 1996
[157]; Godoy and Mook, 1996 [191]; Lewis, 1997 [329]; Tabiei and Simitses, 1997 [498];
Tomblin, Barbero, and Godoy, 1997 [531]; Wu, 1999 [568]; Wu and Zhong, 1999 [569];
Lanzo, 2000 [327]; Li et al., 2000 [331]; Godoy and Banchio, 2001 [190]; Ohsaki, 2002
[386]; Jamal et al., 2003 [284]

*>Hutchinson, 1972, 1973 [252, 253]; Needleman, 1975 [376]; Needleman and Tvergaard,
1976 [378]; Byskov, 1982, 1982-83 [82, 83]; Wunderlich, Rensch, and Obrecht, 1982 [571];
Ming and Wenda, 1990, 1991 [362, 363]; Su and Lu, 1991 [493]; Feldman and Aboudi,
1993 [168]; Lu, Obrecht, and Wunderlich, 1995 [347]; Cheng and Lu, 1997 [95]

*®Koiter, 1963 [314]; Hutchinson and Amzigo, 1967 [254]; Budiansky and Amazigo, 1968
[73]; Hutchinson, 1968 [251]; Budiansky, 1969 [71]; Hansen and Roorda, 1974 [216]

*TKoiter, 1963 [314]

*8Hutchinson, 1967 [250]

**Tyergaard and Needleman, 1982 [542]; Ikeda and Murota, 2002 [270]

%0 Amazigo, Budiansky, and Carrier, 1970 [14]; Amazigo and Fraser, 1971 [15]; Amazigo,
1974 [11]

5! Arbocz, 1974 [19]; Ho, 1974 [227]; Sadovsky, 1978 [451]; Samuels, 1980 [454]; Nishino
and Hartono, 1989 [380]; Tkeda and Murota, 1990, 1990 [262, 263]; Murota and Ikeda,
1991 [367]; Bielski, 1992 [56]; Peek and Triantafyllidis, 1992 [416]; Triantafyllidis and
Peek, 1992 [533]; Peek, 1993 [414]; Deng, 1994 [126]; Wunderlich and Albertin, 2000 [570];
Tkeda, Oide, and Terada, 2002 [277]

%2Ho, 1974 [227]



in a more general setting,”® extended to imperfections other than structural
shapes,® and implemented into the framework of finite-element analysis.?®
Yet the application of the worst imperfection to realistic structures is not
necessarily widespread, as was represented by Bernard Budiansky’s ques-
tion, “One other related thought, that is only vaguely in my mind, is this:
Is it possible that a more predominant role should be given to worst-case
imperfections?” %6

In association with the development of techniques for measuring initial
imperfections, detailed knowledge of geometric imperfections of shells was
gathered.”” Compilation and extensive analysis of the international initial
data banks were pursued actively at the Delft University of Technology®®
and at the Israel Institute of Technology.’® These data banks are useful
in deriving characteristic initial imperfection distributions that a given fab-
rication process is likely to produce. At Imperial College, information on
measured imperfections was gathered to produce characteristic imperfection
shapes.5Y

2.3 Probabilistic scatter of critical loads

Through the search for the prototype imperfections, it came to be acknowl-
edged that initial imperfections are subjected to probabilistic scatter and
that the study of initial imperfections need to be combined with proba-
bilistic treatment to make them practical. As first postulated by Bolotin,
1958 [57], the critical load of a structure can be expressed as a function of a
number of random variables representing initial imperfections. The straight-
forward evaluation of the probability density function of the critical load is
divided into the following two stages:

1. Obtain the probability densities of the initial imperfections.

2. Compute the set of critical loads for a given set of initial imperfections

5*Peck and Triantafyllidis, 1992 [416]; Triantafyllidis and Peek, 1992 [533]; Peck, 1993
[414]

*lkeda and Murota, 1990, 2002 [262, 270]; Murota and Ikeda, 1991 [367]

5®Ikeda and Murota, 1990 [263]

¢ Arbocz and Singer, 2000 [31]

7 Arbocz and Babcock, 1968, 1969 [24, 25]; Arbocz and Williams, 1977 [32]; Verduyn
and Elishakoff, 1978 [553]; Guiggiani, 1989 [203]; Megson and Hallak, 1992 [358]; Chrys-
santhopoulos, Giavotto, and Poggi, 1995 [108]; Park and Kyriakides, 1996 [413]; Bernard,
Coleman, and Bridge, 1999 [53]; Pircher and Wheeler, 2003 [424]

58 Arbocz and Abramovich, 1979 [23]; Arbocz, 1981, 1982, 1982 [20, 21, 22]; Klompé,
1986, 1988, 1989 [307, 308, 309]; Dancy and Jacobs, 1988 [121]; Klompé and den Reyer,
1989 [310]; de Vries, 2001 [125]

5%Singer, Abramovich, and Yaffe, 1978, 1981 [480, 481]; Abramovich, Singer, and Yaffe,
1981 [2]

%08cott, Harding, and Dowling, 1987 [463]; Chryssanthopoulos, Baker, and Dowling,
1991, 1991 [106, 107]; Chryssanthopoulos and Poggi, 1995 [109]



and, in turn, to obtain the probability density function of the critical

load.

The first and the most difficult stage was tackled through a series of at-
tempts. For columns and bars, random imperfections were employed.®! For
shells, random axisymmetric imperfections®® and general (non-symmetric)
random initial imperfections®® were employed. Initial imperfections were
often assumed to be Gaussian random variables.* In addition to the initial
imperfection of structural shapes, various kinds of imperfections, such as
loadings,%® material properties (elastic moduli),°® and thickness variation®”
were considered.

To tackle the second stage, a series of studies were conducted, as intro-
duced below. The imperfection sensitivity law was used as a transfer func-
tion from an initial imperfection to the deterministic critical load and, in
turn, to obtain the probabilistic variation of critical load for an imperfection
with a known probabilistic property.®® Such use of imperfection sensitivity,
however, was limited to a certain prototype imperfection. As a remedy of
this, an initial imperfection was represented as a random process and the
method of stochastic differential equations was used to obtain an asymp-
totic relationship between the critical load and initial imperfection.®® A
branch of application of imperfection sensitivity was found in the optimiza-

®'Boyce, 1961 [62]; Fraser, 1965 [173]; Fraser and Budiansky, 1969 [174]; Amazigo,
Budiansky, and Carrier, 1970 [14]; Amazigo, 1971, 1976 [10, 12]; Bernard and Bogdanoff,
1971 [54]; Videc and Sanders, 1976 [555]; Elishakoff, 1979, 1980 [139, 141]; Miller and
Hedgepeth, 1979 [361]; Day, Karwowski, and Papanicolaou, 1989 [124]; Palassopoulos,
1989 [400]

2 Amazigo, 1969 [9]; Tennyson, Muggeridge, and Caswell, 1971 [502]; Amazigo and
Budiansky, 1972 [13]; Roorda and Hansen, 1972 [448]; Slooten and Soong, 1972 [547];
Elishakoff and Arbocz, 1982 [151]

% Arbocz and Babcock, 1968, 1969 [24, 25]; Makarov, 1971 [350]; Slooten and Soong,
1972 [547]; Amazigo, 1974 [11]; Fersht, 1974 [169]; Hansen, 1975, 1977 [213, 214]; Palas-
sopoulos, 1980 [399]; Elishakoff, 1985 [145]; Elishakoff and Arbocz, 1985 [152]; Arbocz and
Hol, 1991 [30]; Bielewicz et al., 1994 [55]; Schenk, Schuéller, and Arbocz, 2000 [460]

% Amazigo, 1969 [9]; Hansen and Roorda, 1974 [216]; Hansen, 1975, 1977 [213, 214];
Elishakoff, 1978, 1979 [138, 139]

%Roorda, 1980 [446]; Elishakoff, 1983 [144]; lkeda and Murota, 1990 [263]; Li, 1990
[330]; Li et al., 1995 [333]; Cederbaum and Arbocz, 1996, 1997 [90, 91]; Krdlak,
Kolakowski, and Kotetko, 2001 [324]

¢ Shinozuka, 1987 [473]; Bucher and Shinozuka, 1988 [69]; Kardara, Bucher, and Shi-
nozuka, 1989 [292]; Tkeda and Murota, 1990 [263]; Elishakoff, Li, and Starnes, 1994, 1996
[156, 157]

67 Tvergaard, 1976 [540]; Bielski, 1992 [56]; Koiter et al., 1994 [318]; Li et al., 1995 [332];
Gusic, Combescure, and Jullien, 2000 [206]

% Bolotin, 1958 [57]; Thompson, 1967 [509]; Roorda, 1969 [444]; Roorda and Hansen,
1972 [448]

% Amazigo, 1969, 1971, 1974 [9, 10, 11]; Fraser and Budiansky, 1969 [174]; Amazigo,
Budiansky, and Carrier, 1970 [14]; Amazigo and Budiansky, 1972 [13]; Slooten and Soong,
1972 [547]



tion of imperfection-sensitive structures.”® Sensitivity coefficients—design
sensttivity coefficients—of linear buckling load factor with respect to design
variables, such as stiffness and nodal locations, were employed for design.

The probability of failure was employed to express the influence of the
randomness of experimentally measured imperfections”™ and paved the way
for the introduction of the results of statistical methods.” A series of studies
based on measured data were conducted,”™ often with resort to the interna-
tional initial imperfection data banks, from which stochastic imperfections
with known average and autocorrelation can be produced. The Monte Carlo
simulation came to be conducted to compute numerically the reliability of
the buckling strength for measured or random initial imperfections.”™ An
asymptotic approach was combined with statistical analysis.”™ Koiter’s spe-
cial theory™® for axisymmetric imperfections was combined with the Monte
Carlo method” and, in turn, to introduce imperfection-sensitivity concept
into design procedure.” The Monte Carlo method was replaced by the first-
order second-moment method to reduce computational costs considerably.™

In order to overcome possible limitations of probabilistic methods,?’ a
few attempts to arrive at a lower bound of strength were conducted:

o Knockdown factor based on the so-called lower bound design philosophy
is the most primitive but most robust way.®! Engineers are reluctant
to use the concept of imperfection sensitivity and prefer to rely on the
knockdown factor, as was pointed out repeatedly.®?

o The reduced stiffness method finds a lower bound of design strength of

"Haug, Choi, and Komkov, 1986 [218]; Palassopoulos, 1989, 1991 [400, 401]; Ohsaki
and Nakamura, 1994 [388]; Reitinger and Ramm, 1995 [438]; Ohsaki, 2001 [385]

"Hansen and Roorda, 1974 [216]; Augusti and Barratta, 1976 [39]; Johns, 1976 [287];
Elishakoff, 1978, 1979 [138, 139]

"Bolotin, 1969, 1984 [58, 59]; Ang and Tang, 1975 [18]; Thoft-Christensen and Baker,
1982 [503]; Elishakoff, 1983 [143]; Augusti, Barratta, and Casciati, 1984 [40]; Ben-Haim,
1996 [49]; Haldar and Mahadevan, 2000 [208]

™ Arbocz and Babcock, 1976, 1978 [26, 27]; Tennyson, 1976 [501]; Elishakoff and Arbocz,
1982 [151]; Elishakoff, 1982, 1988 [142, 146]; Arbocz and Hol, 1990, 1991 [29, 30]; Turci¢,
1991 [536]; Tkeda, Murota, and Elishakoff, 1996 [271]; Doup, 1997 [134]; Pircher et al.,
2001 [423]; Lin and Teng, 2003 [336]

™Edlund and Leopoldson, 1975 [136]; Hansen, 1977 [214]; Elishakoff, 1978, 1979, 1980
[138, 139, 141]; Elishakoff and Arbocz, 1982 [151]; Wang, 1990 [559]; Palassopoulos, 1992
[403]

"Palassopoulos, 1991, 1992 [402, 403]; Trendafilova and Ivanova, 1995 [532]

"Koiter, 1963 [314]

""Elishakoff and Arbocz, 1982 [151]

78 Elishakoff, 1983, 1998 [144, 149]

Karadeniz, van Manen, and Vrouwenvelder, 1982 [289]; Elishakoff, van Manen, Ver-
meulen, and Arbocz, 1987 [162]; Arbocz and Hol, 1991 [30]

80Flishakoff, 2000 [150]

81 Weingarten, Morgan, and Seide, 1965 [562]; NASA, 1968 [373]

82 Arbocz and Hol, 1990 [29]; Elishakoff, Li, and Starnes, 2001 [158]
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a shell through the identification of the components of the membrane
energy that are eroded by imperfections and mode interactions.®3

e Convex modeling of uncertainty, robust reliability, and anti-optimization
approach were developed to estimate the lower bounds based on the
worst-case-scenario of problems where scarce knowledge is present
and the use of probabilistic method cannot be justified.®* The anti-
optimization approach was employed also for other purposes, such as
optimization.®

Finite element methods, such as STAGS,® were employed to deal with
realistic imperfections of structures and, in turn, to investigate the stochastic
properties and reliability of their strength. Koiter’s asymptotic approach
was combined with the finite element method to be consistent with computer
aided engineering environments.®7

Stochastic finite element methods (SFEM)®® or finite element method
for stochastic problems (FEMSP)® were employed to numerically tackle
the probabilistic properties of structures. The perturbation method was
employed for most cases to deal with random quantities involved, and the
second-moment analysis was often employed to compute the mean and the
variance of the displacement or stress. The elastic modulus was often mod-
eled as a random field in SFEM. See the exhaustive review by Schuéller,
1997 [462] for more account of SFEM.

The response surface approach was used to evaluate the reliability of
structures;:” nonlinear finite element analyses, for example, were conducted

82Croll, 1981 [118]; Croll and Batista, 1981 [119]

#Ben-Haim and Elishakoff, 1990 [50]; Elishakoff, 1990, 1991 [147, 148]; Lindberg, 1992
[338]; Ben-Haim, 1993, 1996 [48, 49]; Elishakoff and Colombi, 1993 [154]; Elishakoff, Cai,
and Starnes, 1994 [153]; Elishakoff, Haftka, and Fang, 1994 [155]; Elishakoff, Li, and
Starnes, 1994, 2001 [156, 158]; Lombardi and Haftka, 1998 [345]; Zingales and Elishakoff,
2000 [583]; Papadimitriou, Beck, and Katafygiotis, 2001 [408]

85 Adali et al., 1994, 1997 [3, 4]; Lee et al., 1994 [328]

8 Almroth et al., 1973 [6]; Arbocz and Babcock, 1978 [27]

8 Haftka, Mallet, and Nachbar, 1971 [207]; Arbocz and Hol, 1989, 1990 [28, 29]; Cas-
ciaro, Salerno, and Lanzo, 1992 [89]

88 Astill, Nosseir, and Shinozuka, 1972 [37]; Nakagiri and Hisada, 1980, 1985 [371, 372];
Handa and Andersson, 1981 [212]; Hisada and Nakagiri, 1981 [224]; Vanmarcke and Grig-
oriu, 1983 [549]; der Kiureghian, 1985 [128]; Liu, Belytschko, and Mani, 1986, 1986
[341, 342]; Liu, Besterfield, and Mani, 1986 [343]; Vanmarcke et al., 1986 [550]; Benaroya
and Rehak, 1988 [51]; der Kiureghian and Ke, 1988 [129]; Shinozuka and Yamazaki, 1988
[474]; Hisada and Noguchi, 1989 [225]; Ghanem and Spanos, 1991 [184]; Kleiber and
Hien, 1992 [306]; Ramu and Ganesan, 1993 [434]; Brenner and Bucher, 1995 [63]; Hoshiya
and Yoshida, 1995 [230]; Zhang and Ellingwood, 1995 [580]; Zhang et al., 1996 [579];
Papadopoulos and Papadrakakis, 1998 [409]; der Kiureghian and Zhang, 1999 [130]; El-
ishakoff and Ren, 1999 [160]; Matthies and Bucher, 1999 [357]; Haldar and Mahadevan,
2000 [200]

8 EBlishakoff and Ren, 2003 [161]

®0Faravelli, 1989 [167]; Bucher and Bourgund, 1990 [68]; Rajashekhar and Ellingwood,
1993 [433]; Liu and Moses, 1994 [344]; Myers and Montgomery, 1995 [370]; Kim and
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for the parameter sweep of a few initial imperfections and /or design param-
eters to evaluate the reliability.

2.4 Bifurcation mechanism for strength of materials

The study of the scatter of strength of materials followed a completely dif-
ferent course of development than that of structures. Weibull, 1939 [561]
derived a famous distribution of the strength of materials due to fracture on
the basis of the weakest link theory.

Bifurcation mechanism was taken into consideration in the description
of strength of materials, as introduced below:

e In mechanical instability of stressed atomic crystal lattices?" and in
numerical simulation of a long tensile steel specimen undergoing plastic
instability,”? a nearly coincidental pair of critical points of a bifurcation
point and a limit point of loading parameter was found. Such a pair of
points was approximated by a hilltop branching (bifurcation) point, at
which the pair of points coincide strictly. This hilltop point was shown
to enjoy locally piecewise linear imperfection sensitivity,”® which is less
severe than the two-thirds power-law for a simple pitchfork bifurcation
point.

e A structural form comprising of n unlinked separate identical cells
underwent explosive bifurcation at a hilltop bifurcation point with n-
fold criticality and as many as 2" bifurcated paths.?*

e Strictly coincidental hilltop branching points were found through op-
timization of structural systems.””

e Plastic bifurcation, through the formation of shear band, is acknowl-
edged to govern the strength of materials, such as metals”® and geoma-
terials.”” The horizon of the study of (elastic) bifurcation is extending
towards the failure and deformation of materials. Elastic, diffuse mode

Na, 1997 [303]; Chryssanthopoulos, 1998 [105]; Venter, Haftka, and Starnes, 1998 [552];
Das and Zheng, 2000 [122]; Gayton, Bourinet, and Lemaire, 2003 [183]; Falsone and
Impollonia, 2004 [165]; Gomes and Awruch, 2004 [199]; Gupta and Manohar, 2004 [205];
Romero, Swiler, and Giunta, 2004 [439]

®!Thompson and Schorrock, 1975 [525]; Thompson, 1982 [513]

®?Needleman, 1972 [375]; Hutchinson and Miles, 1974 [256]; Burke and Nix, 1979 [78];
Okazawa et al., 2002 [390]

®*Thompson and Schorrock, 1975 [525]; Thompson, 1982 [513]; Ikeda, Oide, and Terada,
2002 [277]; Okazawa et al., 2002 [390]

*!lkeda, Providéncia, and Hunt, 1993 [279]

®*QOhsaki, 2000, 2003 [383, 387]

®¢Hill and Hutchinson, 1975 [222]; Young, 1976 [575]; Needleman, 1979 [377]

*"Vermeer, 1982 [554]; Prevost, 1984 [431]; Vardoulakis, 1986 [551]; Chau and Rudnicki,
1990 [93]
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bifurcation was shown to occur in soil specimens through the combi-
nation of asymptotic method, group-theoretic bifurcation theory, and
numerical procedure.”® This combined procedure was successfully ap-
plied to the stochastic description of the strength of steels and low
strength concretes.””

2.5 Symmetry and bifurcation phenomena

The underlying role of symmetry of structures undergoing bifurcation was
gradually understood through the application of the asymptotic approach
to individual structural systems. The symmetry systematically annihilates
certain terms of the potential function to create coincidental and compound
bifurcations, at which complex but interesting phenomena emerge. Major
developments are:

e The reflection symmetry with respect to two independent variables
was imposed on the Taylor expansion of the potential function, for a
twofold coincidental bifurcation point.!%°

e For double-cusp catastrophe, all cubic terms of the potential are anni-
hilated by the symmetry in combination of the two modes competing
at the coincidental point.'0!

e Complex secondary bifurcations, often forming loops, were found in
association with compound branching'®? and the relation with sym-
metries was studied under the names of semi-symmetry'®® and hidden
symmetry.104

e The Augusti model'®®

sign parameter to generate secondary branching at near-coincidence
and direct branching at strict-coincidence.'®® At the coincidence (op-
timization), the model is endowed with three-axes symmetry, which is

was studied by the parametric sweep of a de-

higher than two-axes symmetry at near-coincidence.

8 ]keda and Goto, 1993 [259]; lkeda and Murota, 1996, 1997, 1999, 2002 [267, 268, 269,
270]; Tkeda, Chida, and Yanagisawa, 1997 [258]; Tkeda et al., 1997 [274]; Tkeda, Yamakawa,
and Tsutsumi, 2003 [280]

**Ikeda et al., 1997, 2001 [260, 278]; Okazawa et al., 2002 [390]

190 Chilver, 1967 [98]; Supple, 1967 [494]; Mandadi and Huseyin, 1978 [351]

1% Thompson, 1984 [514]

192 Chilver, 1967 [98]; Supple, 1967, 1968 [494, 495]; Thompson and Supple, 1973 [526];
Keener, 1974, 1979 [295, 296]; Bauer, Keller, and Reiss, 1975 [45]; Cowell, 1986 [114];
Bousfield and Samuels, 1989 [61]

1% Thompson and Hunt, 1975 [520]; Hunt, 1977, 1979, 1981 [240, 241, 242]

9% Golubitsky, Marsden, and Shaeffer, 1984 [192]; Hunt, 1986 [243]; Hunt, Williams, and
Cowell, 1986 [245]

19% Augusti, 1964 [38]

9% Thompson and Hunt, 1973, 1984 [518, 523]
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e Higher symmetry leads to complex bifurcation behavior. Complete
spherical shells displayed rotationally-symmetric branching.'%” Dia-
mond and other characteristic patterns were observed in cylindrical
shells.'%®  Axisymmetric and regular-polygonal shell and domes have
double bifurcation points, at which complex but interesting phenom-
ena take place, as we will see in Section 6.199

e Patterns appear ubiquitously for materials. The echelon mode can, for
example, be found in various materials: soils,''% rocks,'!!

als.''?  Periodic shear bands of materials forming an echelon mode
114

and met-

were simulated.''® The cross-checker pattern was found in metals
and in the zebra patterns on the ocean floors.''® A self-similar pattern
model has been introduced.''® The instability of a shell surface was
employed to produce intriguing patterns of plants, such as sunflower
and snapdragon.!?

e Honeycomb structures, which have regular-hexagonal and in-plane
translational symmetries, subjected to compression exhibited a se-
ries of characteristic deformation patterns during experiments.''® A
flower mode was observed experimentally''® and simulated success-
fully by finite-element buckling/bifurcation analyses.!?® A gigantic
honeycomb-like pattern'?! was found as a consequence of a secondary
branching of an elasto-plastic honeycomb structure.!?

197 Thompson, 1964 [506]; Lange and Kriegsmann, 1981 [326]

198 Yoshimura, 1951 [574]; Esslinger and Geier, 1976 [163]; Yamaki, 1976, 1984 [572, 573]

1%%Tkeda, Murota, and Fujii, 1991 [272]; Wohlever and Healey, 1995 [566]; Fujii et al.,
2001 [176]; Tkeda and Murota, 2002 [270]

H1O07keda, Murota, and Nakano, 1994 [273]; Ikeda and Murota, 1997 [268]

"1 Pollard, Segal, and Delaney, 1982 [427]; Davis, 1984 [123]; Petit, 1988 [417]; Smith,
1995 [482]

12 Poirier, 1985 [426]; Bai and Dodd, 1992 [42]; Duszek—Perzyna and Perzyna, 1993 [135]

13 Petryk and Thermann, 2002 [418]

14 Voskamp and Hollox, 1998 [558]

1% Nicolas, 1995 [379]

118 Archambault et al., 1993 [33]

" Karam and Gibson, 1995, 1995 [290, 291]; Green, Steele, and Rennich, 1996 [202];
Green, 1999 [201]; Steele, 2000 [488]

18Gibson et al., 1989 [186]; Papka and Kyriakides, 1994 [410]; Gibson and Ashby, 1997
[185]; Triantafyllidis and Schraad, 1998 [535]; Zhu and Mills, 2000 [582]

19 Papka and Kyriakides, 1999 [411]

120Chung and Waas, 1999, 2001 [110, 111]; Guo and Gibson, 1999 [204]; Papka and
Kyriakides, 1999 [412]; Ohno, Okumura, and Noguchi, 2002 [381]; Okumura, Ohno, and
Noguchi, 2002 [391]

1211 arge circles are formed as an assemblage of a number of deformed hexagonal cells
and such circles are regularly arranged in space to form this pattern.

122 0kumura, Ohno, and Noguchi, 2004 [392]
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2.6 Mathematical treatment of symmetry in bifurcation

Mathematical treatment of symmetry in science can be found in introductory
books.'?? Group is an established means to describe geometrical symme-
try and its theoretical backgrounds are readily available.!?* The symmetry
of molecules and crystals was studied in chemical crystallography to invent
the point groups, which describe the spatial symmetry around a point.!?®
Group-theoretic method, such as group representation theory, for crystallo-
graphic symmetries was employed to generate constitutive relations of ma-
terials.!26

Among these groups, we are particularly interested in the dihedral groups
D, (for some integer n) and D.,, which respectively represent regular-
polygonal and circular symmetries. (The definition of these groups will
be given in Section 6.1.) In fact, the symmetry of the structures introduced
above can be labeled by groups as follows:

e Reflection symmetry with respect to an independent variable: Dji-
symmetry.

e The Augusti model: Dy-symmetry at near-coincidence and Ds-symmetry
at strict-coincidence.

e Shells and domes of revolution and perfectly spherical shells: D,- (n
large) or Do,-symmetry in the circumferential direction.

We now shift an eye on bifurcation theory in nonlinear mathematics,
which took a somewhat separate course of development, but formed the
foundation of elastic stability theory and turned out to be vital in the clas-
sification and investigation of multiple bifurcation points of structures. Early
development of branching theory can be traced to the use of nonlinear per-
turbation theory.'?”
mathematical interest,!?® and blossomed into universal unfolding!?® to de-
scribe general forms of imperfect systems at the presence of general initial
imperfections.

Perfect and imperfect bifurcation behavior drew keen

128 Weyl, 1952 [565]; Stewart and Golubitsky, 1992 [491]; Baggot, 1994 [41]; Icke, 1995
[257]; Rosen, 1995 [449]

124 Curtis and Reiner, 1962 [120]; Hamermesh, 1962 [211]; Hall, 1967 [210]; Miller, 1972
[360]; Hill, 1975 [223]; Serre, 1977 [465]; Rotman, 1984 [450]; Armstrong, 1988 [34]; James
and Liebeck, 1993 [285]; Ludwig and Falter, 1996 [348]; Kim, 1999 [304]

1257 add, 1989 [325]; Senechal, 1990 [464]; Prince, 1994 [432]; Kettle, 1995 [299]; Ludwig
and Falter, 1996 [348]; Kim, 1999 [304]

126Kiral and Smith, 1974 [305]; Choudhury and Glockner, 1979 [101]; Zhong and del
Piero, 1991 [581]; Cowin and Mehrabadi, 1995 [115]; Hong and Liu, 1999 [228]; Liu, 2003
[340]

127 Poincaré, 1892-1899 [425]

128K eener and Keller, 1973 [297]; Hansen and Roorda, 1974 [216]; Keener, 1974 [295];
Chow, Hale, and Mallet-Panet, 1975, 1976 [103, 104]; Matkowsky and Reiss, 1977 [356];
Reiss, 1977 [437]; Golubitsky and Schaeffer, 1979, 1979 [193, 194]

122 Golubitsky and Schaeffer, 1979, 1985 [193, 195]
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Group-theoretic bifurcation theory made great progress in the 1980’s to
describe the mechanism of instability and chaos,'®? and of pattern formation
of flows.!®! This theory was applied to the numerical computation of the
global bifurcation problems with symmetry.!3? The loss of symmetry at the
onset of bifurcation can be investigated theoretically by local bifurcation
analysis using the Liapunov—Schmidt reduction and the exploitation of the
symmetry of the bifurcation equation.'®® The rule of such bifurcation can be
determined by the symmetry of the system under consideration, and possible
critical points and bifurcated solutions can be classified systematically.

A number of attempts have been conducted to introduce the method-
ology of group-theoretic bifurcation theory to the study of structures. The
direct, secondary, tertially, ... bifurcations of structures with axisymmetric
and regular-polygonal symmetries, such as reticulated domes and cylindri-
cal shells, were studied as a bifurcation problem of dihedral-group symme-
try.13* The emergence of the secondary branching, as was observed for the
Augusti model, can be ascribed with the presence of an initial imperfection
with partial symmetry (cf., Section 6.3).1%% Block-diagonalization method
was employed to exploit symmetry and to reduce the computational cost
involved.!3% Related mathematical results for a bifurcation problem of a

137 and block diagonalization'® are

system with dihedral-group symmetry
available.

Hidden periodic symmetry was investigated by employing periodic bound-

130Qattinger, 1980 [457]; Golubitsky and Schaeffer, 1985 [195]; Golubitsky, Stewart, and
Schaeffer, 1988 [198]; Mitropolsky and Lopatin, 1988 [364]; Allgower, Bohmer, and Golu-
bitsky, 1992 [5]; Marsden and Ratiu, 1994 [353]; Olver, 1995 [395]; Golubitsky and Stewart,
2002 [197]; Tkeda and Murota, 2002 [270]

131 Schaeffer, 1980 [459]; looss, 1986 [281]; Tooss and Joseph, 1990 [283]; Bakker, 1991
[43]; Crawford and Knobloch, 1991 [117]; looss and Adelmeyer, 1992 [282]; Chossat, 1994
[99]; Chossat and looss, 1994 [100]; Marsden and Ratiu, 1994 [353]; Seydel, 1994 [472];
Buescu et al., 2000 [77]; Moehlis and Knobloch, 2000 [365]; Okamoto and Shoji, 2001 [389]

132 Werner and Spence, 1984 [564]; Weinitschke, 1985 [563]; Healey, 1988 [220]; Dellnitz
and Werner, 1989 [127]; Gatermann and Hohmann, 1991 [181]; Stork and Werner, 1991
[492]

138 Qattinger, 1978, 1979 [455, 456]; Vanderbauwhede, 1982 [548]; Golubitsky and Scha-
effer, 1985 [195]; Golubitsky, Stewart, and Schaeffer, 1988 [198]; Allgower, Bohmer, and
Golubitsky, 1992 [5]; Tkeda and Murota, 2002 [270]

13 Healey, 1988 [219]; lkeda, Murota, and Fujii, 1991 [272]; Gatermann, 1993 [180];
Gatermann and Werner, 1994 [182]; Wohlever and Healey, 1995 [566]; Ikeda and Murota,
2002 [270]

13%]keda and Murota, 2002 [270]

136 Healey, 1988 [219]; Zlokovié, 1989 [584]; Dinkevich, 1991 [131]; Healey and Treacy,
1991 [221]; Tkeda and Murota, 1991 [265]; Murota and Tkeda, 1991 [366]

197 Sattinger, 1979 [456]; Fujii, Mimura, and Nishiura, 1982 [177]); Buzano, Geymonat,
and Poston, 1985 [80]; Golubitsky and Stewart, 1986 [196]; Golubitsky, Stewart, and
Schaeffer, 1988 [198]; Dellnitz and Werner, 1989 [127]

138 Bossavit, 1986 [60]; Chen and Sameh, 1989 [94]; Gatermann and Hohmann, 1991
[181]; Stork and Werner, 1991 [492]; Gatermann and Werner, 1994 [182]; Govaerts, 2000
[200]
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d 139
40

aries. The bifurcation hierarchy of a rectangular plate was investigate
Bifurcation mechanism underlying echelon mode formation was made clear.!
As a model for geometrical patterns of joints and folds, bifurcation mecha-
nism for pattern formation in three-dimensional uniform materials was stud-
ied.!! Group-theoretic study of honeycomb patterns is underway.!*2
Recently, the importance of the asymptotic approaches has been revived
through the combination with group-theoretic bifurcation theory. As will be
reviewed in Section 6, the explicit formulas for bifurcation equation, imper-
fection sensitivity laws, probabilistic variation of strength, and experimen-
tally observed bifurcation diagram were obtained for the double bifurcation

point of a system with dihedral-group symmetry.!4?

3 SIMPLE CRITICAL POINTS

The general framework of the asymptotic approach is presented and is ap-
plied to simple critical points. The explicit forms of bifurcation equation,
imperfection sensitivity laws, probabilistic variation of strength, and exper-
imentally observed bifurcation diagram are presented.

3.1 General framework

The general framework to describe the asymptotic behavior in the neighbor-
hood of a critical point is presented. Among a few alternatives for deriving
the bifurcation equation, we employ here the method'** employing the Tay-
lor expansion of the bifurcation equation in favor of its simplicity so as to
make the discussion accessible for engineers.'*®> This method can imple-
ment a large number of initial imperfections and, hence, is suited for the
description of realistic structures.
We consider a system of nonlinear governing or equilibrium equations

F(u, f,v)=0, (1)

where u € RY indicates an N-dimensional independent variable vector (R
is the set of real numbers); f € R denotes a bifurcation parameter; and
v € RP denotes a p-dimensional imperfection parameter vector. We assume

1%%]keda and Nakazawa, 1998 [275]

149Tkeda, Murota, and Nakano, 1994 [273]; Murota, Ikeda, and Terada, 1999 [369]; Tkeda
et al., 2001 [261]

Y Tanaka, Saiki, and lkeda, 2002 [499]

14284iki, Tkeda, and Murota, 2004 [452]

18 Murota and lkeda, 1991, 1992 [367, 368]; lkeda and Murota, 1993, 1999, 2002 [266,
269, 270]

1%700ss and Joseph, 1990 [283]; Ikeda and Murota, 2002 [270]

1% The expansion of the potential was employed, for example, by Thompson, 1963 [505];
Supple, 1967 [494]; Chilver, 1967 [98].
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that F : RV x R x R? — RY is a sufficiently smooth nonlinear function in
u, f, and v. Note that we deal with a finite-dimensional problem, mainly
for mathematical simplicity.'6

For a fixed v, solutions (u, f) = (u(v), f(v)) of the above system of
equations (1) make up solution curves. The solution points are divided into
two types, ordinary or critical points, according to whether the Jacobian
matriz (or the tangent stiffness matriz in structural mechanics)

o fov) = () = (52) )

is nonsingular or singular. That is,

det(J(u, f,v)) = {

nonzero at an ordinary point, 3
0 at a critical (singular) point, 3)
where det(-) denotes the determinant of the matrix therein.

In a sufficiently small neighborhood of an ordinary point, the implicit
function theorem applies, and for each f there exists a unique u = u(f)
such that (u(f), f) is a solution to (1). Here the imperfection parameter v
is kept fixed and, therefore, suppressed in the notation u = u(f).

In the neighborhood of a critical point, say (uc, fo) = (uc(v), fe(v)),
an interesting phenomenon can possibly occur, where (). denotes a vari-
able related to the critical point. The Jacobian matrix J. = J(u., f.,v) at
(ue, fe,v) is singular by the definition of a critical point, i.e.,

det[J (ue, fe, v)] =0, (4)

and the behavior of u = u(f) around (u., f.) is not governed by the implicit
function theorem. This admits the possibility of bifurcation, the emergence
of multiple solution paths.

The multiplicity M of a critical point (u., f.) is defined as the rank
deficiency of the Jacobian matrix, that is,

M = dim[ker(J.)] = N — rank(J.),

where ker(.J.) denotes the kernel space of .J. defined as ker(J;) = {u | Jou=
0}. The critical point (uc, f.) is a simple point or a multiple point according
to whether M =1or M > 2.

Let{¢ | i=1,...,M}and {n, | i=1,..., M} be two families of the

space!®” of independent vectors of RV such that

elJ. =o', Jen; =0, i=1,...,M. (5)

15We aim at presenting the main ideas for engineers without sacrificing the mathematical
rigor. To this end we restrict ourselves to finite-dimensional equations. For a thorough
treatment, the reader is referred to Sattinger, 1979 [456]; Chow and Hale, 1982 [102];
Golubitsky and Schaeffer, 1985 [195].

147We intend {n,} to be a basis of the space of the vectors u, and {¢;} a basis (of the
values) of F. The bases need not be orthogonal, although orthogonal bases are a natural
choice for a potential system.
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Such vectors §; (i = 1,..., M) are called the left critical eigenvectors, and
n; (1 = 1,..., M) the right critical (eigen)vectors. Note that {§ | i =
l,...,M}yand {n; | i=1,...,M} span the kernel of (J.)* and .J, respec-
tively. Also note that orthogonality is not imposed in general, although it
is a natural and convenient requirement in some cases. Critical eigenvectors
play a crucial role in deriving a reduced system of equations, the bifurcation
equation, in Section 3.2.
For the imperfection parameter vector v, we often express it as

v=v"4+ed, (6)

where vV denotes the value of the imperfection parameter vector v for the
perfect system, d is called the imperfection pattern vector (normalized ap-
propriately), and € denotes the magnitude of initial imperfection that repre-
sents the amount of deviation from the perfect case (e can be negative). We
define the imperfection sensitivity matriz, B(u, f,v), as the N x p matrix
consisting of the partial derivatives of I; with respect to v;, i.e.,

Bl fov) = Stn fv) = (51). M

This matrix plays the major role in the analysis of the effect of imperfections.

In what follows we use (-)° to denote variables associated with the
perfect system. For example, we express by (u?, f%) a critical point for
the perfect system described by v = v% and put J° = J(u?, f9,v°) and
B = B(u?, f0,v9).

yJC?

3.2 Liapunov—Schmidt reduction

In this section we explain a standard procedure, the Liapunov-Schmidt re-
duction, that reduces the whole system of equations to M equations locally
in a neighborhood of a critical point of multiplicity M. The Liapunov—
Schmidt reduction can be done in a fairly general setting of functional equa-
tions, but we explain the main ideas for a simple critical point (M = 1) of
the finite-dimensional equation (1).

Let (u?, f9) be a simple critical point of the perfect system with v = v,
and we set M = 1 in the formulation of Section 3.1. We express the state
variable u as

N
u=ul+y wm; (8)
i=1
in terms of incremental variables (w; | j = 1,...,N), and express the
bifurcation parameter f as N
F=1+7 (9)

where f means the increment of f.
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With the use of these incremental variables, the original system (1) of
equations is rewritten as

N
E1F (W24 X wymy, £+ Fov) =0, (10)
7=1
N o~
6?F(u2+2wmj,f£+f7v):0, i=2,...,N. (11)
7=1

Equations (10) and (11) give a decomposition of the original system (1) into
two parts; the latter (11) is for the range space of .J? and the former (10) is
for its complement.

The Jacobian matrix on the left-hand side of (11) with respect to w;
(7=2,...,N), evaluated at w; =0 (j =1,2,...,N), f=0 and v=v°, is
nonsingular. Therefore, by the implicit function theorem, (11) can be solved
locally for w; (j =2,...,N) as

wj:c,oj(w,f,v), j=2,...,N, (12)
where w = w; and
©;(0,0,v% =0, j=2,...,N. (13)

On substituting this into (10) we obtain a reduced equation

F(w,f,v)=0 (14)
in w, where
~ ~ N o~ ~
Flw, fov) = €1F (w4 wny + Y ylw, Fovimg 04 Fov). (19)
7=2

This reduced equation (14) is called the bifurcation equation. 1t is em-
phasized that the reduction to (14) is valid locally in a neighborhood of
(2, 12, v°).

The key to the reduction to the single equation (14) is the elimination of
w; (7 =2,...,N) on the basis of the nonsingularity of the Jacobian matrix
of (11). Hence the equation (14) is also valid for an imperfect system with
v approximately equal to v°.

The solutions (w, f,v) to the bifurcation equation (14) are in one-to-
one correspondence through (12) with the solutions (u, f,v) of the original

system (1), i.e.,

N
11:u(w,f,V):u2‘|‘wn1+z@j(w7f7v)nj7 (16)

i=2
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e >0
\ e=10
e<0
(a) Limit point (b) Transcritical (c) Pitchfork

Figure 1: Solution curves in the neighborhood of simple critical points ex-
pressed by the leading terms of the bifurcation equation. ———: path for
the perfect system; — — —: path for an imperfect system; thick line: stable;
thin line: unstable; o: bifurcation point; e: limit point.

in the neighborhood of (u?, f0,v%). Hence the qualitative picture of the
solution set of the original system (1) is isomorphic to that of the bifurcation
equation (14). In this connection it is noted that the criticality condition

(4) for the original system (1) is now translated into the criticality condition
OF
— =0 17
Jw (17
for the bifurcation equation. This means, in particular, that the critical load
fo of an imperfect system can be determined from (14) and (17).

3.3 Bifurcation equation and imperfection sensitivity laws

Although the direct use of the bifurcation equation (14) in the investigation
of the bifurcation behavior is difficult in general, it is much simpler and
pertinent to investigate its asymptotic behavior by expanding the bifurcation
equation into power series and examining the leading terms.

Referring to v.=v® 4 ed in (6), we regard € as an independent variable
for imperfection, whereas d is assumed to be constant. With the notation
]3(107 1, €)= ]5(107 1, vY+ed), the bifurcation equation (14) can be expressed,
alternatively, as

F(w, f,e) = 0. (18)

We can grasp the essential nature of (18) by expanding Finto a power series
involving an appropriate number of terms

ﬁ(w,f, €) ~ ZZZAijkwifjek. (19)

1=0 7=0 k=0
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The coefficient Agg1, which represents the influence of the imperfection
on the bifurcation equation, is given by

Aoor = & B (20)

with B defined in (7). We assume Agg1 # 0 in the sequel, while imperfection
patterns with Agg; = 0 are called the second order initial imperfections. '8

We can classify equilibrium points satisfying the bifurcation equation
(18), based on the vanishing or nonvanishing of the coefficients A;;;, in the
expansion (19). The bifurcation equation (18) for simple critical points
reads:

F(w7 /s 6) =
A200w2 + A010f+ A0016 + h.o.t. =0 at the limit pOiIlt7
Asoow? + Aviowf + Ao20f* + Agore + h.o.t. =0
at the transcritical bifurcation point,
Aspow® + Aviow f + Ao20f? + Agore + h.o.t. =0
at the pitchfork bifurcation point,
1)
where h.o.t. denotes the higher-order terms. The transcritical and pitchfork
points are often called asymmetric and symmetric (cusp) points of bifurca-
tion, respectively.'?® Solution curves in the neighborhood of simple critical
points expressed by the leading terms of the bifurcation equation are shown
in Fig. 1.
The imperfection sensitivity laws can be derived by solving simultane-
ously the bifurcation equation (21) and the criticality condition 8]3/810 =0
explained in (17). The explicit forms of these laws are!®°

C(d)e at the limit point,
fe~$ C(d)|e]'? at the transcritical bifurcation point, (22)
C(d)e*/?  at the pitchfork bifurcation point.

The coefficient C'(d) is given by

~ Aoot
Aoto
B ( 4| Ag00Agon | )1/2
Aq10% — 442004020

at the limit point,

at the transcritical point

2
(exists for Azp0Agore > 0), (23)

B 3As00'/? (Aom
Ao 2

148 Roorda, 1965, 1968 [442, 443]; Ohsaki, 2001 [384]
1 Thompson and Hunt, 1973 [518]

150K oiter, 1945 [311]; Thompson, 1965 [507]; Ikeda and Murota, 1990, 1990, 2002 [262,
263, 270]

2/3
) at the pitchfork bifurcation point.
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This way to derive the imperfection sensitivity laws is sometimes called the
Liapunov—Schmidt—Koiter approach.'®! In contrast, there is a direct method
to compute the location of a bifurcation point by solving numerically the
extended system of a nonlinear governing equation.!®?

3.4 Probabilistic scatter of critical loads

The probabilistic properties of critical loads can be formulated systemati-
cally in an asymptotic sense (when initial imperfections are small). Given
the joint probability density function of d = (dy,...,d,)T, the probability
density function of Agg1 = §1TB8d can be calculated. Then a simple trans-
formation from Agg; to the critical load f. via (22) with (23) yields the
probability density function of f..

We shall investigate the behavior of f. when the initial imperfection
v—v? = ed is subject to the normal distribution N(0, 2W) with mean 0 and
variance—covariance matrix ¢?W, where W is a positive-definite symmetric
matrix. The probability density function of critical load is dependent on the
types of critical points as follows:

1

Vor

exp(—¢?/2), —00 < ( < o0
at the limit point,

ﬂex —¢* —00
0= Vor p(=¢"/2), <(<0 24)

at the transcritical bifurcation point,

3/¢|1/2
27

exp(—[¢[*/2), —o0< (<0,

at the unstable pitchfork bifurcation point,

where ¢ = (f. — f°)/C denotes the normalized critical load increment with
a proper scaling C.

As a numerical example, we employ a finite beam on a nonlinear founda-
tion with an initial shape imperfection. The normalized initial imperfection
w(n) is assumed to be a Gaussian random function of the position 7 with
given mean function and autocorrelation function. The differential equa-
tion of the beam was discretized and was numerically solved to arrive at
the nondimensional buckling load f., which was governed by an unstable
pitchfork bifurcation point. Figure 2 shows the numerical histogram of f.
produced by the Monte Carlo method for an ensemble of 1000 beams with
the Gaussian imperfections prescribed above.!®?

151 Peek and Triantafyllidis, 1992 [416]

152Geydel, 1979, 1979 [470, 471]; Werner and Spence, 1984 [564]; Wriggers and Simo,
1990 [567]

158 Flishakoff, 1979 [139]
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The random variation of critical loads of the beam is described by the
present theory.'>® The values of f° and C listed on the right of Fig. 2 were
computed so that the numerical histogram of f. and the probability density
function in (24) have the same mean and variance. For the unstable pitchfork
bifurcation point, which governs the critical load in this case, the value of
2 =0.99 computed is close to its theoretical value, 1.00. We computed the
curves of the probability density function for various types of critical points
in Fig. 2. The theoretical curve applicable to this case cannot be identified
through a mere comparison of the histogram with the theoretical curves.
This emphasizes the importance of the knowledge on the type of bifurcation
point, an unstable pitchfork for this case.

3.5 Experimentally observed bifurcation diagrams

There is a gap between bifurcation diagrams in mathematical theory and
those in engineering practice in the exzperiment of materials undergoing bi-
furcation. In mathematical theory, a canonical coordinate for mathematical
convenience is chosen to be the abscissa of a bifurcation diagram, whereas a
physically meaningful variable is a natural choice of an abscissa in the bifur-
cation diagram obtained by an analysis or experiment in engineering. Bifur-
cation diagrams observed in engineering experiments may be qualitatively
different from those in mathematics, as illustrated in Fig. 3 for a pitchfork
bifurcation point (possible observed bifurcation diagrams in Fig. 3(a) and
(b) in comparison with a mathematical bifurcation diagram in Fig. 3(c)).

The reason for such a qualitative difference may be explained as follows.
A bifurcation diagram is obtained as the projection of the solution path in a
higher-dimensional space to a two-dimensional plane. The resulting picture
naturally depends on the chosen projection. A canonical choice of the pro-
jection yields the mathematical bifurcation diagram (see Fig. 3(c)), whereas
an arbitrary choice would result in a diagram like the one in Fig. 3(b),
which is qualitatively similar to the mathematical diagram. If the direction
of the projection happens to be so special that it is perpendicular to the
bifurcated path, the resulting diagram looks like the one in Fig. 3(a), which
is qualitatively different from the mathematical diagram. Such an excep-
tional situation occurs quite often in engineering experiments as a natural
consequence of geometrical symmetry. In order to fill the gap due to this
difference, the theory on initial imperfections is tailored to be applicable to
experimentally observed diagrams.!®®

The bifurcation equation (21) expresses an relationship between w and
fwith an imperfection parameter e. We here transform the variable w into
an observed variable u, in Fig. 3(a) or uy in (b). (We hereafter call u,
the symmetric displacement and u; the nonsymmetric displacement.) Then

154 Tkeda, Murota, and Elishakoff, 1996 [271]
%% Jkeda and Murota, 1999, 2002 [269, 270]

24



200

7 — — — I limit

g 150 — _— | e . transcritical

% : pitchfork

[}

B 100 —

g 0

c T I¢C

Z o0 limit 0.86 | 0.069

transcritical | 1.03 | 0.20

0 pitchfork 0.99 | 0.16
0.6

Figure 2: Comparison of a numerical histogram and semiempirical probabil-
ity density functions of the critical load f. for the finite beam on a nonlinear
elastic foundation [271] (Nondimensional buckling load satisfies f2 = 1).

Figure 3: Choice of projections in drawing bifurcation diagrams. (a) and
(b) experimentally observed bifurcation diagrams and (c) a mathematical

diagram at an unstable pitchfork bifurcation point. ———:

curve for the

perfect system; — — —: curve for an imperfect system; o: bifurcation point;

e: limit point.
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from the bifurcation equation (21) for a pitchfork bifurcation point, we can
arrive at the asymptotic expression for the curve of an imperfect system for
an observed variable

i — f/E [f—l— p(u — f/E)] + ge+ h.o.t. =0, symmetric displacement

(u— f/E)f—l— p*(u — f/E)S + ¢*¢+ h.o.t. =0, nonsymm. displacement
25)
where # denotes the increment of w, or u; from the value at the critical
point of the perfect system; F, p, ¢, p*, and ¢* are constants.

As an example of symmetric displacement, we consider the experimental
curves of the deviatoric stress o, versus the axial strain £, shown in Fig. 4.
These curves are simulated by the first equation of (25) shown as the dashed
lines to display fairly well correlation.

As an example of nonsymmetric displacement, we consider here an elastic
four-sides-simply-supported rectangular plate in Fig. 5 subjected to in-plane
pure bending. The von Kdrmén equation'®® with an initial deflection is con-
sidered. The perfect plate with initial displacement ug = 0 undergoes pitch-
fork bifurcation accompanied by the loss of upside-down symmetry. The
bifurcation mode (critical eigenvector) is given by sin(rz/L,)sin(ry/L,)
(0<2< Ly, 0<y <Ly, where L, and L, denote the width and depth of
the plate, respectively. As the initial imperfection, we take the initial deflec-
tion wg(z,y) = e-sin(wa/L,) sin(my/L,). The solid lines on the left of Fig. 5
show a series of equilibrium paths for various values of ¢. The asymptotic
approximation shown by the dashed lines in Fig. 5, which is computed from
the second equation of (25), is in good agreement with the computational
curves.

156 Timoshenko and Woinowsky-Krieger, 1959 [530]; Timoshenko and Gere, 1963 [529]
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Figure 4: Curves of the deviatoric stress o, versus the axial strain ¢, for
the sand specimens and their simulation by the present method.
experimental (imperfect) curve; ———: simulated curve; o: bifurcation point;

1 kef /em® = 98 kPa.
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Figure 5: Rectangular plates and the equilibrium paths. Deflection u is
measured at (z,y) = (0.5L,,0.7L,); aspect ratio « = L,/L, = 0.8; the
depth-thickness ratio g = L,/t = 200; : exact numerical analysis;
———: asymptotic simulation.
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4 HILLTOP BRANCHING POINTS

In this section the asymptotic approach is applied to the hilltop branching
point. The formulas for the imperfection sensitivity law and the stochastic
scatter of critical loads are presented,'®” and are put to use in the description

158

of the scatter of the strength of long steel members.

4.1 Bifurcation equation and imperfection sensitivity laws

We derive here, for a potential system, the bifurcation equation at a hilltop
bifurcation point, which is defined to be a double critical point (M = 2)
occurring as a coincidence of a limit point and a pitchfork bifurcation point,
as shown in Fig. 6.

For this double critical point, the system of bifurcation equations be-

comes R B
Fi(wy,ws, f,e) =0, 1=1,2. (26)

Note that (wl,wg,f, €) = (0,0,0,0) corresponds to a hilltop bifurcation
point for the perfect system. We expand (26) into power series

[ INe eBENe o BINe ¢)

ﬁl(wth,f, ZZZZA”Mwl w2]f 6 (27)
1=0 j=0 k=0 1=0

[ INe eBENe o BINe ¢)

ﬁz(whw%ﬁ €) ~ ZZZZBijklw1iw2jfk€l- (28)

1=0 j=0 k=0 [=0

We assume that the first equation (27) is associated with the pitchfork
bifurcation point with a trivial solution w; = 0 and the second equation
(28) is associated with the limit point. Since the first equation has trivial
solution, it has a form of Fl(wl7 Wy, f 0)= wlFl(wl, Wy, f) for some function

F1(w17w27f)

1*TIkeda, Oide, and Terada, 2002 [277]
158 Okazawa et al., 2002 [390]

Fundamental path

/

Bifurcated path

Figure 6: A hilltop bifurcation point: o.
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By investigating vanishing of coefficients A;;3 and Byjg (¢, 7, k,0=0,1,--)

at the hilltop bifurcation point (wy, ws, f,€) = (0,0,0,0), we obtain!®?
ﬁl(wlv wa, ]?7 €) = Aso00w1” + 2Baogowi wy + A1010w1f+ Apoor€ + h.ot. =0,
(29)
Fy(wy, wy, f,€) = Bagoowr® + Bozoowz® + Booiof + Bogor€ + h.o.t. = 0. (30)

Imperfection sensitivity law of critical load is derived by determining the
location by simultaneously solving (29), (30), and the criticality condition

det.J = 0. Thus we obtain a piecewise linear law'6°
~ ign (B B 1/2 B
o sign (B2o00) ( 0200) | Aggore| — 20001 . (31)
Boo1o Baooo Boo1o

Remark 4.1 The hilltop point occurring as a consequence of a limit point
and a double bifurcation point of a system with dihedral-group symmetry also
enjoys a piecewise linear law (lkeda, Ohsaki, and Kanno, 2004 [276]).

4.2 Probabilistic variation of critical loads

Probabilistic variation of f. is investigated when initial imperfection pattern
v — v? = ed is subject to normal distribution N(0, ¢*W) with mean 0 and
variance—covariance matrix ¢2W. The probability density function of the
critical load is given by

8(¢) = —

V27

where ¢ = (fc — fg)/é’ is the normalized critical load increment with a

exp(—¢*/2)@x(=r¢), (32)

proper scaling C', r is a parameter, and ®x(z) is the cumulative distribution
function of the standard normal distribution. This function, the curve of
which varies with the values of r, is shown in Fig. 7.

Finite-element, finite-strain, elastic-plastic analyses!®!

are conducted on
rectangular analysis domains for steel specimens subjected to uniform ten-
sion for a few aspect ratios of L/H = 2 ~ 10. As shown in the load—
displacement curves in Fig. 8, limit point locations are identical for all as-
pect ratios and are denoted in this figure by e. The first bifurcation points,
denoted by o, approach the limit point as the specimen becomes slender.
The load—displacement curve for L/H = 10, for which the critical load
at the pitchfork bifurcation point is 0.2% smaller than the maximum load
f2 =1086 (kN) at the limit point, is used in the sequel to approximate the
hilltop bifurcation point.

1%9Note that Ai100 = 2B2000 and Biioo = Aoz00 = 0 due to reciprocity by the existence
of the potential.

1%0The piecewise linear law originally found in Thompson and Schorrock (1975) [525]
corresponds to the case of Boygore = 0 in (31).

Y1 Details of the numerical analyses are given in Okazawa et al., 2002 [390].
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Figure 8: Normalized load—displacement curves of steel specimens with
L/H = 2,4,6,8,10. P: applied load; u: axial displacement; L: member
length; Young’s modulus E = 200 GPa; Poisson’s ratio v = 0.333; yield
stress oy = 400 MPa; yield strain ey = oy/FE = 1/500.
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Figure 9: (a) Imperfection patterns imposed on members and (b) comparison
of histograms and theoretical probability density functions.

We carry out the Monte Carlo simulation on imperfect steel members
to arrive at the data bank of their strengths. We define the imperfection
parameter vector as

v = €(dyvy 4 dava + d3vs + dyvy), (33)

where vy, vy, vs, and v4 are harmonic modes shown in Fig. 9(a). We set
vl = 0 and d = (dy,dy,d3,dg)T. We choose an ensemble of 100 imper-
fection patterns ed that is subject to a multivariate normal distribution
ed ~ N(0,W) with W = diag(0.01%0.1%0.01%,0.01%), where diag(---) de-
notes a diagonal matrix with the diagonal components in the parentheses.

We have computed maximum loads for 100 imperfection patterns pre-
sented above. Figure 9(b) shows a histogram obtained in this manner and
the curve for the theoretical probability density function (32). The Weibull-
like histogram is represented well by the theoretical curve, which has passed
the y? test at a significance level of 0.05 or less.
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5 GROUP-THEORETIC FRAMEWORK

In this section group-theoretic method for exploiting the symmetry of the
governing equation, as well as that of the bifurcation equation, is presented
briefly.'6? Systems that are endowed with an additional structure of symme-
try undergo symmetry-breaking bifurcations and, in turn, produce patterns.
This method is put to use in the mathematical analyses of double critical
points of a system with dihedral group symmetry in Section 6.

5.1 Group representation

Some fundamental facts about linear representations of groups are intro-
duced. For complete accounts, the reader is referred to textbooks, such as
Miller, 1972 [360] and Serre, 1977 [465].

Let G be a group. This means that, for any pair of elements ¢ and h
of G, their product ¢ - h is defined as an element of G and the following (i)
through (iii) are satisfied: (i) the associative law holds: (g-h)-k=g-(h-k),
for any ¢, h,k € G; (ii) there exists an element e € G (called the identity
element) such that e-g = ¢g-e = ¢ for any ¢ € G; (iii) for any ¢ € G there
exists h € GG (called the inverse of ¢) such that g-h=h-g=ce.

Example 1 The dihedral group of degree three is a group of six elements:
D3 = {e,r,1? 0,0r, 01}

with the relations r® = 0% = (or)? = e, where € is the identity element.
The notation shows, e.g., that the product of ¢ and r equals the element
denoted as or. For the product of r and or the assumed relations as well

2 2

as the associative law yield r-or =0 -r-or=0-(or)* =o.

A representation of GG means a family of nonsingular matrices, say, T'(g)
indexed by the elements ¢ of GG such that

T(gh)="T(g)T(h), g,hed. (34)
The size of the matrices is called the degree of the representation. A repre-

sentation 7' is said to be unitary if T'(g) is unitary for each ¢g € G.

Example 2 For the dihedral group of degree three, D3 = {e,r,r? o, or, or?},
a unitary representation is given by the family of matrices defined by

T(e):<(1) (1))7 T(r):(i —03)7 T(r2)2<_cs i)7
T(0) :<(1) _01)7 T(‘”‘):<_CS :i)’ T<Ur2):<§ —Sc)

152We aim at presenting the main ideas for engineers without sacrificing the mathematical
rigor. To this end we restrict ourselves to finite-dimensional equations and finite groups.
For the full mathematical treatment, the reader is referred to Sattinger, 1979, 1980 [456,
457); Golubitsky and Schaeffer, 1985 [195]; Golubitsky, Stewart, and Schaeffer, 1988 [198].
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with ¢ = cos(27/3) and s = sin(27/3).

A subspace W is said to be invariant if any vector in W remains in W
under the transformation 7'(g) for every g € GG. A representation T is said
to be irreducible if there exists no invariant subspace distinct from {0} and
the entire space.

Two representations, say, 71 and 15 are said to be equivalent if there
exists a nonsingular matrix H such that

Ti(g) = H™'Ty(g9)H, g€ G,

Two representations are inequivalent if they are not equivalent. It is known
that any representation is equivalent to a unitary representation.
There exist a finite number of inequivalent irreducible representations!%3of
G. We denote by
(1 | j e R(G))

a family of all inequivalent irreducible unitary representations of G, where
R(G) is the index set for the irreducible representations of . For each p
we associate a subgroup defined by

G'={ge G| T'(g)=Inn}, (35)

where N* denotes the dimension of the representation p and Inw is the
identity matrix of order N¥.

5.2 Symmetry of equations

We consider a system of nonlinear equilibrium or governing equations F(u, f, v)

0 in (1) that is endowed with an additional structure of symmetry.

According to the standard setting in group-theoretic bifurcation theory,
the symmetry of the perfect structure (with v = v) is formulated as the
identities

T(9)F(u, f,v°) =F(T(9)u, f,v°), ged, (36)

in terms of a group G and a unitary representation T of GG acting on the
N-dimensional space of the independent variable vector u. This relation
(36) is called the equivariance of F to G.

To also express the symmetry in the imperfection parameter vector v,
we extend the equivariance (36) to the following form:

T(g)F(u, f,v)=F(T'(g)u, f,S(g)v), g€, (37)

using another unitary representation S of G on the p-dimensional space of
the imperfection parameter vector v. For the compatibility of (36) and

15376 be precise, we fix an underlying field, which, in most applications, is the field of
real numbers or the field of complex numbers.
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(37) it is assumed that the imperfection vector v° for the perfect system is
G-symmetric in the sense that

»(v% G, 8) =a, (38)

where

S(viG,S)={g€ G | S(g)v =} (39)

denotes the subgroup of G' that expresses the symmetry of v.

Remark 5.2 When the system of equilibrium equations F(u, f,v) is derived
from a potential function U(u, f,v), the equivariance of F to G is a conse-
quence of the invariance of U to G. The invariance of U to G is formulated
as

UT(g)u, f,5(g)v)=Ulu, f,v), g€G, (40)

in terms of unitary representations T and S, and the differentiation of (40)

shows that F = (OU/0n)" satisfies (37).

The equivariance (37) is inherited by the Jacobian matrix J(u, f,v) and
the imperfection sensitivity matrix B(u, f,v). Differentiations of (37) with
respect to u and v, respectively, yield

T(g)J(u, f,v)=J(T(g)u, f,S(g)v)T(g9), g€G, (41)
T(g9)B(u, f,v)= B(T'(g)u, f,S(g)v)S(g), ge€G. (42)

T(g)J(u, f,v)=J(u, f,v)T(g), g€G, (43)
T(g)B(u, f,v)= B(u, f,v)S(g), g€G (44)

if
Y(w; G, T)=%(v;G,8)=G. (45)

Thus J(u, f,v) and B(u, f,v) both commute with the group actions for all
(u, f,v) possessing the symmetry (45). A standard result of group repre-
sentation theory then reveals that J(u, f,v) and B(u, f,v) can be trans-
formed to block-diagonal forms through suitable basis changes independent
of (u, f,v), and this fact often forms a technical pivot in deriving useful
results. More issues on block diagonalization can be found in references.!%*

We consider a critical point (u?, f2) of the perfect system such that

Yl G, T)=aG. (46)

154 Bossavit, 1986 [60]; Chen and Sameh, 1989 [94]; Gatermann and Hohmann, 1991
[181]; Stork and Werner, 1991 [492]; Gatermann and Werner, 1994 [182]; Govaerts, 2000
[200]
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It can easily be verified that the kernel of J? = J(u?, f2,v%) is an invari-
ant subspace. The critical point (u?, f9) is called group-theoretic if the
kernel of J? is irreducible and parametric otherwise. Group-theoretic mul-
tiple points are the ones which appear inherently in symmetric structures,
whereas parametric multiple points are the ones which appear as a coin-
cidence of a number of critical points. In what follows, we assume that

(u?) f9) is a group-theoretic multiple point of multiplicity M.

Remark 5.3 The coincidence of a pair of group-theoretic double bifurcation
points was studied for ecological interacting and diffusing systems, %> and for

systems with various symmetries.'%®

The Liapunov—Schmidt reduction described in Section 3.2 for a simple
critical point can be carried out compatibly with symmetry for a multi-
ple critical point. In a neighborhood of (w2, f9 v%), the full system of N
equations (1) is reduced to M equations

F(w,f,v)=0 (47)

in w e RM, where F : RM x R x R? = RM and f:f—fco. The key
ingredient for symmetry is the inheritance of the equivariance (37) of the
full system to that of the reduced system

T(9)F(w,f,v)=F(T(g)w,[,5(g)v), g€, (48)

where T is the representation induced from T on the M-dimensional kernel
space of JO. It is this inheritance of symmetry that plays the key role in
determining the symmetry of the bifurcating solutions.

5.3 Symmetry of solutions

In general, the symmetry of a solution u is lower than that of the equations
F, where the symmetry of a solution u is measured by a subset of GG,

S(w) = S(w G, T) = {g € G | T(g)u=u}, (49)

which forms a subgroup of G.

The most fundamental fact is that the symmetry of a solution remains
invariant in the neighborhood of an ordinary point, at which the Jacobian
matrix is nonsingular by definition. Interesting phenomena can happen in
the neighborhood of a critical point.

Let u denote the irreducible representation associated with the group-
theoretic critical point (u?, f2). With the subgroup G* introduced in (35)
we have an important relation

G'" CE(w; G, T) CG. (50)

5% Fyjii, Mimura, and Nishiura, 1982 [177]
188 Golubitsky, Stewart, and Schaeffer, 1988 [198]
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This says that the symmetry of a solution in the neighborhood of (u?, f2)
can possibly be smaller than G, but is at least as large as G*. It is noted
that G* denotes the symmetry common to all the critical eigenvectors. We
also mention a crucial technical relation

S(w; G, 1) =X(w; G, T), (51)

which shows that the symmetry of the solution u to the full system of
equations is determined by that of the solution w to the bifurcation equation.
This fact allows us to focus on the solution w of the bifurcation equation in
discussing the symmetry of a bifurcating solution u.

In (50) the discrepancy between G* and YX(u;G,T) is caused by the
nonlinearity of the equation. Accordingly, the symmetry of the solution can
be determined only through an analysis involving nonlinear terms. Equation
(51) shows that an analysis of the bifurcation equation suffices for this.

In association with the repeated occurrence of bifurcation, we can find
a hierarchy of subgroups

GG —Gy—--- (52)

that characterizes the recursive change of symmetries. Actual forms of this
hierarchy for particular groups are available.'67

6 DOUBLE BIFURCATION POINTS:
DIHEDRAL SYMMETRY

In this section we investigate systems with dihedral group symmetry. The
variety of perfect and imperfect behaviors is enriched by the emergence of
double critical points, at which two critical eigenvectors compete to generate
a number of bifurcated solutions. These behaviors are analyzed by the
group-theoretic method presented in Section 5.

6.1 Dihedral groups and their irreducible representations

The dihedral group of degree n is defined by
D, ={c(27i/n),oc(2xi/n) | i=0,1,...,n— 1}, (53)

where ¢(27i/n) denotes a counterclockwise rotation about the origin of
2rif/n (¢ = 0,1,...,n — 1), 0 is a reflection and oc(27i/n) is the com-
bined action of the rotation ¢(2mi/n). This group, for example, describes
the symmetry of a regular n-gon in the zy-plane.

167Tkeda and Murota, 2002 [270]; Tanaka, Saiki, and Tkeda, 2002 [499]
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Subgroups of D,, consist of dihedral and cyclic groups whose degree m
divides n; i.e., the family of the subgroups of D,, in the representation (53)
is given by

{DE" | k=1,...,n/m; mdivides n and 1 < m < n},

(54)
{C,, | mdivides n and 1 < m < n},

where

DEm = {e(2mi/m), oc2n[(k = 1)/n+i/m]) | i=0,1,...,m — 1},
Cp=A{c2ri/m) | i=0,1,...,m—1}.

Note that D" = D,, and C; = {e}. These subgroups express partial
symmetries of regular n-gons. Cyclic groups C,,, denote rotation-symmetric
patterns; the group C; means a completely asymmetric pattern; and dihedral
groups D™ indicate reflection symmetric patterns. The superscripts are
introduced here to distinguish the difference in the direction of the reflection
line.

The dihedral group D,, in (53) has one- and two-dimensional irreducible
representations, which are respectively associated with a simple critical point
and and a group-theoretic double bifurcation point.

The one-dimensional irreducible representations, which are labeled by

(+,+)p,,; (+,—)p,,, (—,+)D,., and (=, —)p,,, are defined by

THH)on (¢(27/n)) = 1, THHon (0) = 1,
TH=)on (¢(27/n)) = 1, TH=)on () = -1, (55)
T=Hon (¢(27/n)) = -1, T(=Hon () =1,
T(==)on (¢(27/n)) = -1, T(==)on(g) = -1,
where (—,4+)p,, and (—, —)p,, exist only for n even.
The two-dimensional representations, which are labeled by (1)p,, ...
(N.)p,,, can be chosen to be unitary representations defined by
()0 _ (cos(2mj/n) —sin(Qﬂ'j/n)) .
T (e(2m/m)) (sin(%’j/n) cos(2xj/n) )’ J=Lbe N
: 1 0
(s (o) =
T (o) (0 —1)
(56)

where N, = (n — 2)/2 for n even and N,, = (n — 1)/2 for n odd.
The associated subgroups G* of (35) for those irreducible representations
are given as follows:

GHEHon =D, GH-on =(C,, Gt)on = D,/2: G)on = Di/nz
(57)
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where n
n=———— 5%
ged(n, 7) (58)

is an important parameter characterizing the double bifurcation point. Here
ged(n, j) denotes the greatest common divisor of n and j.

6.2 Perfect bifurcation behavior

With the general framework of Section 5, we can investigate the bifurca-
tion behavior of a D,,-symmetric perfect system at a group-theoretic critical
point.

For a simple critical point associated with the unit representation p =
(+,+)D.., the equivariance (48) to G = D,, of the bifurcation equation with
v = v° plays no role, since T H)on (g) =1 (g € D,,) by (55) and S(g)v® =
v? (g € D,,) by (38). This means that this is a limit point.

For a simple critical point associated with 4 = (+,-)p,, (—, +)p,,, or
(—, =)D, the equivariance (48) to G = D,, of the bifurcation equation with

v = vY is rewritten as

F(—w, 1, v) = —F(w, 1 v9) (59)

with the use of S(g)v® = v" for g € D,, in (38). Therefore, the bifurcation
equation for the perfect system is an odd function in w, as was the case
for the exploitation of reflection symmetry conducted earlier.'®® This is a
pitchfork bifurcation point. The symmetry of the bifurcating solution is
represented by
S(&1) = S(m) = G" = S(ker(J7)) = B(w) = B(u) = Co, Dy, 0 Dy
(60)
given that the associated irreducible representation p is (+, —)p,,, (—, +)D,,»
or (—, —)p,,, respectively.

A double critical point on a D,-symmetric path is associated with a
two-dimensional irreducible representation p = (j)p,, for some j. The pos-
itive integer n = n/ged(n, j) in (58) characterizes this critical point. The
superposition (linear combination) of a pair of critical eigenvectors

£(p) = cong £, +sing €y, (61)

n(f) =cosf-n, +sinb-n, (62)

serves also a critical eigenvector. The symmetry of £(¢) and n(f) is given
by

Y(E(p) =EMm0) =" =C, 2 (63)

(cf., (57)) for the general angles ¢ and 6 (0 < ¢ < 27, 0 < 6 < 27).

Some critical eigenvectors have higher symmetry than Cn/ﬁ' We can make

18 Chilver, 1967 [98]; Supple, 1967 [494]
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Table 1: Critical points on a D,-symmetric path.

Multiplicity | Irreducible Type of Symmetry groups
M representation, u points G* | Bifurcated paths
1 (+,+)p,, Limit D, No bifurcation
1 (+,-)p,, Pitchfork | C, C,
(—,+)p,, (n: even) Dy, /s Dy, /s
(=, —)p, (n: even) DZ’/nz DZ’/nz
2 (7)p,, Double C.m DZ%
(t=1,...,n)

& = £(0) and n; = n(0) invariant under reflection o, i.e., T'(c)€; = & and
T(o)n, = ny. Then there exist 2n such eigenvectors, namely,

E(S(al_l_g])) = E(’I’](O&Z_I_a])) = D27n/\7 1= 17 .. .7ﬁ7 ] = 07 17 (64)

n/n

where

k=1,...,20. (65)

_In obtaining the generic form of the system of bifurcation equations
F(w,f,v) =0 1in (47) with M = 2, we employ the D,-equivariance (48) of
the bifurcation equations formulated as

T(9)F(w,f,v)=F(T(g)w. [, S(g)v), g€D,, (66)

where T is the two—dimensional irreducible representation of D, associated

with the kernel of JO = J(u?,

J in the notation of (56).
According to the analysis of the bifurcation equations, it was found that

Y vY). We may assume T=10U )Dn for some

(i) there exist 2n half branches (7 bifurcated paths) as shown in Fig. 10;

(ii) they bifurcate in the directions of 77(0‘2'4-%]‘) (t=1,...,n, 7 =0,1);

and

(iii) the solutions u on the bifurcated path for 6§ = «; -~ are D" -symmetric.

nJ n/n

It is emphasized that ¥(u) = DZ% is strictly larger than G* = C
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6.3 Local imperfect behavior at a double bifurcation point

We move here on to investigate the imperfect behavior at a double bifurca-
tion point. In place of the variables (wy, wsy) in the bifurcation equation (47),
we employ the polar coordinates (r,6) with wy = rcosé and wy = rsin 6.
With (r, ), we can rewrite the bifurcation equation (47) as

fr~—rty S er* 4 by cos(nb) + lac| cos(f — 1), (67)
2<q<n/2-1 "

b=l sin(nf) + |ae|sin(0 — ) ~ 0, (68)

where a is a complex constant with ae = |ae|exp(i®y) and b and ¢, are

real constants. As we will see below, the solution paths that consist of
(r, 0, f) satisfying these equations display complex but interesting behaviors
dependent on the values of ¢ and 7.

Equation (68) does not contain f and (67) is solved for f. This allows

us to concentrate on (68). Two cases are distinguished:

(i) special case: 1 = w(m — 1)/n for some m = 1,...,2n; and
(ii) general case: ¥ # w(m — 1)/n for any m=1,...,2n.
The special case means the presence of the initial imperfection with partial
symmetry, as was observed for the Augusti model.!6?
We first consider the special case, for which equation (68) admits a pair
of rays

=1, v+n (r: arbitrary) (69)

as solutions, which satisfy
sin(nf) = sin(f — ) = 0. (70)

These solutions, which are directed towards f—> 400 as r — +0, represent
the fundamental and complementary paths. Equation (68) has another kind
of solution represented as

—|ae| sin(8 — )

n—1
~ . 1
" b sin(n6) (1)

The curves of r and @ given in (69) and (71), which are dependent on the
values of n and 1, are illustrated in Fig. 11(a)~(c).

As an example of 7 odd, we consider 7 = 3 with two special cases of
¥ =0 and ¢ = 7. For ¢ = 0 in Fig. 11(a), each of the fundamental and
complementary paths on the ray # = 0 and = has an unstable pitchfork
bifurcation point, at which branches a secondary bifurcated path, as was

1% Augusti, 1964 [38]; Thompson and Hunt, 1973, 1984 [518, 523]
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Figure 10: Spatial view of the perfect bifurcation behavior in the neighbor-
hood of a double bifurcation point (o) with n = 4.

observed for the Augusti model. For ¢» = 7 in Fig. 11(b), each of the
fundamental and complementary paths on the ray 8 = 0 and 7 has a limit
point.

As an example of n even, we consider 7 = 4 with a special case of
1 = 0 shown in Fig. 11(c). The fundamental path on the ray § = 7 has a
limit point and the complementary path on the ray # = 0 has an unstable
pitchfork bifurcation point.

We next consider the general case where ¢ # 7(m — 1)/ for any m =
1,...,2n. In this case, (70) has no solution, and (68) yields the solution
(71) only, which yields 7 + 1 solution paths. As shown in Fig. 11(d) and
(e), unlike the special case, the directions of these two paths vary in the
f-direction in association with the change of r. The fundamental path has
a limit point both for 7 = 3 and 6. Limit points are absent on aloof paths
for 7 = 3, but are present for n = 6.

6.4 Imperfection sensitivity law

The imperfection sensitivity law, for the double bifurcation point on a D,-
symmetric path, was derived by solving simultaneously the bifurcation equa-
tions (47) and its criticality condition as

Jer~ C(d)]e”, (72)

where p and C'(d) are given, depending on the value of index 7 in (58), as
follows:

p=1/2, C(d)=—-1()Co-|a|'/? if7=3
p=2/3, Cd)=—-7)Co-la*?® =4 (73)
p=2/3, C(d)=-Cq-|a]*/? ifn>5
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(a) Special case: n =3, =0

/6

(d) General case: n =3, 1 =7/6

Figure 11: Plane views of local imperfect behavior. o:

27 /3 w/3
1 b2’
bl o
b/ ™ \b2
4w /3 5w /3

27 /3 w/3
al
o\/m
a2

4w /3 5w /3

3w /4 w/2 w/4
a2
< b1’

- m (o) 9 -0
-8 bl

5w /4 3w/2 /4

(c) Special case: n =4, =0

27 /3 w/3
~
o
al -
— a2
- mn
-
4w /3 5m/3

3w /5

2w /5

(b) Special case: n =3, ¢ ==

w/5

/10
10=0

97 /5

/5

8w /5

(e) General case: n =5, ¢ =x/10

simple pitchfork

bifurcation point; e: limit point; m: fundamental path; o: complementary
path; ¢ asymptote on the f-axis; thin line: solution curve for the perfect
system that serves as an asymptote; — — —: another asymptote.
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in which a is a complex number with » = arg(ae), 7(¢) is a nonlinear
function in ¢ and is positive, and 7(1) is a nonlinear function in 1 that is
dependent on individual systems.

6.5 Probabilistic scatter of critical loads

Following Section 3.4, we consider the random variation of the critical load
fc when the imperfection pattern vector d is a random variable subject to
a normal distribution N(0, W) with a variance-covariance matrix W.

The probability density function of the critical load varies with the value
of index n and is more more complex than that for simple critical points,
but can be simplified for n > 5 by exploiting the symmetry of an imperfect
system. Namely, we have

¢(¢) = TGXP(—|C|3/2)7 —00 < ¢ <0, (74)

where ( = (f. — jf)/@ is the normalized critical load increment for some
scaling constant C'. The cases for n = 3 and 4 can be found in [270].

6.6 Imperfect behavior of materials

The probabilistic approach presented in Section 6.5 is applied to the descrip-
tion of the strength variation of cylindrical sand specimens. See Fig. 4 for a
few examples of a set of 32 experimental curves of the deviatoric stress o,
versus the axial strain .

The initial states for the specimens are assumed to be D,-symmetric
with n large. Then the observed variable £, can be considered to be D,-
symmetric. We restrict ourselves to the possibility of a simple (pitchfork)
bifurcation point and a double bifurcation point with n > 5, which are
associated, respectively, with the symmetry-breaking processes:

D,—=C, at the pitchfork bifurcation point,
D, — Dn/ at the double bifurcation point with n > 5.

o~
n

The histogram of the maximum deviatoric stress for those specimens is
compared in Fig. 12 with the probability density functions to show good
correlation with the experimental histogram.
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=

§ or Type Simple‘Double
Enl / E[(0a)c] (kgf/cm?) 1.49

. 7 N Var[(ca)] ((kgf/em®)?)|  0.1832

é 2r / (ga)g (kgf /cm®) 4.83 | 4.96
Z N c 0.424 | 0.448

4.0 4.5 5.0
Maximum stress, (0.) (kgf /cm?®)

Figure 12: Comparison of a histogram and the probability density functions
of the maximum deviatoric stress (0,). for 32 sand specimens. — — —
probability density function for a simple, unstable (pitchfork) blfurcatlon
point;
tion point.

: probability density function for an unstable double bifurca-

7 CONCLUSIONS

The historical development and recent revival of the research on probabilis-
tic strength scatter of imperfection-sensitive structures and materials have
been reviewed. These approaches, which seem somewhat overshadowed by
nonlinear finite element analysis in the computer age, can serve as efficient
and insightful strategy to tackle various aspects of bifurcation behaviors
with the help of group-theoretic bifurcation theory. It will be a natural
trend in research in the future to transfer the results of asymptotic studies
of structures to the study of materials.
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