
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Computational Results
for Gaussian Moat Problem

Nobuyuki TSUCHIMURA

METR 2004–13 March 2004

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.i.u-tokyo.ac.jp/mi/mi-e.htm

The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

Computational Results

for Gaussian Moat Problem

Nobuyuki TSUCHIMURA
Department of Mathematical Informatics

Graduate School of Information Science and Technology
The University of Tokyo

tutimura@mist.i.u-tokyo.ac.jp

March, 2004

Abstract

“Can one walk to infinity on Gaussian primes taking steps of bounded
length?” We adopted computational techniques to probe into this open
problem. We propose an efficient method to search for the farthest
point reachable from the origin, which can be parallelized easily, and
have confirmed the existence of a moat of width k =

√
36, whereas the

best previous result was k =
√

26 due to Gethner et al. A refinement
of Vardi’s estimate for the farthest distance reachable from the ori-
gin is proposed. The proposed estimate incorporates discreteness into
Vardi’s that is based on percolation theory.

1 Introduction

The question addressed in this paper is whether one can walk to infinity
on Gaussian primes taking steps of bounded length. More precisely, this
problem may be formulated as follows. A Gaussian integer means a complex
number a + bi with integers a and b. A Gaussian prime means a Gaussian
integer that cannot be decomposed into a product of two Gaussian integers
in a nontrivial way, i.e., with factors distinct from ±1,±i, where i =

√−1.
Consider a graph G drawn on the complex plane, of which the vertex set is
the set of all Gaussian primes augmented by the origin. Two vertices are
connected by an edge if the distance between them is less than or equal to
a specified parameter k, which we call the step size. Fig.1 illustrates this
graph for k =

√
16 in the first octant. The question is whether the graph

with a specified step size k contains a path from the origin that extends to
infinity.

Nonexistence of such an infinite path implies the existence of a moat of
width k surrounding the component of the origin. According to [1][2][4][5],

1

Figure 1: Illustration of the graph G for k =
√

16

this problem was posed by Basil Gordon in 1962 at International Congress
of Mathematicians in Stockholm, and still remains open. It seems, however,
that the opinions in the literature [1][2][4] are inclined to the negative answer.

Computational results on this problem are reported in [1][5], which can
be summarized in the following table. We denote by ξ(k) the farthest point
reached from the origin for step size k.

Component of
origin using
distance k

Farthest
point

reached ξ(k)

Farthest
distance

reached |ξ(k)|

Total size
of the

component∗√
1 2 + i 2.23 2√
2 11 + 4i 11.70 14√
4 42 + 17i 45.31 92√
8 84 + 41i 93.47 380√

10 976 + 311i 1024.35 31221√
16 3297 + 2780i 4312.61 347638√
18 8174 + 6981i 10749.4 2386129√
20 109677 + 64268i 127120 Finite√
26 ?? ≤ 5586757 Finite

∗ the number of points distinct from the origin

The 3rd row of the table, for example, shows that for k =
√

4 the farthest
point reachable from the origin by a path on the graph is 42 + 17i, with the
distance from the origin being equal to 45.31, and that the component of the
origin contains 92 vertices lying in the first octant {z ∈ C | 0 ≤ arg z ≤ π/4}.
Note that we may restrict ourselves to the first octant by the symmetry of

2

the problem. For k =
√

26 the farthest point reached and the total size of
the component are not known, but only an upper bound of 5586757 on its
distance from the origin is known. For k =

√
20 the exact value of the total

size of the component is unknown but the known farthest point implies that
it is finite.

The last two rows of the table have been completed and three more row
has been added in the present work.

Component of
origin using
distance k

Farthest
point

reached ξ(k)

Farthest
distance

reached |ξ(k)|

Total size
of the

component∗√
20 120510 + 57857i 133679.065 273791623√
26 943460 + 376039i 1015638.765 14542615005√
32 2106442 + 1879505i 2823054.542 103711268594√
34 ?? < 24289452 Finite√
36 ?? < 80015782 Finite

∗ the number of points distinct from the origin

In Section 2 we summarize basic facts about Gaussian primes and de-
scribe how to generate them efficiently. Section 3 presents our method of
computing the component of the origin. Section 4 presents the detail of
the result and the statistical information which is necessary for tuning up
the computation. Section 5 proposes an improve estimate for the farthest
distance reachable from the origin.

2 Generating Methods of Gaussian Primes

A Gaussian integer is a number of the form a + bi, where a and b are
integers and i is the square root of −1. A Gaussian prime is a Gaussian
integer a + bi which cannot be divided by any Gaussian integer, excepting
for ±1,±i,±(a + bi), and ±(b− ai). When a + bi is a Gaussian prime, then
±a ± bi and ±b ± ai are also Gaussian primes. Hence we may restrict our
attention to the first octant (0 ≤ b ≤ a).

The sieve of Eratosthenes for ordinary primes can be easily extended
for Gaussian primes, but we need much more memory to get large Gaussian
primes. Our generation methods both make use of the following fundamental
fact [1][3]. Let p be an ordinary prime integer. If p ≡ 3 (mod 4), then p+0i
is a Gaussian prime. If p ≡ 1 (mod 4), there uniquely exist a and b such
that a2 + b2 = p and 0 ≤ b ≤ a, for which a + bi is a Gaussian prime.

ordinary prime p (mod 4) Gaussian prime z = a + bi
p ≡ 2

p ≡ 3

p ≡ 1

p = 5, 13, . . . p ≡ 1 a2 + b2 = p 0 < b < a |z|2 = p
p = 2 p ≡ 2 a = b = 1 0 < b = a |z|2 = p
p = 3, 7, 11, . . . p ≡ 3 a = p, b = 0 0 = b < a |z| = p

3

Figure 2: Gaussian primes with |a + bi| ≤ 39 and the first octant 0 ≤ b ≤ a

The first method is to test a Gaussian integer a + bi with 0 ≤ b ≤ a for
its primeness.

• If b 6= 0, a2 + b2 ≡ 1 (mod 4) and a2 + b2 is an ordinary prime, then
a + bi is a Gaussian prime.

• If b = 1 and a = 1, then a + bi is a Gaussian prime.

• If b = 0, a ≡ 3 (mod 4) and a is an ordinary prime, then a + bi is a
Gaussian prime.

• Otherwise a + bi is a Gaussian composite number.

This method will be used in combination with Gethner’s method in our
computational experiments in Section 3.1. A recent result [8] has shown that
primality of an integer n can be tested in O(log12+ε n) time. This important
finding, however, still remains to be theoretical. Randomized algorithms
such as Miller-Rabin test [9] are more suitable for practical use.

The second method that we use in the method proposed in Section 3.2
is to generate a Gaussian prime from an ordinary prime p.

• If p ≡ 1 (mod 4), we decompose p into a sum of two squares, p =
a2 + b2, to get a + bi.

• If p ≡ 2 (mod 4), i.e., p = 2, we get 1 + i.

• If p ≡ 3 (mod 4), we get p + 0i.

The decomposition in the first case can be done as follows efficiently [3].
Let x be an integer such that x2 ≡ −1 (mod p). Such x can be computed

4

on the basis of the formula x ≡ r(p−1)/4 (mod p), where r is the minimal
quadratic non-residue modulo p. Apply the Euclidean algorithm to the pair
of p and x, and let a to be the first in the residue sequence that is smaller
than

√
p. It is known that b =

√
p− a2 is an integer, and hence this pair

(a, b) gives the decomposition p = a2 + b2.
The prime counting function π(x) denotes the number of ordinary primes

less than or equal to x. The prime number theorem (see. e.g., [6]) says

π(x) ∼ Li(x) =
∫ x

2

dt

log t
∼ x

log x

for large x. We define π1(x) to be the number of primes p with p ≤ x and
p ≡ 1 (mod 4), and π3(x) to be the number of primes p with p ≤ x and
p ≡ 3 (mod 4). According to the Chebotarev density theorem [7], we have
π1(x) ∼ π3(x) ∼ π(x)/2 for large x. The number of Gaussian primes of
absolute value less than or equal to x lying in the first octant

∣∣∣{z ∈ C | |z| ≤ x, 0 ≤ arg z ≤ π/4}
∣∣∣

can be estimated as

π1(x2) + 1 + π3(x) ∼ π(x2)
2

+
π(x)

2
∼ x2

4 log x
.

3 Computational Method

For the computation of the farthest point of the connected component of
the origin we employed two methods, Gethner’s method [1] and another
method that we propose. It turned out that the proposed method runs
approximately 10 times faster than Gethner’s.

3.1 Gethner’s Method

The fundamental approach of Gethner’s method is a breath-first search on
the graph G introduced in Section 1. We classify Gaussian primes according
to the number of steps to reach from the origin; the Gaussian primes of level
n are those that can be reached from the origin in n steps, but not fewer.

A Gaussian prime within distance k from a Gaussian prime of level n is
at the level of n − 1, n, or n + 1. This fact allows us to retain only those
Gaussian prime at level n − 1 and n when we search for Gaussian primes
of level n + 1. Suppose that we have found all the Gaussian primes of level
n or less. For each Gaussian prime of level n, we collect Gaussian integers
lying within distance k from that Gaussian prime. We then form the union
of those sets of Gaussian integers over all Gaussian primes of level n. The
Gaussian primes in this union, except for those of level n−1 or n, are exactly
the Gaussian primes of level n + 1.

5

Table 1: Comparison of the two methods

Gethner’s method Our proposed method

Basic idea
breath-first search
on graph G

sequential subgraph
construction

Order of
Gaussian prime
generation

random sequential

Generation of
Gaussian primes

primality test
(to save memory)

sieve of Eratosthenes +
decomposition into sum
of two squares

Generated
Gaussian primes

connected component
from the origin
(50 ∼ 75% of right column)

{xn | |xn| ≤ |ξ(k)|+ k}

Maximum number
of Gaussian primes
needed to retain in
memory

(750 for k = 18)
∼

√
k|ξ(k)|

2 log |ξ(k)|
(2600 for k = 18)
(540000 for k = 32)

Number of
generated Gaussian
primes per second

10,000/sec 25,000–100,000/sec

We need primality test for Gaussian integers. This can be reduced
to primality test for ordinary integers by the fact described in Section 2.
As the sieve of Eratosthenes is quick but needs much memory to retain
all the primes for the random order of primality test, we adopted Miller-
Rabin test combined with Lucas-Lehmer test, which is implemented in
java.math.BigInteger.isProbablePrime().

3.2 Our Method

We generate Gaussian primes in the order of their norm by the method
described in Section 2. In terms of the graph G introduced in Section 1,
the vertices of G are numbered sequentially according to the norm of the
associated Gaussian primes. As we generate Gaussian primes, we determine
the connected components of the subgraph on G induced on the vertices
generated so far. This can be done efficiently as follows.

Let x1, x2, . . . , xn, xn+1, . . . denote the Gaussian primes, where |x1| <
|x2| < · · · < |xn| < |xn+1| < · · ·. We denote by Gn the subgraph of G
induced on {x1, x2, . . . , xn}. A connected component is represented by an

6

xn

X

Y

Z

Gn

Components X, Y, and Z are indepen-
dent.

⇒

xn

xn+1

X

Y

Z

Gn+1

Components X and Y are connected
by xn+1.

Figure 3: Subgraphs Gn and Gn+1

arborescence (a directed tree) with arcs directed toward the unique root,
which is the Gaussian prime with the largest norm in the component. Ac-
cordingly the connected component decomposition of Gn is represented by
a family of such arborescence. We represent this family of arborescence by
an array of pointers.

To add a new vertex xn+1, we look for xi with i ≤ n such that |xn+1 −
xi| ≤ k. If no such xi exists, we identify the singleton set {xn+1} as an
isolated connected component of Gn+1. Otherwise, let xi1 , xi2 , . . . , xim be
the (exhaustive) list of such xi, and let rj be the root vertex of the component
of Gn containing xij for j = 1, 2, . . . , m. We then add a pointer from rj to
xn+1 for j = 1, 2, . . . , m. Note that this amounts to merging the components
of r1, r2, . . . , rm in Gn into a single component in Gn+1 with root xn+1.

In practical implementation, we do not need to keep the entire array of
pointers. In fact, we may discard the pointers for xi if |xi| < |xn| − k. This
means that we maintain the Gaussian primes contained in the band region

Bn = {z ∈ C | |xn| − k ≤ |z| ≤ |xn|, 0 ≤ arg z ≤ π/4}.
See the illustration in Fig.4. The number of Gaussian primes in the band
region Bn is approximated by

|Bn| ∼ π1(|xn|2)− π1((|xn| − k)2) ∼ k|xn|
2 log |xn| .

The search process terminates if the root vertex, say, r0 representing the
component of the origin lies outside the band region, i.e., if |r0| < |xn| − k.
Then we identify r0 as ξ(k), the farthest point reached from the origin for
step size k.

An upper bound on |ξ(k)| can be obtained by a slight variant of the
above procedure. We choose a Gaussian prime y and generate all Gaussian

7

xn

k

X

Y

Z
Bn

Gn

The root of component Y is xn.

⇒

xn

k

xn+1

X

Y

Z
Bn

Gn+1

The root of component X and Y be-
comes xn+1.

Figure 4: Arborescences representing Gn and Gn+1 and the band regions
Bn

primes lying in the region {z ∈ C | |y| − k ≤ |z| ≤ |y|, 0 ≤ arg z ≤ π/4}.
By assuming (fictitiously) that all the Gaussian primes within this region
are connected to the origin we run our search procedure. Note that this
assumption is tantamount to assuming that all the Gaussian primes with
the absolute value ≤ |y| are connected to the origin. If |y| is chosen to
be large enough, the search procedure is likely to terminate before long,
providing an upper bound on |ξ(k)|.

4 Computational Result

The main discovery of our computational experiment is that one can reach
2106442 + 1879505i by step size k =

√
32. The point is at the distance of

2823054.542 from the origin. The number of Gaussian primes we generated
is 138994584350. The total size of the component is 103711268594, which
amounts to 75% of the generated Gaussian primes. The maximum number
of Gaussian primes lying in the band region illustrated in Fig.4, which we
need to retain in memory, is about 540000. (This number is very close to

8

our estimate k|ξ(k)|/2 log |ξ(k)| = 537577.) We need 16Mbytes for them.
The computational time we need is about 80 hours by parallel computing
with 38 CPUs. It would take 70 days by one computer.

Another discovery is that one cannot walk to infinity with step size
k =

√
36. A bound of 80015782 on the distance reachable from the origin

has been found.
Out computational environment consists of 19 machines connected with

Gigabit Ethernet (Intel Pentium III 1.4GHz x 2 (SMP), 1GByte memory,
Red Hat Linux 7.1 (kernel 2.4.18), Java J2SE 1.4.2, Java HotSpot Server
VM, gcc 2.96).

Component of
origin using
distance k

Farthest
point

reached ξ(k)

Farthest
distance

reached |ξ(k)|

Total size
of the

component∗

Computation
time

(1CPU/38CPUs)√
1 2 + i 2.236 2√
2 11 + 4i 11.705 14√
4 42 + 17i 45.310 92√
8 84 + 41i 93.472 380√

10 976 + 311i 1024.352 31221√
16 3297 + 2780i 4312.610 347638 5sec/ —√
18 8174 + 6981i 10749.355 2386129 25sec/ —√
20 120510 + 57857i 133679.065 273791623 4hour/ 8min√
26 943460 + 376039i 1015638.765 14542615005 10day/11hour√
32 2106442 + 1879505i 2823054.542 103711268594 — /80hour√
34 — < 24289452 Finite — /130hour√
36 — < 80015782 Finite — /26hour

∗ the number of points distinct from the origin

The following computational techniques turned out to be useful.

• As is described in Section 3.2 we create an arc from rj to xn+1. In
addition, for all y lying on the path from xj to rj , we also create arcs
from y to xn+1 and delete arc y to its successor on the path.

• We retain Gaussian primes in Bn with pointers in a hash table. We
adopted the imaginary part b as the key for a Gaussian prime a + bi.
As is easily seen from Fig.5, this is most advantageous among three
natural candidates for the key,

(a) real part a

(b) imaginary part b

(c) argument arctan(b/a).

9

If the real part is adopted, we need to check many extra points lying
outside the circle centered at xn+1 with radius k. If the argument is
used, the circle is enclosed more tightly, but the computational cost
for arctan is high.

(b) (c)(a)

Figure 5: Choice of the key for hash table

• The computational process is divided into two: one is to generate
Gaussian primes in the order of their absolute value, and the other is
to make subgraphs Gn to check for the connectivity among them. The
computational cost of the former is prohibitively higher than that of
the latter.

schedule jobs and reorder requested {xn}

generate subgraphs Gn

{

xn

∣

∣ n = 1, 2, . . .

}

1 ≤ |xn|
2 < 1000

generate Gaussian primes

1000 ≤ |xn|
2 < 2000

interval

{xn}

2000 ≤ |xn|
2 < 3000

3000 ≤ |xn|
2 < 4000

...

...
...

machine1

machine2

machine3 machine4 machine...

Figure 6: Task assignment for parallel computing

We can parallelize the generation of Gaussian primes easily because
there is no interaction from the connectivity testing. See Fig.6 in which
machine1 tests for the connectivity, whereas machine2 assigns the task

10

of generating Gaussian primes to the remaining machines. Generating
Gaussian primes is assigned to many different CPUs according to their
absolute values. We could generate Gaussian primes approximately
20 times faster. The bottleneck of generating Gaussian primes is thus
resolved. It seems difficult to parallelize the connectivity testing, which
is now the bottleneck of the process.

5 Estimating the farthest distance reachable from
the origin

On the basis of percolation theory Vardi [4] constructed a model of Gaussian
primes and conjectured that

k ∼
√

2πλc log |ξ(k)|,

where λc ≈ 0.35 is a constant in continuum percolation and ξ(k) is the
farthest point reachable from the origin with step size k. This relation can
be rewritten as

log |ξ(k)| ∼ k2

2πλc
,

which is shown in Fig.7. Although the observed data are approximated fairly
well by this estimate, they lie consistently above the estimate and form a
zigzag line. An improved estimate is proposed below.

1

10

100

1000

10000

100000

1e+06

1e+07

0 5 10 15 20 25 30

Fa
rth

es
t d

is
ta

nc
e

re
ac

he
d,

 |ξ
(k

)|

square of step size, k2

observed data
Vardi’s estimate

Figure 7: Vardi’s estimate

When a Gaussian integer a+bi is a Gaussian prime excepting ±1±i, then
(a, b) is either (odd, even) or (even, odd). The difference (x, y) between two
Gaussian primes is either (even, even) or (odd, odd). For a given step size

11

k, there are only finitely many pairs (x, y) such that x2 + y2 ≤ k2 and x ≡ y
(mod 2). They are possible edges in graph G. We denote the number of
such pairs (x, y) with x ≥ 0 and y > 0 for step size k by p(k).

√

4

√

2

√

8

√

18

√

10

k p(k) possible edges√
1 1 (0,1)√
2 2 (1,1)√
4 3 (0,2)√
8 4 (2,2)√

10 6 (1,3) (3,1)√
16 7 (0,4)√
18 8 (3,3)...

...
...√

40 18 (2,6) (6,2)√
50 21 (1,7) (5,5) (7,1)

Up to the fourfold symmetry

Figure 8: Possible edges corresponding to step size k

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30

nu
m

be
r o

f p
os

si
bl

e
ed

ge
s,

 p
(k

)

square of step size, k2

p(k)
asymptote

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30

nu
m

be
r o

f p
os

si
bl

e
ed

ge
s,

 p
(k

)

square of step size, k2

0
25
50
75

100

0 50100150200250
0

25
50
75

100

0 50100150200250

Figure 9: Relation between the number of possible edges p(k) and square of
step size k

Figure 9 shows the relation between p(k) and k2. Globally

p(k) ∼ πk2/8,

but we can observe local zigzags.
It is remarkable that the zig-zag lines in Fig.7 and Fig.9 look similar.

Combination of Fig.7 and Fig.9 results in Fig.10, which shows the relation-

12

ship between |ξ(k)| and p(k). As is evident in Fig.10, |ξ(k)| and p(k) are
almost proportional to each other. This demonstrates an improvement upon
Vardi’s original estimate.

Least square method using the 10 data with 1 ≤ k ≤ 32 yields

log |ξ(k)| ∼ 1.160p(k).

On the other hand, Vardi’s estimate, together with p(k) ∼ πk2/8, yields

log |ξ(k)| ∼ k2

2πλc
∼ 1

2πλc

8p(k)
π

=
4p(k)
π2λc

= 1.158p(k).

These two estimates consider very well with each other, as is demonstrated
also in Fig.11.

1

10

100

1000

10000

100000

1e+06

1e+07

0 2 4 6 8 10 12

1 2 4 8 10 16 18 20 26 32

Fa
rth

es
t d

is
ta

nc
e

re
ac

he
d,

 |ξ
(k

)|

number of possible edges, p(k)

square of step size, k2

observed data
Our estimate

Figure 10: Our estimate

Whereas Vardi’s estimate captured the essential nature of the Gaussian
moat problem on the basis of percolation theory that puts emphasis on
randomness and continuity. Our contribution here is a modification, or a
calibration, of Vardi’s estimate with considerations of discreteness. The
modified estimate fits the observed data pretty well, and is consistent with
Vardi’s in the global scale.

Acknowledgements

I would like to thank Kazuo Murota and Shiro Matuura for their helpful
advice. I would like to thank Kosuke Yabuki who brought this interesting
problem to me. I would like to thank Shuji Kijima for his useful idea. I also
would like to acknowledge the computational environment supported by the
Special Coordination Fund for Promoting Science and Technology, Ministry
of Education, Culture, Sport, Science and Technology.

13

1

100000

1e+10

1e+15

1e+20

1e+25

0 20 40 60 80 100

Fa
rth

es
t d

is
ta

nc
e

re
ac

he
d,

 |ξ
(k

)|

square of step size, k2

observed data
our estimate

Vardi’s estimate

Figure 11: Two estimates

References

[1] E. Gethner, S. Wagon, and B. Wick, “A Stroll Through the Gaussian
Primes,” American Mathematical Monthly 105:4 (1998), 327–337.

[2] E. Gethner and H. M. Stark, “Periodic Gaussian Moats,” Experimental
Mathematics 6:4 (1997), 289–292.

[3] S. Wagon, Mathematica in Action, Springer-Verlag New York, 1999.

[4] I. Vardi, “Prime Percolation,” Experimental Mathematics 7:3 (1998),
275–288.

[5] J. H. Jordan and J. R. Rabung, “A Conjecture of Paul Erdös Concerning
Gaussian Primes,” Mathematics of Computation 24 (1970), 221–223.

[6] P. Ribenboim, The Little Book of Big Primes, Springer-Verlag, New
York, 1991.

[7] G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers
5th Edition, Oxford University Press, 1979.

[8] M. Agrawal, N. Kayal and N. Saxena, “PRIMES is in P,” Preprint
(2002), http://www.cse.iitk.ac.in/news/primality.html

[9] M. O. Rabin, “Probabilistic algorithm for testing primality,” Journal of
Number Theory 12 (1980), 128–138.

[10] H. Okumura et al., Dictionary of Algorithms in Java, Gijutsu-Hyohron
Co., Ltd., 2003.

14

http://www.cse.iitk.ac.in/news/primality.html

	1 Introduction
	2 Generating Methods of Gaussian Primes
	3 Computational Method
	3.1 Gethner's Method
	3.2 Our Method

	4 Computational Result
	5 Estimating the farthest distance reachable from the origin

