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On Infimal Convolution of M-Convex Functions

Kazuo MUROTA∗

Abstract

The infimal convolution of M-convex functions is M-convex. This is a fundamental
fact in discrete convex analysis that is often useful in its application to mathemati-
cal economics and game theory. M-convexity and its variant called M\-convexity are
closely related to gross substitutability, and the infimal convolution operation corre-
sponds to an aggregation. This note provides a succinct description of the present
knowledge about the infimal convolution of M-convex functions.

1 Definitions

Let V be a nonempty finite set, and let Z and R be the sets of integers and reals,
respectively. We denote by ZV the set of integral vectors indexed by V , and by RV the
set of real vectors indexed by V . For a vector x = (x(v) | v ∈ V ) ∈ ZV , where x(v) is the
vth component of x, we define the positive support supp+(x) and the negative support
supp−(x) by

supp+(x) = {v ∈ V | x(v) > 0}, supp−(x) = {v ∈ V | x(v) < 0}.

We use notation x(S) =
∑

v∈S x(v) for a subset S of V . For each S ⊆ V , we denote by
χS the characteristic vector of S defined by: χS(v) = 1 if v ∈ S and χS(v) = 0 otherwise,
and write χv for χ{v} for v ∈ V . For a vector p = (p(v) | v ∈ V ) ∈ RV and a function
f : ZV → R ∪ {+∞}, we define functions 〈p, x〉 and f [p](x) in x ∈ ZV by

〈p, x〉 =
∑

v∈V

p(v)x(v), f [p](x) = f(x) + 〈p, x〉.

We also denote the set of minimizers of f and the effective domain of f by

arg min f = {x ∈ ZV | f(x) ≤ f(y) (∀y ∈ ZV )},
domf = {x ∈ ZV | f(x) < +∞}.

We say that a function f : ZV → R∪{+∞} with domf 6= ∅ is M-convex if it satisfies
the exchange axiom:
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(M-EXC) For x, y ∈ domf and u ∈ supp+(x−y), there exists v ∈ supp−(x−
y) such that

f(x) + f(y) ≥ f(x− χu + χv) + f(y + χu − χv). (1)

The inequality (1) implicitly imposes the condition that x−χu +χv ∈ domf and y+χu−
χv ∈ domf for the finiteness of the right-hand side. A function f is said to be M-concave
if −f is M-convex.

As a consequence of (M-EXC), the effective domain of an M-convex function f lies on
a hyperplane {x ∈ RV | x(V ) = r} for some integer r, and accordingly, we may consider
the projection of f along a coordinate axis. This means that, instead of the function f in
n = |V | variables, we may consider a function f ′ in n− 1 variables defined by

f ′(x′) = f(x0, x
′) with x0 = r − x′(V ′), (2)

where V ′ = V \ {v0} for an arbitrarily fixed element v0 ∈ V , and a vector x ∈ ZV is
represented as x = (x0, x

′) with x0 = x(v0) ∈ Z and x′ ∈ ZV ′ . Note that the effective
domain domf ′ of f ′ is the projection of domf along the chosen coordinate axis v0. A
function f ′ derived from an M-convex function by such projection is called an M\-convex1)

function.
More formally, an M\-convex function is defined as follows. Let “0” denote a new

element not in V and put Ṽ = {0} ∪ V . A function f : ZV → R ∪ {+∞} is called
M\-convex if the function f̃ : ZṼ → R ∪ {+∞} defined by

f̃(x0, x) =

{
f(x) if x0 = −x(V )
+∞ otherwise

(x0 ∈ Z, x ∈ ZV ) (3)

is an M-convex function. It is known (see [4, Theorem 6.2]) that an M\-convex function
f can be characterized by a similar exchange property:

(M\-EXC) For x, y ∈ domf and u ∈ supp+(x− y),

f(x) + f(y) ≥ min
[
f(x− χu) + f(y + χu),

min
v∈supp−(x−y)

{f(x− χu + χv) + f(y + χu − χv)}
]

, (4)

where the minimum over an empty set is +∞ by convention. A function f is said to be
M\-concave if −f is M\-convex.

Whereas M\-convex functions are conceptually equivalent to M-convex functions, the
class of M\-convex functions is strictly larger than that of M-convex functions. This
follows from the implication: (M-EXC) ⇒ (M\-EXC). The simplest example of an M\-
convex function that is not M-convex is a one-dimensional (univariate) discrete convex
function, depicted in Fig. 1.

1)“M\-convex” should be read “M-natural-convex.”
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Figure 1: Univariate discrete convex function

Proposition 1 ([4, Theorem 6.3]). An M-convex function is M\-convex. Conversely,
an M\-convex function is M-convex if and only if the effective domain is contained in a
hyperplane {x ∈ ZV | x(V ) = r} for some r ∈ Z.

M\-convex functions enjoy a number of nice properties that are expected of “discrete
convex functions.” Furthermore, M\-concave functions provide with a natural model of
utility functions (see [4, §11.3] and [5]). In particular, it is known that M\-concavity is
equivalent to gross substitutes property, and that M\-concavity implies submodularity,
which is the discrete version of decreasing marginal returns.

It follows from (M-EXC) that the effective domain of an M-convex function f satisfies
the exchange axiom:

(B-EXC) For x, y ∈ B and u ∈ supp+(x− y), there exists v ∈ supp−(x− y)
such that x− χu + χv ∈ B and y + χu − χv ∈ B,

since x− χu + χv ∈ domf and y + χu − χv ∈ domf for x, y ∈ domf in (1). A nonempty
set B of integer points satisfying (B-EXC) is referred to as an M-convex set .

2 Convolution Theorem

For a pair of functions f1, f2 : ZV → R ∪ {+∞}, the integer infimal convolution is a
function f12Z f2 : ZV → R ∪ {±∞} defined by

(f12Z f2)(x) = inf{f1(x1) + f2(x2) | x = x1 + x2, x1, x2 ∈ ZV } (x ∈ ZV ). (5)

Provided that f12Z f2 is away from the value of −∞, we have

dom(f12Z f2) = domf1 + domf2, (6)

where the right-hand side means the Minkowski sum of the effective domains.
The convolution theorem reads as follows.

Theorem 2 ([4, Theorem 6.13]). For M-convex functions f1 and f2, the integer infi-
mal convolution f = f12Z f2 is M-convex, provided f > −∞.
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A proof of this theorem is given in Section 3, whereas the M\-version below is an
immediate corollary.

Corollary 3 ([4, Theorem 6.15]). For M\-convex functions f1 and f2, the integer in-
fimal convolution f = f12Z f2 is M\-convex, provided f > −∞.

Proof. Let f̃1 and f̃2 be the M-convex functions associated with the M\-convex functions
f1 and f2 as in (3). For x0 ∈ Z, x ∈ ZV we have

(f̃12Z f̃2)(x0, x)

= inf{f̃1(y0, y) + f̃2(z0, z) | x = y + z, x0 = y0 + z0}
= inf{f1(y) + f2(z) | x = y + z, x0 = y0 + z0, y0 = −y(V ), z0 = −z(V )}
= inf{f1(y) + f2(z) | x = y + z, x0 = −x(V )}

=

{
(f12Z f2)(x) if x0 = −x(V )
+∞ otherwise.

This shows f̃12Z f̃2 = (f12Z f2)̃ in the notation of (3), whereas f̃12Z f̃2 is M-convex by
Theorem 2 applied to f̃1 and f̃2. Therefore, f12Z f2 is M\-convex.

Remark 1. The convolution theorem (Theorem 2) originates in [1, Theorem 6.10], and
is described in [2, p. 80, Theorem 2.44 (5)], [3, p. 118, Theorem 4.8 (8)], and [4, p. 143,
Theorem 6.13 (8)]. The M\-version (Corollary 3) is also stated in [2, p. 83], [3, p. 119,
Theorem 4.10], and [4, p. 144, Theorem 6.15 (1)]. An application of this fact to the
aggregation of utility functions can be found in [3, p. 275, Proposition 9.13] and [4, p. 337,
Theorem 11.12]. In particular, the convolution theorem implies that if the individual
utility functions enjoy gross substitutes property, so does the aggregated utility function.

3 Proof

The proof of Theorem 2 given here relies on two fundamental facts stated in the lemmas
below. The first shows that the class of M-convex sets is closed under Minkowski addition,
and the second gives a characterization of an M-convex function in terms of M-convex
sets.

Lemma 4 ([4, Theorem 4.23]). The Minkowski sum of two M-convex sets is M-convex.

Lemma 5 ([4, Theorem 6.30]). Let f : ZV → R∪{+∞} be a function with a bounded
nonempty effective domain. Then, f is M-convex if and only if arg min f [−p] is an M-
convex set for each p ∈ RV .

Let f1 and f2 be M-convex functions, and put f = f12Z f2. First we treat the case
where domf1 and domf2 are bounded. The expression (6) shows that domf is bounded.
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For each p ∈ RV we have

f [−p] = (f1[−p])2Z (f2[−p]),

from which follows

arg min f [−p] = arg min f1[−p] + arg min f2[−p]

by (5). In this expression, both arg min f1[−p] and arg min f2[−p] are M-convex sets by
Lemma 5 (only if part), and therefore, their Minkowski sum (the right-hand side) is M-
convex by Lemma 4. This means that arg min f [−p] is M-convex for each p ∈ RV , which
implies the M-convexity of f by Lemma 5 (if part).

The general case without the boundedness assumption on effective domains can be
treated via limiting procedure as follows. For i = 1, 2 and k = 1, 2, . . . , define f

(k)
i : ZV →

R ∪ {+∞} by

f
(k)
i (x) =

{
fi(x) if ||x||∞ ≤ k

+∞ otherwise
(x ∈ ZV ),

which is an M-convex function with a bounded effective domain, provided that k is large
enough for domf

(k)
i 6= ∅. For each k, the infimal convolution f (k) = f

(k)
1 2Z f

(k)
2 is

M-convex by the above argument, and moreover, limk→∞ f (k)(x) = f(x) for each x.
It remains to demonstrate the property (M-EXC) for f . Take x, y ∈ domf and u ∈
supp+(x−y). There exists k0 = k0(x, y), depending on x and y, such that x, y ∈ domf (k)

for every k ≥ k0. Since f (k) is M-convex, there exists vk ∈ supp−(x− y) such that

f (k)(x) + f (k)(y) ≥ f (k)(x− χu + χvk
) + f (k)(y + χu − χvk

).

Since supp−(x− y) is a finite set, at least one element of supp−(x− y) appears infinitely
many times in the sequence v1, v2, . . . . More precisely, there exists v ∈ supp−(x− y) and
an increasing subsequence k1 < k2 < · · · such that vkj = v for j = 1, 2, . . . . By letting
k →∞ along this subsequence in the above inequality we obtain

f(x) + f(y) ≥ f(x− χu + χv) + f(y + χu − χv).

Thus f satisfies (M-EXC). This completes the proof of Theorem 2.

Remark 2. Here is an example to demonstrate the necessity of the limiting argument in
the above proof. For M-convex functions f1, f2 : Z2 → R defined by

f1(x) =

{
exp(−x(1)) if x(1) + x(2) = 0,
+∞ otherwise,

f2(x) =

{
exp(x(1)) if x(1) + x(2) = 0,
+∞ otherwise,

we have

f(x) = (f12Z f2)(x) = inf{exp(−t) + exp(x(1)− t) | t ∈ Z} = 0

for all x ∈ Z2 with x(1) + x(2) = 0. The infimum is not attained by any finite t, and
consequently, f (k)(x) is not equal to f(x) for any finite k. This is why we need the limiting
argument in the proof.
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Remark 3. The infimal convolution operation of M-convex functions can be formulated
as a special case of the transformation of an M-convex function by a network, and the
convolution theorem (Theorem 2) can be understood as a special case of a theorem on
network transformation.

The general framework of the network transformation is as follows. Let G = (V,A; S, T )
be a directed graph with vertex set V , arc set A, entrance set S and exit set T , where S and
T are disjoint subsets of V . We consider an integer-valued flow ξ = (ξ(a) | a ∈ A) ∈ ZA.
For each a ∈ A, the cost of the flow ξ(a) through arc a is represented by a function
fa : Z → R∪ {+∞}. Given a function f : ZS → R∪ {+∞} associated with the entrance
set S, we define another function f̂ : ZT → R ∪ {±∞} on the exit set T by

f̂(y) = inf
ξ,x
{f(x) +

∑

a∈A

fa(ξ(a)) | ∂ξ = (x,−y,0),

ξ ∈ ZA, (x,−y,0) ∈ ZS × ZT × ZV \(S∪T )} (y ∈ ZT ),

where ∂ξ ∈ ZV denotes a vector defined by

∂ξ(v) =
∑

{ξ(a) | arc a leaves vertex v} −
∑

{ξ(a) | arc a enters vertex v} (v ∈ V ).

We may think of f̂(y) as the minimum cost of an integer-valued flow to meet a demand
specification y at the exit, where the cost consists of two parts, the cost f(x) of supply
or production of x at the entrance and the cost

∑
a∈A fa(ξ(a)) of transportation through

arcs; the sum of these is to be minimized over varying supply x and flow ξ subject to the
flow conservation constraint ∂ξ = (x,−y,0). We regard f̂ as a transformation of f by
the network.

It is known ([4, Theorem 9.27]) that if fa is a univariate discrete convex function for
each a ∈ A and f is an M-convex function, then f̂ is an M-convex function, provided that
f̂ > −∞ and f̂ 6≡ +∞.

For the infimal convolution of functions f1 and f2, let V1 and V2 be copies of V and
consider a bipartite graph G = (S ∪ T,A;S, T ) (see Fig. 2) with S = V1 ∪ V2, T = V and
A = {(v1, v) | v ∈ V } ∪ {(v2, v) | v ∈ V }, where vi ∈ Vi is the copy of v ∈ V for i = 1, 2.
We regard fi as being defined on Vi for i = 1, 2 and assume that the arc cost functions
fa (a ∈ A) are identically zero. The function f̂ induced on T coincides with the infimal
convolution f12Z f2. In this case it is always true that f̂ 6≡ +∞. Thus the convolution
theorem (Theorem 2) follows from [4, Theorem 9.27], as is explained in [4, Note 9.30].

The connection to network transformation also suggests that the infimal convolution
f12Z f2 can be evaluated by solving an M-convex submodular flow problem; see [4, Section
9.2] for the definition of the problem and [4, Section 10.4] for algorithms.

Acknowledgement The author thanks Takuya Iimura and Akihisa Tamura for helpful
comments.
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Figure 2: Bipartite graph for infimal convolution
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