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Distance reducing Markov bases for sampling from discrete sample space

Akimichi TAKEMURA and Satoshi AOKI

Graduate School of Information Science and Technology
University of Tokyo

SUMMARY

We study Markov bases for sampling from discrete sample space, which is equipped with some
convenient metric. Starting from any two states in the sample space, we ask whether we can
always move closer by an element of a Markov basis. We call a Markov basis distance reducing
if this is the case. Particular metric we consider in this paper is the 1-norm on the sample
space. Some characterizations of 1-norm reducing Markov bases are derived.

1 Introduction

Markov basis for sampling from a discrete conditional distribution is usually studied in the
framework of toric ideal and its Gröbner basis (Sturmfels (1995), Diaconis and Sturmfels (1998),
Dinwoodie (1998)). For the case of 3 × 3 × K contingency tables with fixed two-dimensional
marginals, in Aoki and Takemura (2003a) we used more elementary approach to derive a
unique minimal Markov basis. The approach was based on exhaustive consideration of sign
patterns when the 1-norm (L1-norm) between two contingency tables with the same marginals
is minimized. In order to prove that a candidate set B of moves is a Markov basis, we have
shown that the 1-norm between two contingency tables can always be decreased by an element
of B.

In order to study minimal Markov basis and its uniqueness for other models, in Takemura
and Aoki (2004) we considered whether two elements of the same fiber (reference set) are mutu-
ally accessible by a set of lower degree moves and derived some results on the characterization
of minimal Markov bases. Note that the notion of mutual accessibility is not directly related
to any metric on the fibers. Therefore although the approaches in the above two papers were
similar, they were different in explicit consideration of metric on the fibers.

In this paper we explicitly consider 1-norm on the fibers in a general framework of Takemura
and Aoki (2004) and derive some characterizations of 1-norm reducing Markov bases. If a
Markov basis is 1-norm reducing, then the diameter of each fiber, which is regarded as a
transition graph of the Markov chain with respect to the Markov basis, is easily bounded from
above. The diameter of the graph is an important factor in various results on the convergence
rate of Markov chains (e.g. Section 2.3 of Diaconis and Sturmfels (1998), Section 4 of Diaconis
and Saloff-Coste (1998), Bubley and Dyer (1997)). Therefore distance reducing property of
Markov bases is also relevant from the viewpoint of the convergence rate of the Markov chain.
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The organization of this paper is as follows. In Section 2 we summarize some preliminary
material on moves and Markov bases. In Section 3.1 we study general properties of distance
reducing Markov basis. In Section 3.2 we derive some properties of 1-norm reducing Markov
bases. In Section 4 we give examples and conclude with some discussions.

2 Preliminaries on Markov bases

In this section we summarize preliminary material on Markov bases. We employ the framework
of Takemura and Aoki (2004), although we also use well known results on toric ideals and
Gröbner basis (e.g. Sturmfels (1995), Hibi (2003)).

2.1 Notations

Here we summarize notations of Takemura and Aoki (2004). Let I be a finite set with |I|
elements. With multi-way contingency tables in mind, an element of I is called a cell and
denoted by i ∈ I. A non-negative integer xi ∈ N = {0, 1, . . .} denotes the frequency of cell i.
n =

∑
i∈I xi denotes the sample size. Let a(i) ∈ Nν , i ∈ I, denote ν-dimensional fixed column

vectors consisting of non-negative integers. A ν-dimensional sufficient statistic t is given by
t =

∑
i∈I a(i)xi.

Let the cells and the vectors a(i) be appropriately ordered. Then

x = {xi}i∈I ∈ N|I|

denotes an |I|-dimensional column vector of cell frequencies (frequency vector) and

A = {a(i)}i∈I = (aji)j=1,...,ν,i∈I

denotes a ν × |I| matrix. Then the sufficient statistic t is written as t = Ax.
We use the notation |x| = n =

∑
i xi to denote the sample size of x. It is the 1-norm of x.

x ≥ 0 means that the elements of x are non-negative and x ≥ y means x−y ≥ 0. For a given
frequency vector x, its support is the set of cells with positive frequencies: supp(x) = {i | xi >
0}. Following Sturmfels (1995) we call the set of x’s for a given t

Ft = {x ≥ 0 | Ax = t}.
a t-fiber in this paper.

As in Takemura and Aoki (2004) we assume that the |I|-dimensional row vector (1, 1, . . . , 1)
is a linear combination of the rows of A. This assumption is standard in the theory of toric
ideals (Section 4.1 of Hibi (2003)). Under this assumption the sample size n is determined from
the sufficient statistic t and all elements of Ft have the same sample size. Somewhat abusing
the notation, we write n = |t| to denote the sample size of elements of Ft.

Let Z = {0,±1, . . .}. An |I|-dimensional vector of integers z ∈ Z|I| is called a move if it is
in the kernel of A:

Az = 0.

For a move z, the positive part z+ and the negative part z− are defined by

z+
i = max(zi, 0), z−i = −min(zi, 0),
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respectively. Then z = z+−z−. The positive part z+ and the negative part z− have the same
value of sufficient statistic t = Az+ = Az−. The sample size of z+ (or z−) is called the degree
of z and denoted by

deg z = |z+| = |z−|.
We also write |z| = ∑

i |zi| = 2 deg z, which is the 1-norm of z.
We say that a move z is applicable to x ∈ Ft if x + z ∈ Ft, i.e., adding z to x does not

produce a negative cell. Clearly z is applicable to x if and only if x ≥ z−. Therefore if z is
applicable to x then |z+| ≤ |x|.

Let B = {z1, . . . , zL} be a finite set of moves. Let x, y ∈ Ft. We say that y is accessible
from x by B and denote it by

x ∼ y (mod B),

if there exists a sequence of moves zi1 , . . . , zik of B and εj = ±1, j = 1, . . . , k, such that

y = x +
∑k

j=1 εjzij and

x +
h∑

j=1

εjzij ∈ Ft, h = 1, . . . , k − 1, (1)

i.e., we can move from x to y by moves of B without causing negative cells on the way.
Obviously the notion of accessibility is symmetric and transitive. Therefore accessibility by B
is an equivalence relation and each Ft is partitioned into disjoint equivalence classes by moves of
B. We call these equivalence classes B-equivalence classes of Ft. Since the notion of accessibility
is symmetric, we also say that x and y are mutually accessible by B if x ∼ y (mod B). Let x
and y be elements from two different B-equivalence classes of Ft. We say that a move

z = x− y

connects these two equivalence classes.
B-equivalence classes can be considered in terms of a graph. Consider an undirected graph

G = Gt,B with the set of vertices V = Ft and the edges between x,y ∈ Ft if y = x ± z for
some z ∈ B. B-equivalence classes are connected components of G.

In the following let
Bn = {z | deg z ≤ n},

denote the set of moves with degree less than or equal to n.

2.2 Markov bases

A set of finite moves B = {z1, . . . , zL} is a Markov basis if for all t, Ft itself constitutes one
B-equivalence class, i.e. the graph Gt,B is connected for all t. A Markov basis B is minimal if
no proper subset of B is a Markov basis. A minimal Markov basis always exists, because from
any Markov basis, we can remove redundant elements one by one, until none of the remaining
elements can be removed any further. Minimal basis is unique if all minimal bases coincide
except for sign changes of their elements.

A move z is indispensable if z or −z belongs to every Markov basis. z is indispensable if
and only if it is the difference of elements of a two-elements fiber

z = x− y, {x,y} = Ft for some t.
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Minimal basis is unique if and only if the set of indispensable moves form a Markov basis.
Recently Ohsugi and Hibi (2003) have shown the important fact that the set of indispensable
moves is the intersection of all reduced Gröbner bases.

Let z = z+− z− be a move of degree n. We call z non-replaceable by lower degree moves if

z+ 6∼ z− (mod Bn−1), (2)

i.e., if z connects different Bn−1-equivalence classes of Ft 3 z+. Clearly an indispensable move
is non-replaceable by lower degree moves. From the argument in Takemura and Aoki (2004)
we see that the set

BMF = {z | z is non-replaceable by lower degree moves}
form a Markov basis. We call BMF minimum fiber Markov basis, in view of the fact that for all
minimal Markov bases B, the set of sufficient statistics

{t | t = Ax,x ∈ B} = {t | Ft is not a single B|t|−1-equivalence class}
is common. BMF is the union of all minimal Markov bases. In the case of contingency tables
with fixed marginals, the minimum fiber Markov basis is invariant in the sense of Aoki and
Takemura (2003b).

Consider a sum of two moves z = z1 + z2. We say that there is no cancellation of signs in
this sum if

supp(z+) = supp(z+
1 ) ∪ supp(z+

2 ), supp(z−) = supp(z−1 ) ∪ supp(z−2 ).

In this case we also say that z is a conformal sum of z1 and z2. Similarly we say that there is
no cancellation of signs in the sum of m moves z = z1 + · · · + zm (or z is a conformal sum of
m moves) if

supp(z+) = supp(z+
1 ) ∪ · · · ∪ supp(z+

m), supp(z−) = supp(z−1 ) ∪ · · · ∪ supp(z−m).

A move z is primitive if it can not be written as sum of two non-zero moves z = z1 + z2

with no cancellation of signs. Clearly a move z, which is non-replaceable by lower degree
moves, is primitive. Note that z is primitive if it can not be written as z = z1 + z2 such that
|z| = |z1| + |z2| and 0 < |z1|, |z2| < |z|. The set of primitive moves is called the Graver basis
and it is a Markov basis. If a move z is not primitive, then we can recursively decompose z
into a conformal sum of moves. This implies that any move z can be written as a conformal
sum

z = z1 + · · ·+ zm, (3)

where z1, . . . , zm are (not necessarily distinct) non-zero elements of the Graver basis. Because
of no cancellation of signs, whenever z is applicable to some x, z can be replaced by z1, . . . , zm

in arbitrary order without causing negative cells on the way.
Let {ui}i∈I be the set of indeterminates and let K[{ui}i∈I ] denote the polynomial ring in

the indeterminates {ui}i∈I over a field K. A frequency vector x = {xi}i∈I can be identified
with the monomial ∏

i∈I
uxi
i .
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Let {tj}j=1,...,ν denote the set of indeterminates corresponding to the sufficient statistic t and
let K[t] denote the polynomial ring in t1, . . . , tν over K. The toric ideal IA is the kernel of the
ring homomorphism

ui 7→
ν∏

j=1

t
aji
j .

Given a term order ≺ on K[{ui}i∈I ] let B≺ denote the reduced Gröbner basis of IA with respect
to ≺. It is well known (Sturmfels (1995), Diaconis and Sturmfels (1998)) that B≺ is a Markov
basis. The union of all reduced Gröbner bases for all possible term orders is called the universal
Gröbner basis and it is contained in the Graver basis.

3 Distance reducing Markov bases

In this section we first define the notion of distance reduction by a set of moves when the sample
space is equipped with appropriate metric. Then we derive some characterizations of 1-norm
reducing Markov bases.

3.1 Distance reduction by a set of moves

Consider a metric d(x,y) on a fiber Ft. Although we are mainly concerned with 1-norm in the
following, here we consider a general metric. A metric d = dt on Ft can be defined in various
ways. If a metric d is defined on the whole sample space N|I|, we consider the restriction of
d onto each Ft, i.e., dt(x,y) = d(x, y), x,y ∈ Ft. If d is a norm on the set Z|I| of integer
frequency vectors, such as the 1-norm |z|, d is defined by dt(x,y) = d(x− y). For notational
simplicity we suppress the subscript t in dt hereafter.

Now we introduce the notion of distance reduction by a set of moves. Let B denote a set
of moves. We call B d-reducing for x,y ∈ Ft if there exists an element z ∈ B and ε = ±1 such
that εz is applicable to x or y and we can decrease the distance, i.e.,

x + εz ∈ Ft and d(x + εz,y) < d(x,y), or

y + εz ∈ Ft and d(x,y + εz) < d(x,y). (4)

We simply call B d-reducing if B is d-reducing for every x, y ∈ Ft and for every t.
We call B strongly d-reducing for x,y if there exist elements z1, z2 ∈ B and ε1, ε2 = ±1 such

that x + ε1z1 ∈ Ft, y + ε2z2 ∈ Ft and

d(x + ε1z1,y) < d(x,y) and d(x,y + ε2z2) < d(x,y) (5)

and call B strongly d-reducing if B is strongly d-reducing for every x, y ∈ Ft and for every t.
Clearly if B is strongly d-reducing, then B is d-reducing.

A basic argument we have employed in Aoki and Takemura (2003a) is the following obvious
fact.

Proposition 1 Let a metric d is given on each fiber Ft. A set of finite moves B is a Markov
basis if it is d-reducing.
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If B is d-reducing, then for every x,y ∈ Ft, there exist k > 0, εl = ±1, zl ∈ B, xl ∈ Ft,
yl ∈ Ft, l = 1, . . . , k, with the following properties: i) xk = yk,

ii) d(xl,yl) < d(xl−1,yl−1), l = 1, . . . , k,

where x0 = x and y0 = y, and

iii) (xl,yl) = (xl−1 + εlzl, yl−1) or (xl, yl) = (xl−1,yl−1 + εlzl), l = 1, . . . , k.

Given the above sequence of frequency vectors, we can move from x to xk = yk and then
reversing the moves we can move from yk to y. Thus y is accessible from x by B. Note that
in this sequence of moves the distances

d(x,x1), . . . , d(x,xk), d(x,yk−1) . . . , d(x,y)

might not be monotone increasing.
On the other hand if B is strongly d-reducing, then starting from y, we can always decrease

the distance by moving from the side of y, i.e., we can find k > 0 and y = y0,y1, . . . , yk−1,yk =
x in Ft such that yl = yl−1 + εlzl, εl = ±1, zl ∈ B, l = 1, . . . , k, and

d(x,yk−1), d(x,yk−2), . . . , d(x,y)

is strictly increasing.
Given a Markov basis B, each fiber Ft can be considered as a connected graph Gt,B as

discussed in Section 2. Associated with a Markov basis B, the shortest path metric dB(x,y)
is defined to be the minimum number of steps needed to move from x to y by moves of B.
Trivially B is itself dB-reducing. As discussed in Introduction, the diameter of Gt,B is relevant
for the convergence rate of the Markov chain based on the Markov basis B. However direct
computation of the diameter is generally difficult, whereas the largest 1-norm between two
states in Ft is clearly bounded from above by 2|t|. This implies that if B is 1-norm reducing,
then the diameter of Gt,B is bounded from above by 2|t|.

3.2 Some results on 1-norm reducing Markov bases

The 1-norm |z| =
∑
i∈I |zi| on the set Z|I| of integer frequency vectors is a natural norm to

consider for Markov bases. In this section we investigate Markov bases from the viewpoint of
1-norm reduction.

Here we briefly summarize results of this section. First we discuss the basic importance of the
Graver basis in the investigation of 1-norm reduction (Propositions 2, 3, 4). Then we introduce
three closely related notions of 1-norm irreducibility of a move and discuss implications among
them (Proposition 5). Based on these notions, conditions for unique minimality of (strongly)
1-norm reducing Markov bases are given (Propositions 6, 7). In Proposition 8 we introduce a
Markov basis BLDI containing BMF and in Proposition 9 we discuss the case that BLDI consists
of the indispensable moves.

We now start with the Graver basis.

Proposition 2 Graver basis is strongly 1-norm reducing.

6



Proof. Let x, y ∈ Ft be in the same fiber. As in (3), express x − y as a conformal sum of
non-zero elements of the Graver basis:

x− y = z1 + · · ·+ zm.

Then |x − y| = |z1| + · · · + |zm|. Now z1 can be subtracted from x and at the same time z1

can be added to y to give

|(x− z1)− y| = |x− (y + z1)| = |z2|+ · · ·+ |zm| < |x− y|.

Q.E.D.
Note that the Graver basis is rich enough that we can take z1 = z2 in the definition of

strong distance reduction in (5)

Proposition 3 A set of moves B is 1-norm reducing if and only if for every element z =
z+ − z− of the Graver basis, B is 1-norm reducing for z+, z−.

Proof. We only have to prove sufficiency. Let x,y ∈ Ft be arbitrarily given and let x− y =
z1 + · · ·+ zm be a conformal sum of elements of the Graver basis. By assumption B is 1-norm
reducing for z+

1 ,z−1 . Among four possible cases, without loss of generality, consider the case
that z ∈ B is applicable to z+

1 and

|(z+
1 + z)− z−1 | < |z+

1 − z−1 | = |z1|. (6)

Since z is applicable to z+
1 , z− ≤ z+

1 ≤ (x− y)+. Furthermore (6) implies that

∅ 6= supp(z+) ∩ supp(z−1 ) ⊂ supp(z+) ∩ supp((x− y)−).

It follows that z is applicable to x and |(x + z)− y| < |x− y|. Q.E.D.

Note that the same statement holds for strong 1-norm reduction with exactly the same
proof:

Proposition 4 A set of moves B is strongly 1-norm reducing if and only if for every element
z = z+ − z− of the Graver basis, B is strongly 1-norm reducing for z+,z−.

Suppose that B is a 1-norm reducing Markov basis. Then any B′ ⊃ B is a 1-norm reducing
Markov basis as well. In view of this, it is of interest to consider minimality of 1-norm reducing
Markov bases. A 1-norm reducing Markov basis B is minimal if every proper subset of B is not
a 1-norm reducing Markov basis. For 1-norm reducing Markov basis B, we can examine each
element z of B one by one, whether B−{z} remains to be a 1-norm reducing Markov basis. If
B − {z} remains to be 1-norm reducing, we remove z, recursively, until none of the remaining
elements can be removed any further. Then we arrive at a minimal 1-norm reducing Markov
basis. Therefore every 1-norm reducing Markov basis B contains a minimal 1-norm reducing
Markov basis.

Exactly the same argument holds concerning minimality of strongly 1-norm reducing Markov
bases. Every strongly 1-norm reducing Markov basis contains a minimal strongly 1-norm re-
ducing Markov basis.
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In Takemura and Aoki (2004) we considered minimality of Markov bases. Similar argument
can be applied to the question of minimality of 1-norm reducing Markov bases.

In order to study this minimality question we introduce three closely related notions of
degree reduction of a move z by other moves. We say that a move z = z+ − z− is 1-norm
reducible by another move z′ 6= ±z if z′ is applicable to z+ and |z +z′| < |z| or z′ is applicable
to z− and | − z + z′| = |z − z′| < |z|. We say that a move z = z+ − z− is strongly 1-norm
reducible by a pair of (other) moves z1,z2 6= ±z if z1 is applicable to z+ and |z +z1| < |z| and
furthermore z2 is applicable to z− and |z − z2| < |z|. Finally we say z is 1-norm reducible by
a lower degree move z′ if |z′| < |z| and z is 1-norm reducible by z′.

Consider the implications among these notions. If z is strongly 1-norm reducible by z1,z2,
then z is clearly 1-norm reducible by z1 (or z2). Now we show that if z is 1-norm reducible
by a lower degree move z′, then z is strongly 1-norm reducible either by the pair z′,z + z′

or by the pair z′ − z,z′. To show this first consider the case that z′ is applicable to z+ and
|z + z′| < |z|. Let z′′ = z + z′. Then |z − z′′| = |z′| < |z| and we only need to check that z′′

is applicable to z−. In fact

z′′ = z+ − z− + (z′)+ − (z′)− = (z+ − (z′)−) + (z′)+ − z−

≥ (z′)+ − z−.

This implies that (z′′)− ≤ z− and z′′ is applicable to z−. Similarly if z′ is applicable to z−, we
can check that z is strongly 1-norm reducible by the pair z′ − z, z′.

Based on the above observation, we define three notions of irreducibility of a move. We
call z 1-norm irreducible if it is not 1-norm reducible by any other move z′ 6= z. We call z
strongly 1-norm irreducible if it is not strongly 1-norm reducible by any pair of other moves.
Finally we call z 1-norm lower degree irreducible if it is not 1-norm reducible by any lower
degree move. We state the above implications of the properties of moves, as well as further
implications among indispensability and primitiveness, in the following proposition.

Proposition 5 For a move z, the following implications hold.

indispensable ⇒ 1-norm irreducible

⇒ strongly 1-norm irreducible

⇒ 1-norm lower degree irreducible

⇒ primitive. (7)

Proof. If z is not primitive, then z is clearly 1-norm reducible by a lower degree move. This
proves the last implication.

If z is 1-norm reducible by z′ 6= ±z, then z− 6= z+ + z′ ∈ Ft or z+ 6= z− + z′ ∈ Ft, where
t = Az+. Therefore Ft is not a two-elements fiber. Therefore z is not indispensable. This
proves the first implication. Q.E.D.

We now prepare several lemmas.

Lemma 1 If z is 1-norm reducible by another move z′ 6= ±z, then there exists a primitive
move z′′ 6= z, |z′′| ≤ |z′|, such that z is 1-norm reducible by z′′.
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Proof. If z′ is itself primitive just let z′′ = z′. If z′ is not primitive write z′ as a conformal sum
z′ = z1 + · · ·+zm of non-zero elements of the Graver basis. Among two possible cases, without
loss of generality, consider the case that z′ is applicable to z+ and |z + z′| < |z|. In this case
(z′)− ≤ z+ and supp((z′)+) ∩ supp(z−) 6= ∅. Since supp((z′)+) = supp(z+

1 ) ∪ · · · ∪ supp(z+
m),

there exists some l such that supp((zl)
+) ∩ supp(z−) 6= ∅. Furthermore z−l ≤ (z′)− ≤ z+ and

|zl| < |z′| ≤ |z|. This implies that z is 1-norm reducible by z′′ = zl 6= z. Q.E.D.

The same argument proves the following lemma.

Lemma 2 If z is strongly 1-norm reducible by a pair of moves z1,z2 6= ±z then there exists
a pair of primitive moves z′1,z

′
2 6= ±z, |z′1| ≤ |z1|, |z′2| ≤ |z2|, such that z is strongly 1-norm

reducible by the pair z′1,z
′
2.

We now state some results on minimality of 1-norm reducing Markov bases. First we show
that 1-norm reducing basis has to contain all 1-norm irreducible moves.

Lemma 3 Let z be a 1-norm irreducible move. Then either z or −z belongs to every 1-norm
reducing Markov basis.

Proof. We argue by contradiction. Let z = z+ − z− be 1-norm irreducible and let B be a
1-norm reducing Markov basis not containing z nor −z. Since B be 1-norm reducing, B is
1-norm reducing for z+, z−. But this contradicts the 1-norm irreducibility of z in view of (4).

Q.E.D.

We say that there exists a unique minimal 1-norm reducing Markov basis if all minimal
1-norm reducing Markov bases coincide except for sign changes of their elements.

Proposition 6 There exists a unique minimal 1-norm reducing Markov basis if and only if
1-norm irreducible moves form a 1-norm reducing Markov basis.

Proof. Since every 1-norm irreducible move (or its sign change) belongs to every 1-norm
reducing Markov basis, if the set of 1-norm irreducible moves is a 1-norm reducing Markov
basis, then it is clearly the unique minimal 1-norm reducing Markov basis ignoring the sign of
each move.

Conversely suppose that 1-norm irreducible moves do not form a 1-norm reducing Markov
basis. Then every 1-norm reducing Markov basis contains a 1-norm reducible move. Let B be
a minimal 1-norm reducing Markov basis and let z0 ∈ B be 1-norm reducible. Consider

B̃ = (B ∪ BGraver)− {z0,−z0},
where BGraver is the Graver basis. We show that B̃ is a 1-norm reducing Markov basis. If this
is the case B̃ contains a minimal 1-norm reducing Markov basis different from B even if we
change the signs the elements.

Now by Propositions 1 and 3, it suffices to show that for every z = z+ − z− ∈ BGraver, B̃
is 1-norm reducing for z+, z−. If z0 is not primitive, B̃ ⊃ BGraver and B̃ is 1-norm reducing.
Therefore let z0 be primitive. Each primitive z = z+−z− 6= z0 is already in B̃ and B̃ is 1-norm
reducing for z+,z−. The only remaining case is z = z0 itself, but by Lemma 1, z0 is 1-norm
reducible by a primitive z′ 6= ±z0, z′ ∈ B̃. Q.E.D.

9



Remark 1 In many examples we expect that the set of 1-norm irreducible moves form a Markov
basis. However it seems difficult to state a simple sufficient condition to guarantee this. The
difficulty lies in eliminating the following possibility. Suppose that for some t with |t| = n, the
fiber Ft = {x1,x2,x3} is a three element set with

supp(x3) ∩ (supp(x1) ∪ supp(x2)) = ∅, supp(x1) ∩ supp(x2) 6= ∅.
Then z1 = x1 − x3 is 1-norm reducible by z2 = x2 − x3 and vice versa. However z1,z2 ∈ BMF

and if we throw away both z1 and z2, then Ft is not connected. See the following Example 1.
Also note that even if the set of 1-norm irreducible moves form a Markov basis, the Markov
basis itself might not be 1-norm reducing.

In Proposition 6 we considered uniqueness of minimal 1-norm reducing Markov bases. A
parallel argument can be carried out concerning uniqueness of minimal strongly 1-norm reducing
Markov bases in terms of strongly 1-norm irreducible moves. The following proposition can be
proved in exactly the same way as Proposition 6 using Lemma 2.

Proposition 7 Let z be a strongly 1-norm irreducible move. Then either z or −z belongs to
every strongly 1-norm reducing Markov basis. There exists a unique minimal strongly 1-norm
reducing Markov basis if and only if strongly 1-norm irreducible moves form a strongly 1-norm
reducing Markov basis.

Remark 2 In many examples we expect the set of strongly 1-norm irreducible moves form a
Markov basis. However as in the case of 1-norm reducing Markov bases, it seems difficult to
state a simple sufficient condition to guarantee this. Suppose that for some t with |t| = n, the
fiber Ft = {x1,x2,x3,x4} is a four element set with

(supp(x1) ∪ supp(x2)) ∩ (supp(x3) ∪ supp(x4)) = ∅,
supp(x1) ∩ supp(x2) 6= ∅, supp(x3) ∩ supp(x4) 6= ∅.

Then z13 = x1 − x3 is strongly 1-norm reducible by the pair −z14 = x4 − x1, z23 = x2 − x3.
Similarly x2 − x3, x1 − x4, x2 − x4 are not strongly 1-norm irreducible. However these four
moves belong to BMF and if we throw away these four moves, then Ft is not connected. See the
following Example 1.

In Remarks 1 and 2 we noted difficulty of establishing that the set of 1-norm irreducible
moves or the set of strongly 1-norm irreducible moves form a Markov basis. It corresponds to
the fact that there is no general implications between the non-replaceability in (2) and (strong)
1-norm irreducibility. The following examples illustrates this difficulty.

Example 1 As examples of Remarks 1 and 2, we consider a hierarchical model for 2×2×2×2
contingency tables, where the generating set is 12/13/23/34. In this case, a frequency vector is

x = (x1111, x1112, x1121, x1122, . . . , x2211, x2212, x2221, x2222)
′

and the sufficient statistic is

t = ({xij··}, {xi·k·}, {x·jk·}, {x··kl})′.

10



The corresponding matrix A is given as

A =




1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1




.

In Aoki and Takemura (2003b), we give a minimal Markov basis for this problem. We consider
the case that the values of the sufficient statistic are given as follows.

xij·· = xi·k· = x·jk· = 1, 1 ≤ i, j, k ≤ 2,
x··11 = x··12 = 1, x··21 = 0, x··22 = 2.

In this case, the fiber corresponding to the above t contains four elements,

x1 = u1111u1222u2122u2212, x2 = u1112u1222u2122u2211,
x3 = u1122u1211u2112u2222, x4 = u1122u1212u2111u2222,

where {uijkl} is the set of indeterminates. This corresponds to the situation in Remark 2.
Modifying the above example, we can make an example for Remark 1. In the above example,

we restrict that i = 1212 is a structural zero cell (x1212 ≡ 0) and omit the cell. In this case, a
frequency vector x is treated as a 15 dimensional vector and A is 16 × 15. The corresponding
fiber contains three elements,

x1 = u1111u1222u2122u2212, x2 = u1112u1222u2122u2211, x3 = u1122u1211u2112u2222,

which corresponds to the situation of Remark 1.

We now show that the set of 1-norm lower degree irreducible moves form a Markov basis. In
the following let BLDI denote the set of 1-norm lower degree moves. In the case of contingency
tables with fixed marginals, BLDI is invariant in the sense of Aoki and Takemura (2003b). We
state the following proposition.

Proposition 8 If a move z is non-replaceable by lower degree moves, then z is 1-norm lower
degree irreducible. Hence BMF ⊂ BLDI and BLDI is a Markov basis.

11



Proof. If z is 1-norm reducible by a lower degree move z′, then we can move from z+ to
z− either by two lower degree moves z′ and z + z′ or by z′ − z and z′. Therefore z+ ∼
z− (mod Bdeg z−1). This implies that if z is non-replaceable by lower degree moves, then z is
1-norm lower degree irreducible. Q.E.D.

Remark 3 Together with indispensability and primitiveness, the result of Proposition 8 can be
summarized as follows (cf. Proposition 5). For a move z, the following implications hold

indispensable ⇒ non-replaceable by lower degree moves

⇒ 1-norm lower degree irreducible

⇒ primitive.

Finally we consider the case that the set of indispensable moves is 1-norm reducing.

Proposition 9 Suppose that the set BIDP of indispensable moves is 1-norm reducing. Then
BIDP = BLDI.

Proof. Let z = z+ − z− is a move with t = Az+. It suffice to prove that if z is not
indispensable, then z is reducible by a lower degree move z′. By assumption BIDP is 1-norm
reducing. Therefore there exists an indispensable move z′, such that z is 1-norm reducible by
z′. Note that z′ 6∈ Ft. By Lemma 2.1 of Takemura and Aoki (2004), it follows that |z′| < |z|.
Therefore z is 1-norm reducible by a lower degree move z′. Q.E.D.

Remark 4 Many of the results of this section hold for any metric d on N|I| with the following
property. If supp(x) ∩ supp(y) = ∅, supp(x′) ⊂ supp(x), supp(y′) ⊂ supp(y), deg x′ < deg x
and deg y′ < deg y, then

d(x′,y′) < d(x,y).

4 Examples and some discussion

4.1 Examples

In this section, we consider some standard models of contingency tables. In Section 3 of
Takemura and Aoki (2004), we have considered minimal Markov bases and their uniqueness for
these models. In this paper, we investigate minimal 1-norm reducing Markov bases and their

uniqueness. To display each move z = z+ − z−, we write a binomial
∏
i u

z+
i
i −∏

i u
z−i
i in this

section, where {ui}i∈I is the set of indeterminates. For some cases, we use 4ti2 (Hemmecke
and Hemmecke, 2003) to compute the reduced Gröbner basis and the Graver basis.

One-way contingency tables. First we consider the simplest case of one-way contingency
tables. Let x = {xi} be an I dimensional frequency vector and A = (1, . . . , 1). The sufficient
statistic t is the sample size n. This corresponds to testing the homogeneity of mean parameters
for I independent Poisson variables conditional on the total sample size n. In this case, a
minimum fiber Markov basis is the set of degree 1 moves, i.e.,

BMF = {z | z = ui − uj, i 6= j}.

12



As shown in Section 3 of Takemura and Aoki (2004), each element of BMF is dispensable.
However, it is obvious that these degree 1 moves are 1-norm irreducible. Furthermore, the
Graver basis in this case obviously coincides with BMF. Therefore BMF is the unique minimal
strongly 1-norm reducing Markov basis.

Now we consider the reduced Gröbner basis with respect to purely lexicographic or degree
lexicographic order. Let u1 Â · · · Â uI . Then the reduced Gröbner basis is easily shown to be

B≺ = {z | z = ui − uI , 1 ≤ i ≤ I − 1}.
We see that in order to move from one frequency vector to another, the frequencies have to
pass through the last cell I. For example to move from (n, 0, . . . , 0) to (0, n, 0, . . . , 0) we need
2n steps of B≺ and B≺ is not 1-norm reducing. In the case of BMF, n steps of u1 − u2 ∈ BMF

are sufficient for moving from (n, 0, . . . , 0) to (0, n, 0, . . . , 0). We see that the diameter of Gn,B≺
is 2n, whereas the diameter of Gn,BMF

is n.

Two-way contingency tables. Next we consider an I × J two-way contingency tables
with fixed row and column sums. Let x = {xij} be an IJ-dimensional column vector of cell
frequencies and

A =

[
1′I ⊗ EJ

EI ⊗ 1′J

]
.

This is a standard example of testing the hypothesis that the rows and the columns are inde-
pendent. In this case, it is known that the set of degree 2 moves,

B = {uijui′j′ − uij′ui′j, i 6= i′, j 6= j′},
is the unique minimal Markov basis (see Section 3 of Takemura and Aoki, 2004). Here we have
the following proposition.

Proposition 10 B is the unique minimal strongly 1-norm reducing Markov basis.

Proof. In this case, it is well known that the Graver basis consists of all the moves which
are written as

z = ui1j1ui2j2 · · ·uisjs − ui2j1ui3j2 · · ·ui1js , (8)

where (i1, j1), (j1, i2), . . . , (is, js), (js, i1) is a circuit in the complete bipartite graph KI,J . Since
z+

i1j1
, z+

i2j2
> 0 and z−i2j1

, z−i3j2
> 0, z is strongly 1-norm reducible by a pair of moves z′,z′′ ∈ B

where
z′ = ui1j1ui2j2 − ui2j1ui1j2 ,
z′′ = ui3j1ui2j2 − ui2j1ui3j2 .

Therefore, for any element z of the Graver basis, B is strongly 1-norm reducing for z+, z−.
Moreover, since each element of B is indispensable, it is also 1-norm irreducible from Proposition
5. Uniqueness also follows from Proposition 8. Q.E.D.

In Aoki and Takemura (2004) we obtained the unique minimal Markov basis for two-way
contingency tables with arbitrary patterns of structural zeros. Since the Graver basis for this
case consists of moves of the form (8), which does not involve structural zeros, it can be easily
proved that the unique minimal Markov basis is at the same time the unique minimal strongly
1-norm reducing Markov basis.
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Three-way contingency tables with fixed one-dimensional marginals. Next we con-
sider three-way contingency tables with fixed one-dimensional marginals. In this case, x =
{xijk} is an IJK-dimensional frequency vector and

A =




1′I ⊗ 1′J ⊗ EK

1′I ⊗ EJ ⊗ 1′K
EI ⊗ 1′J ⊗ 1′K


 .

This corresponds to testing the hypothesis that the three factors are completely independent,
i.e., pijk = αiβjγk. As Takemura and Aoki (2004) have shown, a minimal Markov basis for this
case is not unique. The minimum fiber Markov basis can be written as follows.

BMF = BIDP ∪ B∗,
BIDP = {uij1k1uij2k2 − uij1k2uij2k1 , j1 6= j2, k1 6= k2}

∪ {ui1jk1ui2jk2 − ui1jk2ui2jk1 , i1 6= i2, k1 6= k2}
∪ {ui1j1kui2j2k − ui1j2kui2j1k, i1 6= i2, j1 6= j2},

B∗ = {ui1j1k1ui2j2k2 − ui1j1k2ui2j2k1 , ui1j1k1ui2j2k2 − ui1j2k1ui2j1k2 ,
ui1j1k1ui2j2k2 − ui1j2k2ui2j1k1 , ui1j1k2ui2j2k1 − ui1j2k1ui2j1k2 ,
ui1j1k2ui2j2k1 − ui1j2k2ui2j1k1 , ui1j2k1ui2j1k2 − ui1j2k2ui2j1k1 ,

i1 6= i2, j1 6= j2, k1 6= k2}.
Here, BIDP is the set of indispensable moves. B∗ is the set of all degree 2 moves which connect
all the elements of the four-elements fiber

Fi1i2j1j2k1k2 = {x = {xijk} | xi1·· = xi2·· = x·j1· = x·j2· = x··k1 = x··k2 = 1}
= {ui1j1k1ui2j2k2 , ui1j1k2ui2j2k1 , ui1j2k1ui2j1k2 , ui1j2k2ui2j1k1}.

The minimal Markov basis in this case consists of BIDP and three moves for each (i1, i2, j1, j2, k1, k2),
which connects four elements of Fi1i2j1j2k1k2 into a tree.

Now, we show that, for the 2 × 2 × 2 case, (a) each minimal Markov basis is not 1-norm
reducing and (b) the minimum fiber Markov basis is at the same time the unique minimal
strongly 1-norm reducing Markov basis. By 4ti2, the Graver basis for the 2 × 2 × 2 case is
calculated as

BGraver = BMF ∪ {u2
ijkui′j′k′ − uijk′uij′kui′jk, i 6= i′, j 6= j′ k 6= k′}.

It is seen that each dispensable move in BMF is 1-norm irreducible, and therefore each mini-
mal Markov basis is not 1-norm reducing. On the other hand, a degree 3 move u2

ijkui′j′k′ −
uijk′uij′kui′jk is strongly 1-norm reducible by a pair of moves, uijkui′j′k′−uij′k′ui′jk and uijkuij′k′−
uijk′uij′k for example, which are in BMF.

Again by 4ti2, the reduced Gröbner basis for the 2×2×2 case under the purely lexicographic
or degree lexicographic term order

u111 Â u112 Â · · · Â u222

is found to be

B≺ = BIDP ∪ {u121u212 − u111u222, u112u221 − u111u222, u122u211 − u111u222}.
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This is a minimal Markov basis. Note that the four elements of F121212 are connected via
u111u222. This is similar to the case of one-way contingency tables and the diameter of Gt,B≺ is
generally larger than the diameter Gt,BMF

.

Note that two-way contingency tables and three-way contingency tables with fixed on-
dimensional marginals are special cases of decomposable models considered in Dobra (2003).
It is of interest to investigate the Markov basis given by Dobra (2003) in the framework of this
paper.

Three-way contingency tables with fixed two-dimensional marginals. Next we con-
sider three-way contingency tables with fixed two-dimensional marginals. In this case, x =
{xijk} is an IJK-dimensional frequency vector and

A =




1′I ⊗ EJ ⊗ EK

EI ⊗ 1′J ⊗ EK

EI ⊗ EJ ⊗ 1′K


 .

This corresponds to testing no three-factor interactions of the log-linear model. As is stated
in many works, it is surprisingly difficult to obtain a Markov basis for this problem, except for
small I, J,K.

For the case of 2× J ×K tables, Diaconis and Sturmfels (1998) have shown that the set of
degree 4, 6, . . . , min(J,K) moves, where the degree 2s move is written as

u1j1k1u1j2k2 · · · u1jsksu2j2k1u2j3k2 · · · u2j1ks − u1j2k1u1j3k2 · · · u1j1ksu2j1k1u2j2k2 · · · u2jsks ,

constitutes a Markov basis. Takemura and Aoki (2004) have shown that this is the unique
minimal Markov basis for this problem. Our argument here is that this is also the unique
minimal strongly 1-norm reducing Markov basis. This is obvious from the fact that the above
unique minimal Markov basis is also the Graver basis. See Corollary 14.12 of Sturmfels (1995).

For the next simpler case, we consider 3 × 3 × 3 tables. Aoki and Takemura (2003a) have
shown that the unique minimal Markov basis for this problem consists of two types of moves,

u111u122u212u221 − u112u121u211u222

and
u111u123u132u212u221u233 − u112u121u133u211u223u232.

We show that the above basis B is also the unique minimal strongly 1-norm reducing Markov
basis. To show this, we have to check that, for each element z of the Graver basis, B is strongly
1-norm reducing for z+, z−. From Theorem 14.13 of Sturmfels (1995), augmenting the above
two types by the following five types of moves gives the Graver basis.

u111u123u132u222u231u313u321 − u113u122u131u221u232u311u323,
u112u121u133u222u231u311u323u

2
332 − u111u123u132u221u232u312u322u331u333,

u112u123u131u213u221u232u311u322u333 − u113u121u132u211u222u233u312u323u331,
u111u123u131u

2
213u221u231u311u322u333 − u113u122u132u

2
211u223u233u313u321u332,

u111u
2
123u

2
132u213u

2
222u231u312u321u333 − u113u

2
122u131u133u212u221u223u232u311u323u332.

For each move z of the Graver basis, it is easy to see that B is strongly 1-norm reducing for
z+,z−, i.e., we can apply elements of B to z+ and z− and decrease |z+ − z−|.
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Poisson regression. Here we consider a simple example of Poisson regression discussed in
Diaconis, Eisenbud and Sturmfels (1998). Let x = (x0, x1, . . . , x4)

′ and

A =

[
1 1 1 1 1
0 1 2 3 4

]
.

For this problem, Takemura and Aoki (2004) have shown that a minimal Markov basis is not
unique. The minimum fiber Markov basis is given as follows.

BMF = BIDP ∪ B∗,
BIDP = {u0u3 − u1u2, u0u2 − u2

1, u1u4 − u2u3, u2u4 − u2
3},

B∗ = {u0u4 − u1u3, u0u4 − u2
2, u1u3 − u2

2}.
Here, B∗ is the set of all degree 2 moves which connect all the elements of the three-elements
fiber

F = {u0u4, u1u3, u2
2}.

Therefore there are three minimal Markov bases for this case since any one move in B∗ is not
needed to construct a Markov basis.

Similarly to the 2× 2× 2 tables with fixed one-dimensional marginals discussed above, BMF

is the unique minimal strongly 1-norm reducing Markov basis, and each minimal Markov basis
is not 1-norm reducing. The later part is obvious since each element of B∗ is 1-norm irreducible.
To show that BMF is strongly 1-norm reducing, we compute the Graver basis for this problem
by 4ti2. It is given as follows.

BGraver = BMF ∪ {u3
0u4 − u4

1, u2
0u3 − u3

1, u2
0u4 − u2

1u2, u0u
2
3 − u2

1u4, u3
2 − u2

1u4,
u0u

2
3 − u3

2, u0u
2
4 − u2u

2
3, u3

3 − u1u
2
4, u0u

3
4 − u4

3}.
It is seen that each move above is strongly 1-norm reducible by a pair of moves in BMF.

Hardy-Weinberg model. Finally we consider the Hardy-Weinberg model for 4 alleles, i.e.,

x = (x11, x12, x13, x14, x22, x23, x24, x33, x34, x44)
′

and

A =




2 1 1 1 0 0 0 0 0 0
0 1 0 0 2 1 1 0 0 0
0 0 1 0 0 1 0 2 1 0
0 0 0 1 0 0 1 0 1 2


 .

As is stated in Takemura and Aoki (2004), a minimal Markov basis for this case is not unique,
and the minimum fiber Markov basis is given as follows.

BMF = BIDP ∪ B∗,
BIDP = {ui1i1ui2i3 − ui1i2ui1i3 , ui1i1ui2i2 − u2

i1i2
},

B∗ = {u12u34 − u13u24, u12u34 − u14u23, u13u24 − u14u23},
where i1, i2, i3 are all distinct, and uij = uji for i > j. Here, B∗ is the set of all degree 2 moves
which connect all the elements of the three-elements fiber

F = {u12u34, u13u24, u14u23}.
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There are three minimal Markov bases for this case since any one move in B∗ is not needed to
construct a Markov basis. In this case, again, the minimum fiber Markov basis is the unique
minimal strongly 1-norm reducing Markov basis, and each minimal Markov basis is not 1-norm
reducing. To show this, we give the Graver basis for this problem, which is computed by 4ti2.
In this case, augmenting BMF by the following six types of moves gives the Graver basis.

12 relations of u2
12u33 − u2

13u22,
12 relations of u2

12u34 − u13u14u22,
12 relations of u12u13u24 − u11u22u34,
4 relations of u11u22u33 − u12u13u24,
6 relations of u11u23u24 − u22u13u14,

3 relations of u12u13u24u34 − u11u22u33u44,
12 relations of u2

12u
2
34 − u2

14u22u33,
12 relations of u2

12u33u44 − u11u23u24u34.

It is easily seen that each move above is strongly 1-norm reducible by a pair of moves in BMF.

4.2 Some discussions

In this paper some results on 1-norm reducing Markov basis are obtained. Actually there
remain more unsolved questions than answers in the framework of this paper. For example one
can ask under what conditions the minimum fiber Markov basis BMF is 1-norm reducing and
similarly under what conditions BLDI is 1-norm reducing. One can also ask when BLDI coincides
with BMF or the universal Gröbner basis.

Another set of questions can be asked on reducing the distance in more than one steps. We
may call a Markov basis B 1-norm reducing in k-steps if for every pair of states in the same
fiber Ft, we can reduce the 1-norm by at most k moves from B. Since the Graver basis is finite
and for 1-norm reduction it suffices to move from the positive part to the negative part of each
primitive move, every Markov basis B is 1-norm reducing in k-steps for some finite k. Then the
natural question to ask is what is the minimum k such that B is 1-norm reducing in k-steps.

According to Proposition 3, we have to consider all the primitive moves to check whether a
given Markov basis is 1-norm reducing or not. However it is generally difficult to compute the
Graver basis even for a problem of moderate size. For example, in the case of I × J ×K three-
way contingency tables with fixed one-dimensional marginals, we have shown in Takemura and
Aoki (2004) that minimal Markov bases and the minimum fiber Markov basis consist of two
types of 2× 2× 2 degree 2 moves only. In Section 4.1, for the simplest 2× 2× 2 case we have
checked that the minimum fiber Markov basis is the unique minimal strongly 1-norm reducing
Markov basis, but we do not know whether the same result holds for the general I × J × K
case, since the general form of the Graves bases is not known at present. In fact, we have found
by 4ti2 that the Graver basis for the 2 × 2 × 3 problem contains primitive moves of degree 4
such as

u111u
2
122u213 − u221u

2
112u123.

Similarly, the Graver basis for the Hardy-Weinberg model of 4 alleles problem suggests a com-
plicated structure of Graver basis for the general r alleles problem, while the minimum fiber
Markov basis is the same as the 4 alleles case as shown in Takemura and Aoki (2004).
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