
MATHEMATICAL ENGINEERING
TECHNICAL REPORTS

Generalized SSA and Its Applications to
Watermarking 3D Polygonal Meshes

Kohei MUROTANI and Kokichi SUGIHARA

METR 2004–17 March 2004

DEPARTMENT OF MATHEMATICAL INFORMATICS
GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY

THE UNIVERSITY OF TOKYO
BUNKYO-KU, TOKYO 113-8656, JAPAN

WWW page: http://www.i.u-tokyo.ac.jp/mi/mi-e.htm

The METR technical reports are published as a means to ensure timely dissemination of

scholarly and technical work on a non-commercial basis. Copyright and all rights therein

are maintained by the authors or by other copyright holders, notwithstanding that they

have offered their works here electronically. It is understood that all persons copying this

information will adhere to the terms and constraints invoked by each author’s copyright.

These works may not be reposted without the explicit permission of the copyright holder.

Generalized SSA and Its Applications to

Watermarking 3D Polygonal Meshes

Kohei MUROTANI and Kokichi SUGIHARA

Department of Mathematical Informatics
Graduate School of Information Science and Technology

The University of Tokyo
{muro,sugihara}@mist.i.u-tokyo.ac.jp

March 25th, 2004

Abstract

This paper presents a generalization of the singular spectrum anal-
ysis (SSA) and applies it to the construction of a new robust water-
marking method that adds a watermark to a 3D polygonal mesh in
the spectral domain. The SSA is originally designed as a tool for an-
alyzing one-dimensional sequence such as time series, and hence it is
not suitable for multi-dimensional data. In order to overcome this dif-
ficulty, we generalize the basic SSA in such a way that it can be used
for the 3D polygonal meshes. Watermarks embedded by this method
are resistant to similarity transformations and random noises.

1 Introduction

Digital watermarking is a technique for adding secret information called a
watermark to various target objects data. The watermark must not inter-
fere with the intended purpose of the target object data (e.g., if the target
object data is an image, the watermark should not decrease the geniality
of the image), and the watermark should not be separable from the target
object data. Embedded watermarks can be used to secure copyright, to add
comments, to detect tampering and to identify authorized purchasers of the
object.

In general, watermarks are classified into private watermarks and public
ones. Private watermarks are retrieved by both of the original data and the
watermarked data for reproduction, while public watermarks are retrieved
by only the watermarked data. A lot of papers on watermarking have been
published [18]. However most of the previous researches have been concen-
trating on watermarking ”classical” object data types, such as texts, 2D

1

still images, 2D movies, and audio data. Recently, on the other hand, 3D
objects data, such as 3D polygonal meshes and various 3D geometric CAD
data, become more and more popular and important, and hence techniques
to watermark 3D models also become more important [2], [7]-[14], [16]-[17],
[19].

In the field of image watermarking, a majority of the watermarking al-
gorithms published depends on some form of transformations, e.g., wavelet
or Fourier transformations. This is because transformed domain techniques
offer various advantages. For example, by modifying the spatial frequency
band which human are not very sensitive to, we can make a watermark
embedded in an image less visible. Moreover, the transformed domain is
a suitable place to hide the secret data (watermarks). Therefore, in those
techniques of watermarking, some kind of spectrum decomposition is re-
quired.

Ohbuchi et al. [13] used the eigenvalue decomposition of a Laplacian
matrix derived from connectivity of the mesh. Since the eigenvectors of
the Laplacian matrix can be regarded as orthogonal coordinate axes in the
mesh-spectral domain, the components of the vertex coordinates of the mesh
are projected in these eigenvectors. Furthermore, the watermark can be
embedded without perturbing the eigenvector-spectral coefficients largely.

Kanai et al. [7] first decomposed a 3D polygonal mesh using lazy wavelets.
Then, they modified wavelet coefficients to embed a watermark. This algo-
rithm works in the mesh’s wavelet-transformed domain. As a result, their
method requires the mesh to have 1-to-4 subdivision connectivity.

The methods proposed by Praun and Hoppe [14] and by Yin et al. [19]
are based on a multiresolution decomposition of a 3D polygonal mesh us-
ing “progressive mesh” [6]. Progressive mesh is a kind of the spectral de-
composition for the mash shape. The Praun and Hoppe [14] modified the
shape of the mesh by using a coarse base mesh to embed information in
the low frequency component of the shape. They generalized the spread
spectrum method by Cox et al. [2] for the robust watermarking method
for images, video and sounds to 3D polygonal meshes. They constructed
a multiresolution set of scalar basis functions over the mesh and perturbed
the coordinates of the mesh vertices by the basis functions as weights. Yin
et al. [19] proposed a similar method proposed in the way of embedding
watermark, and also used the signal processing tools for meshes developed
by Guskov et al. [5] as the multiresolution decomposition of a 3D polygonal
mesh. The method of Guskov et al. [5] can separate a mesh into detail and
coarse feature sequences by repeatedly applying local smoothing combined
with shape difference.

This paper presents an algorithm that embeds watermarks data into 3D
polygonal meshes. The proposed method is based on a new kind of spectrum
decomposition, and can be used for any mesh structures. The watermark
embedded by the algorithm is robust against similarity transformation (i.e.,

2

rotation, translation, and uniform scaling). It is also resistant against ran-
dom noises added to vertex coordinates.

In section 2, we will review the singular spectrum analysis (SSA), which
is a basic tool for our algorithm. In section 3, we generalize the SSA in
order to use it for the 3D polygonal meshes. In section 4, the algorithm for
embedding and extracting watermarks will be described. In section 5, we
will present experimental results, and in section 6 we conclude this paper
with summary and future work.

2 Basic SSA

The singular spectrum analysis (SSA) [3][4] is a novel technique for analyzing
time series incorporating the elements of classical time series, multivariate
statistics, multivariate geometry, dynamical systems and signal processing.
Recently, SSA is one of the popular statistical methods for signal detection
in climatology and meteorology. From the fact that Fourier transformation
for the auto-correlation function is power spectrum, we can see that the
basic SSA is an algorithm of the spectral decomposition.

In this section, we describe the basic algorithm of SSA. In the next
section, we generalize it.

2.1 Algorithm of the Basic SSA

Let N be a positive (usually large) integer. Consider a real-value time series
F = (f0, f1, . . . ,fN−1) of length N . Assume that F is a nonzero series, that
is, there exist at least one i such that fi > 0. The basic SSA consists of
two complementary stages, the decomposition stage and the reconstruction
stage.

2.1.1 Decomposition Stage

The decomposition stage consists of the next two steps.

1st Step (Embedding): In the first step, the original time series F is
mapped to a sequence of lagged vectors in the following way. Let L be an
integer (called a window length) such that 1 < L < N . We define K = N
− L + 1, and vectors Xk by

Xk = (fk−1, . . . , fk+L−2)T, 1 ≤ k ≤ K. (1)

We shall call Xk’s L-lagged vectors. The L-trajectory matrix (or simply
trajectory matrix) of the original time series F is defined by

X = [X1 : . . . : XK], (2)

3

whose columns are the L-lagged vectors. In other words, the trajectory
matrix is

X = (xl,k)L,K
l,k=1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

f0 f1 f2 · · · fK−1

f1 f2 f3 · · · fK

f2 f3 f4 · · · fK+1
...

...
...

. . .
...

fL−1 fL fL+1 · · · fN−1

⎞
⎟⎟⎟⎟⎟⎟⎠
. (3)

Obviously xl,k = fl+k−2 and the trajectory matrix X has equal elements on
the diagonal l + k = const. Thus, the trajectory matrix is a Hankel matrix.
Certainly if N and L are fixed, then there is a one-to-one correspondence
between the trajectory matrix X and the original time series F .

2nd Step (Singular Value Decomposition): In the second step, the
singular value decomposition is applied to the trajectory matrix X. Let
S = XXT. Denote by λ1, . . . ,λL the eigenvalues of S taken in the de-
creasing order of magnitude (λ1 ≥ . . .≥ λL ≥ 0), and by U1, . . . ,UL the
orthonormal system of the eigenvectors of the matrix S corresponding to
these eigenvalues. Let d = max{i | λi > 0}. We defines Vi = XTUi/

√
λi

and X(i)T =
√
λiUiV

T
i (i = 1, . . . , d). Then the SVD of the trajectory

matrix X can be written as

X = X(1) + X(2) + . . .+ X(d). (4)

The matrix X(i) has rank 1. Therefore they are elementary matrices. The
collection (λi, Ui, Vi) is called i-th eigentriple of the singular value decom-
position (4).

2.1.2 Reconstruction Stage

3rd Step (Diagonal Averaging): In the last step of the basic SSA,
each matrix in the decomposition (4) is transformed into a new time series
of length N . This step is called the diagonal averaging. Let The matrix Y
be an L×K matrix with elements yl,k, 1 ≤ l ≤ L, 1 ≤ k ≤ K.

Diagonal averaging transfers the matrix Y to the time series (g0, . . . , gN−1)
by the formula

gn =

⎧⎪⎨
⎪⎩

1
n+1

∑n+1
m=1 ym,n−m+2 (0 ≤ n < L− 1),

1
L

∑L
m=1 ym,n−m+2 (L− 1 ≤ n < K),

1
N−n

∑N−K+1
m=n−K+2 ym,n−m+2 (K ≤ n < N).

(5)

The expression (5) corresponds to averaging of the matrix elements over the
diagonal l + k = n + 2. For n = 0, we have g0 = y1,1, for n = 1 we have
g1 = (y1,2 + y1,2)/2, and so on. Note that if Y is the trajectory matrix of

4

some time series (h0, . . . , hN−1) (in other word, if Y is the Hankel matrix),
then gn = hn for all n. Diagonal averaging (5) applied to the decomposition
matrix X(i) produces the decomposed time series F (i) = (f (i)

0 , . . . , f
(i)
N−1)

and therefore the original series F = (f0, . . . , fN−1) is obtained by the sum
of d series

F =
d∑

i=1

F (i). (6)

2.2 Optimality of SVD and the Hankel Matrix

Here, we describe two optimal features in the process of SSA [4]. The first
optimality is related to singular value decomposition.

Let X = [X1 : . . . : XK] be the matrix defined by the equation (2), and
let X(i) be the matrices defined by the equation (4). Then the following two
statements hold.

Propsition 1 The vector Q = U1 is the solution of the problem

ν1 :=
K∑

k=1

(Xk, Q) = max
P

K∑
k=1

(Xk, P) (7)

where the maximum on the right hand side of (7) is taken over all P ∈ RL

with ||P || = 1, and also ν1 = λ1 holds.

Corollary 2 Let Q be the solution of the following optimization problem

νi :=
K∑

k=1

(Xk, Q) = max
P

K∑
k=1

(Xk, P) (8)

where the maximum on the right hand side of (8) is taken over all P ∈ RL

such that ||P || = 1 and (P,Uk) = 0 for 1 ≤ k < i . If i ≤ d, then the Q = Ui

and νi = λi. If i > d, then νi = 0.

Proposition 1 and Corollary 2 enables us to call the vector Ui the i-th
principal vector of collection X1, . . . ,XK .

The second optimality is related to diagonal averaging. When a general
matrix is transformed to the Hankel matrix, diagonal averaging have the
optimality as stated in the following proposition.

Propsition 3 Assume that Z = ψ(Y) is a Hankel matrix of the same di-
mension as Y such that the difference Y −Z has the minimal Frobenius
norm. Then the element ỹl.k of the matrix ψ(Y) is given by

ỹl,k =

⎧⎪⎨
⎪⎩

1
n+1

∑n+1
m=1 ym,n−m+2 (0 ≤ n < L− 1),

1
L

∑L
m=1 ym,n−m+2 (L− 1 ≤ n < K),

1
N−n

∑N−K+1
m=n−K+2 ym,n−m+2 (K ≤ n < N).

(9)

The linear operator ψ is called the Hankelization operator.

5

3 Generalized SSA

Since the basic SSA is designed for the analysis one dimensional sequences
such as time series, it is not necessarily appropriate for the 3D polygonal
mesh. In this section, we generalize the basic SSA in such a way that it
can be applied to the analysis of multi-dimensional data such as polygonal
meshes.

3.1 From Basic SSA to Generalized SSA

In the case of the basic SSA, the original series F is transformed to the
trajectory matrix X. Here, we generalize this process. Let us define the
linear operator A which maps F to X = A(F) as

A(F) =

⎛
⎜⎜⎜⎜⎝

FA0,0 FA0,1 · · · FA0,K−1

FA1,0 FA1,1 · · · FA1,K−1
...

...
. . .

...
FAL−1,0 FAL−1,1 · · · FAL−1,K−1

⎞
⎟⎟⎟⎟⎠ (10)

where
Al,k = (al,k,0, al,k,1, · · · , al,k,N−1)T (11)

and the elements of A(F) are

FAl,k =
N−1∑
n=0

al,k,nfn. (12)

Thus, we consider the generalized trajectory matrix (10) instead of (3).
The decomposition is done in the same way as the basic SSA, that is,

we decompose X into X(1),X(2), · · · ,X(d) shown in the expression (4) by
the singular value decomposition.

Our next question is how to reconstruct the original series F from X(1), · · · ,X(d).
In the basic SSA, this is done by diagonal averaging show in the expres-
sion (5). In the generalized case, on the other hand, it dose not work;
we need some other idea. To answer this question, we define the series
F (i) = (f (i)

0 , f
(i)
1 , · · · , f (i)

N−1) as the solution of the next optimization prob-
lem:

min
d∑

i=1

‖ X(i) − A(F (i)) ‖2

= min
d∑

i=1

∑
l,k

(x(i)
l,k − F (i)Al,k)

2 (13)

s.t. F =
d∑

i=1

F (i), (14)

6

where the norm of the matrix is the Frobenius norm. If Al,k(0 ≤ l ≤ L −
1, 0 ≤ k ≤ K − 1) span N dimensional spaces, then the matrix

∑
l,k Al,kA

T
l,k

is regular, and consequently the solution of the expression (13) is given by

F (i) =
(∑

l,k

Al,kA
T
l,k

)−1 ∑
l,k

x
(i)
l,kA

T
l,k. (15)

Since this F (i) satisfies

d∑
i=1

F (i)
∑
l,k

Al,kA
T
l,k =

d∑
i=1

∑
l,k

x
(i)
l,kA

T
l,k

=
∑
l,k

(d∑
i=1

x
(i)
l,k

)
AT

l,k

=
∑
l,k

(
FAl,k

)
AT

l,k

= F
∑
l,k

Al,kA
T
l,k,

the constraint (14) is satisfied automatically. The solution F (i) of the opti-
mization problem (13) and (14) is obtained by the expression (15).

Finally, from the expression (15), the original series F is reconstructed
as F =

∑d
i=1 F

(i). These are the basic ideas of the generalized SSA.

3.2 Linear Operator A

In this subsection, we give a particular example of the linear operator A
in the expression (10) that reflects the connectivity structure of the mesh.
The linear operator constructed in this section is used in the experiments of
watermarking in section 5.

Let P be a 3D polygonal mesh, and let vi, i = 0, 1, · · · , N − 1 be the
vertices of the mesh. Suppose that some scalar value fi is assigned to each
vertex vi, and let F be the series F = (f0, f1, · · · , fN−1). We define the
distances Dvi(vj) from vi to vj as the shortest distance in the graph where
the weight 1 is given to the all edges, so-called the Dijkstra distance. Fig.
1 shows an example of a part of the graph structure associated with the
polygonal mesh. Let vl be the vertex represented by the black dot in Fig.
1. Then, the vertices vj ’s with Dvi(vj) = 1 are as shown by empty circles,
and the vertices with Dvi(vj) = 2 are as shown empty squares.

Let the number of the rows of the trajectory matrix A(F) be L := N .
Let the elements on the first column and the l-th row (l = 0, 1, · · · , N − 1)
of the trajectory matrix A(F) be the value fl given to the vertex vl and
let the elements on the k-th (1 ≤ k ≤ K − 1) column and the l-th row be

7

the average value of the values on the vertices where the Dijkstra distances
from vl are k. Therefore the l-th row of the matrix A(F) corresponds to
the vertex vl of the mesh. For example; for the vertex vl in Fig. 1. (l, 1)
element of A(F) is fl, (l, 2) element of A(F) is the average of the value fj

over the vertices represented by the empty circles, (l, 3) element of A(F)
is the average of the value fj over the vertices represented by the empty
squares. Thus, let FAl,k be

FAl,k =

∑
Dvl

(vj)=k fj

#{Dvl
(vj) = k} (16)

where #{Dvl
(vj) = k} is the number of the vertices where the Dijkstra

distances from vl are k. The linear operator A in the expression (16) is
represented as

al,k,n =

{
1

#{Dvl
(vn)=k} (Dvl

(vn) = k),
0 (Dvl

(vn) �= k).
(17)

The rows of A correspond to the vertices of the mesh, and the columns
of A correspond to the set of vertices with the same Dijkstra distances. Here
the linear operator reflects the connectivity structure of the mesh. We use
this linear operator A in our watermarking method.

4 Algorithms for Watermarking in the Spectral
Domain

In this section, we propose two algorithms for embedding watermarks into
3D polygonal meshes, one based on the basic SSA and the other based on the
generalized SSA. In both of the algorithms, the spectra of the 3D polygonal
mesh are computed by the singular decomposition of the trajectory matrix,
and the watermarks are the singular values. This method is for private
watermarking, meaning that the watermark extraction requires both the
watermarked mesh and the original non-watermarked mesh. The watermark
can be extracted by comparing singular values of the watermarked data and
the original data in the spectral domain. In the following, we describe this
algorithm in more details.

4.1 Spectral Decomposition

In this subsection, we perform the spectral decomposition of the 3D polyg-
onal meshes using the basic SSA and the generalized SSA.

In the case of the basic SSA, since the basic SSA is the method of the
spectral decomposition of the one dimensional sequence, we assign a linear

8

Figure 1: A vertex of the mesh and the set of vertices with the same Dijkstra
distances.

order to the vertices. Examples of such orders include the random order and
the shortest Hamiltonian path order.

In the case of the generalized SSA, we need not assign a linear order to
the vertices; instead we just use the linear operator A constructed in section
3.2.

While we have been considering a scalar-value series F = (f0, f1, . . . , fN−1),
we hereafter consider tri-value series F = (F0, . . . , FN−1) with the coordi-
nates Fn = (fn,x, fn,y, fn,z)T of the vertex vn. Consequently, the trajectory
matrix (3) in the case of the basic SSA is expanded into a 3L×K matrix

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

F0 F1 F2 · · · FK−1

F1 F2 F3 · · · FK

F2 F3 F4 · · · FK+1
...

...
...

. . .
...

FL−1 FL FL+1 · · · FN−1

⎞
⎟⎟⎟⎟⎟⎟⎠

(18)

and the trajectory matrix (18) in the case of the generalized SSA is expanded

9

into a 3L×K matrix

X = A(F) =

⎛
⎜⎜⎜⎜⎝

FA0,0 · · · FA0,K−1

FA1,0 · · · FA1,K−1
...

. . .
...

FAL−1,0 · · · FAL−1,K−1

⎞
⎟⎟⎟⎟⎠ , (19)

FAl,k =
(N−1∑

n=0

al,k,nfn,x,
N−1∑
n=0

al,k,nfn,y,
N−1∑
n=0

al,k,nfn,z

)T

. (20)

We perform the singular value decomposition (SVD) for both of these tra-
jectory matrices. The SVD produces a sequence of singular values and the
corresponding sequence of elementary matrices.

Approximately, large singular values correspond to lower spatial frequen-
cies, and small singular values correspond to higher spatial frequencies. El-
ementary matrices associated with higher singular values represent global
shape features, while elementary matrices associated with lower singular
values represent local or detail shape features.

4.2 Embedding Watermark

Suppose that we want to embed anm-dimensional bit vector a = (a1, a2, · · · , am)
where each bit takes value 0 or 1. Each bit ai is duplicated by chip rate c
to produce a watermark symbol vector b = (b1, b2, · · · , bmc), bi ∈ {0, 1} of
length m× c

bi = aj, (j − 1)c+ 1 ≤ i ≤ jc, for j = 1, 2, · · · ,m. (21)

Embedding the same bit c times increases the resistance of the watermark
against random noises, because averaging the detected signal c times reduces
the effect of the random noises. Let b′ = (b′1, b′2, · · · , b′mc), b

′
i ∈ {−1, 1} be

the vector defined by

b′k =

{
−1 for bi = 0,
1 for bi = 1.

(22)

For i = 1, 2, · · · ,mc, let us choose pi ∈ {−1, 1} in an appropriate way de-
scribed later. Moreover, let α be a positive constant, called the watermark
embedding amplitude. We keep the largest s singular values λ1, λ2, · · · , λs

unchanged. The i-th bit bi is inserted into the (i+ s)-th singular value λi+s,
i.e., the (i+ s)-th singular value is converted by the following formula

ri =
√
λi+s + b′ipiα, (23)

10

where pi’s are secret number chosen from {1,−1}. Using ri for i = 1, 2, . . . , d−
s, we construct the trajectory matrix by

X� =
s∑

i=1

√
λiUiV

T
i +

d∑
i=s+1

ri−sUiV
T
i

=
d∑

i=1

√
λiUiV

T
i +

d∑
i=s+1

b′i−spi−sαUiV
T
i . (24)

From this matrix, the vertex coordinates F � = (F ′
0, . . . , F

′
N−1) with

F ′
n = (f ′n,x, f

′
n,y, f

′
n,z)

T are computed by using the formula (5) in the case of
the basic SSA or (15) in the case of the generalized SSA. As a result, the ver-
tices of the 3D original polyhedral mesh are converted into the watermarked
vertices, which are slightly altered from the original positions.

Finally, we consider how to chose pi’s. If pi ∈ {−1, 1} are chosen ran-
domly, both the centers of gravity φ(F) and φ(F �) are quite different (where
φ(F) denotes the center of gravity of F). The center of gravity is a very
important invariant for recovering the watermark, and hence it is desirable
if we could select pi so that φ(F) = φ(F �). Since we cannot satisfy φ(F) =
φ(F �) accurately, we try to minimize the absolute value of the second term
in the right-hand side of equation (24), i.e., we choose the approximately
optimal pi by solving the optimization problem

min ‖
d∑

i=s+1

b′i−spi−sφ(F i) ‖2 s.t. pi ∈ {−1, 1}. (25)

4.3 Extracting Watermark

In our method, the extraction of the watermark requires both of the original
3D polygonal mesh and the watermarked 3D polygonal mesh. The water-
marked 3D polygonal mesh may be transformed by similarity transforma-
tions. Hence, the extraction starts with fitting the original 3D polygonal
mesh to the watermarked 3D polygonal mesh by translations, rotations and
scaling. First, the data are translated so that the center of gravity of the
watermarked 3D polygonal mesh coincides with that of the original mesh.
Next, coarse approximations of their 3D polygonal meshes are reconstructed
from the first s singular values and the corresponding elementary matrices.
The number s is reasonably determined by experiences. Then, each set
of eigenvectors is computed from a 3 × 3 covariance matrix derived from
each reconstructed shape. Then the data are rotated and scaled so that the
directions and the sizes of two sets of eigenvectors coincide with each other.

An example is shown as Fig. 2, where (a) shows the original 3D polygonal
mesh, (b) shows the coarse approximation of the mesh reconstructed from
the first s singular values and the corresponding elementary matrices (s =

11

(a) (b)

(c) (d)

Figure 2: The perception of similarity transformation.

15 in the case of the basic SSA and s = 3 in the case of the generalized
SSA). On the other hand, (c) shows a watermarked mesh transformed by
similarity transformation, and (d) shows the coarse approximation of this
mesh. The arrows in (b) and (d) show the three principal axes detected
from the covariance matrices of the reconstructed meshes.

Next, the singular value decomposition is performed for the original tra-
jectory matrix X to produce the singular values

√
λi and the associated

elementary matrices X(i). For the watermarked trajectory matrix X�, we
do not apply the singular value decomposition; instead we use the orthog-
onal matrices U and V for F and compute

√
λ′i by the equations (7) and

(8). Multiplying the difference (
√
λ′i−s −

√
λi−s) with pi and summing the

result over c times, we obtain

qj =
cj∑

i=c(j−1)+1

(
√
λ′i+s −

√
λi+s)pi ≈

cj∑
i=c(j−1)+1

b′ip
2
iα. (26)

Since pi = −1 or 1, we set
qj ≈ b′iαc (27)

where qj takes one of the two values {−ac, ac}. Since α and c are always
positive, simply testing the signs of qj recovers the original message bit

12

sequence
aj = {sign(qj) + 1}/2. (28)

As a result, we can extract the embedded watermark.

5 Experiments and Results

We made computational experiments in order to evaluate the performance
of the proposed algorithms. In this section, we describe the methods and
the results together with discussion.

5.1 Method

In our experiments, we used two popular mesh models, the bunny model
(1494 vertices, 2915 faces) shown in Fig. 3 (a) and the dragon model (1257
vertices, 2730 faces) shown in Fig. 3 (b).

(a) (b)

Figure 3: The original meshes of the bunny and dragon models.

We compare five methods. Some of them require high computational
cost, and hence we partitioned the vertex series into smaller vertex sub-
series of a treatable size, so that the calculations times are decreased and the
accuracies are increased. In this experiments, the vertex series is partitioned
into 5 groups of the same size, as shown in Fig. 4. The embedding of
watermarks was performed for the individual vertex sub-series separately.

We compared the performances of the following methods. The first three
methods are based on the basic SSA. In the basic SSA method, we have
freedom in the choice of the order of the vertices in F . In Fig. 5, we show
three kinds of the vertex series. The vertex series of Fig. 5 (a) and (d) are

13

(a) (b)

Figure 4: Partition of the vertices. (a) and (b) are the bunny and dragon
meshes obtained by partitioning the vertices into 5 groups of the same size
according to the Voronoi regions.

obtained by solving TSP (Traveling Salesman Problems) where the metric
is the Euclidean norm for the vertices in the respective regions; we call the
watermarking method with this order “Euclidean norm”. The vertex series
of Fig. 5 (b) and (e) are obtained by choosing vertices in random order;
we call the method using this order “Random order”. The vertex series of
Fig. 5 (c) and (f) are obtained by solving TSP where the metric is the inner
product for the vertices in the respective regions; we call the method using
this order “Inner product”.

The forth method is the Laplacian matrix method proposed by Ohbuchi
et al. [13]. We call this method “Ohbuchi’s method”.

The fifth method is based on our generalized SSA. We call this method
“Generalized SSA”. In this method, we use the linear operator A constructed
in subsection 3.2. The rank of the trajectory matrix is d = min

i
max

j
Dvi(vj).

The bunny model has d = 21 and the dragon model has d = 18. (If we want
to embed more information, we need to construct the other linear operator
A with a larger rank.)

In “Generalized SSA” method, we embedded 18 bits data for the bunny
model and 15 bits data for the dragon model, and each bit was embedded
only once (i.e., chip rate is 1). In the other method, we embedded a 50 bits
data respectively 20 times (i.e., chip rate is 20) for the bunny model and 18
times (i.e., chip rate is 18) for the dragon model. If a mesh is fixed, a higher
chip rate means a lower data capacity and more robustness.

The watermark embedding amplitudes α is defined as α = β × l where l
is the largest length of edge of the axis-aligned bounding box of the target
mesh. In Fig. 7, the appearances for β = 0.1,1 are presented. If the α is

14

(a) (b) (c)

(d) (e) (f)

Figure 5: Three kind of the vertex series. (a) and (d) are “Euclidean norm”.
(b) and (e) are “Random order”. (c) and (f) are “Inner product”.

larger, the watermark withstands against more disturbances, (for example,
adding random noises and mesh smoothing) but the shape itself is distorted.

5.2 Appearances of the Watermarked Meshes

Fig. 7 shows appearances of the watermarked meshes, where (a) and (h)
show the original meshes, while (b), (c), (d), (i), (j), (k) and (e), (f), (g), (l),
(m), (n) show the watermarked meshes for β = 0.1 and 1, respectively. The
appearances of (b), (c), (d) or (i), (j), (k) can hardly be distinguished from
the appearances of the original mesh (a) or (h). Thus they are watermarked
successfully. On the other hand, the appearances of the original meshes are
not preserved in (e), (f), (g) or (l), (m), (n). Thus the watermarks are too
large in those cases.

In the appearances of the watermarked meshes, we cannot see much
difference among the methods using the basic SSA and the method using
the generalized SSA.

5.3 Robustness

We experimentally evaluate the robustness of our watermarks against the
similarity transformations, uniform random noises and mesh smoothing.

15

Figure 6: The respective vertex sub-series of Fig.5 (f).

5.3.1 Similarity Transformation

In the case of the dragon model mesh, when the pi was randomly selected,
the center of gravity moved by about 0.01 × α in the 2-norm. On the other
hand, when the optimal pi is selected by the expression (25), the center of
gravity moved by about 10−5×α in the Euclidean norm. We performed some
kind of similarity transformations for the watermarked meshes, counted the
number of the values answered correctly from the mesh and repeated the
experiment 10 times. As the result, as shown in Table 1, we obtained the
average false values of about 30% ∼ 40% when the pi was randomly selected
whereas we reconstructed most of the bits correctly when the optimal pi was
selected by the expression (25). Thus, it is effective to use the optimal pi’s.

Table 1: Ratios of the correctly recovered watermarks under similarity trans-
formations.

Euclidean norm
bunny dragon

Randomly selected pi 30.1/50bit (60.2%) 32.3/50bit (64.6%)
Optimal selected pi 50.0/50bit (100.0%) 50.0/50bit (100.0%)

Generalized SSA
bunny dragon

Randomly selected pi 12.5/18bit (69.4%) 10.8/15bit (72.0%)
Optimal selected pi 18.0/18bit (100.0%) 15.0/15bit (100.0%)

16

5.3.2 Uniform Random Noises

Fig. 8 shows the appearances of the watermarked mesh whose vertex coordi-
nates were disturbed with uniform random noises with amplitude α×γ (β =
0.1). Fig. 8 (a) and (e) are the original 3D polygonal meshes of the models,
(b) and (f) are the models with uniform random noises with γ = 0.01, (c)
and (g) are the models with uniform random noises with γ = 0.1, and (d)
and (h) are the models with uniform random noises with γ = 1. From Fig.
8, we can see that the noises of γ = 0.1 deformed the appearances of the
original meshes to a certain extent, and the noises of γ = 1 are too large to
preserve the appearances of the original meshes.

We counted the number of the values answered correctly out of the in-
putted bit and repeated the experiment 100 times. The result is shown in
Table 2. From this experiment, we can see that the watermark can with-
stand against uniform noises for γ ≤ 0.01, as shown in Table 2. Moreover,
we cannot see much difference among these methods.

In the basic SSA method [8] and in Ohbuchi’s method [13], the same bit
bi was embedded many times (20 and 18 times, for example) because each
bit is very fragile. On the other hand, in the proposed method, each bit is
embedded only once, but still the watermark can be reconstructed almost in
the same accuracy as the other methods, as shown in Table 2. In this sense,
the proposed watermark method is very robust against random noises.

Table 2: Ratios of the correctly recovered watermarks under random noises.

bunny
γ = 1 γ = 0.1 γ = 0.01

Euclidean norm 21.14/50bit (42.28%) 45.47/50bit (90.94%) 50.00/50bit (100.00%)

Random order 22.53/50bit (45.06%) 48.97/50bit (97.94%) 50.00/50bit (100.00%)

Inner product 18.07/50bit (36.14%) 49.38/50bit (98.76%) 50.00/50bit (100.00%)

Ohbuchi’s method 32.31/50bit (64.62%) 49.13/50bit (98.26%) 50.00/50bit (100.00%)

Generalized SSA 11.08/18bit (61.55%) 17.31/18bit (96.16%) 18.00/18bit (100.00%)

dragon
γ = 1 γ = 0.1 γ = 0.01

Euclidean norm 28.14/50bit (56.28%) 47.77/50bit (95.54%) 50.00/50bit (100.00%)

Random order 26.73/50bit (53.46%) 48.02/50bit (96.04%) 50.00/50bit (100.00%)

Inner product 26.43/50bit (52.86%) 48.76/50bit (97.52%) 50.00/50bit (100.00%)

Ohbuchi’s method 29.59/50bit (59.18%) 47.13/50bit (94.26%) 50.00/50bit (100.00%)

Generalized SSA 9.13/15bit (60.86%) 14.22/15bit (94.80%) 15.00/15bit (100.00%)

17

5.3.3 Mesh Smoothing

This experiment was done for “Euclidean norm” method and “Random or-
der” method. Fig. 9 shows the appearances of the mesh resulted from
once, twice and thrice applications of Taubin’s smoothing filter [15] to the
watermarked mesh. When Taubin’s smoothing filter is used for a mesh,
the mesh is rounded in the sense of the low-pass filter. Since the details
of the meshes are smoothed out, even though 50 bits data were embedded
in all spectral domains, we could not extract the watermark data correctly,
as shown in Table 3. But, when 10 bits data were embedded in the only
low spectral domains, we could extract the watermark data except in some
circumstances. The exceptional circumstances are that the shape of mesh
is complex and the vertex series oscillate wildly. Since the dragon model is
more complex than the bunny model and the vertex series chosen in ran-
dom order oscillate wilder than the vertex series obtained by solving TSP,
10 bits data embedded in the only low spectral domain of the dragon model
using the vertex series by choosing the vertices in random order could not
be extracted correctly, as shown in Table 3.

Table 3: Numbers of the correctly recovered watermarks under mesh round-
ing.

bunny
Euclidean norm Random order
50bits 10bits 50bits 10bits

First 50 10 50 10
Second 50 10 46 10
Third 44 10 43 10

dragon
Euclidean norm Random order
50bits 10bits 50bits 10bits

First 49 10 50 10
Second 45 10 50 8
Third 42 10 40 6

6 Summary and Future Work

We generalized the basic SSA in a way suitable for the 3D polygonal meshes,
and on the basis of this generalized SSA, we proposed a new method of wa-
termarking for the 3D polygonal meshes. The watermark embedded by our

18

method is robust against similarly transformations and moderate uniform
noises added to vertex coordinates.

In the generalized SSA, since the rank of the trajectory matrix is d =
min

i
max

j
Dvi(vj), the number of the bases obtained by the spectral decom-

position is not large. Recall that d = 21 for the bunny model and d = 18 for
the dragon model, while the rank of the trajectory matrix for the basic SSA
was more than 1000. From this reason, we can embed only a limited number
of information as watermarking. However, each embedded bit is robust, we
do not need to embed the same watermarking information redundantly.

The 3D polygonal mesh represents the boundary of the three-dimensional
region, and this boundary is two-dimensional manifold. However, it is not
easy to globally parameterize any two-dimensional manifold. Note that the
generalized SSA proposed in this paper dose not require any parameteri-
zation of the boundary. On the other hand, the traditional of the multi-
dimensional spectral decompositions such as the multidimensional Fourier
transformation and the multidimensional wavelet transformation require the
parameterization of the boundary, and hence cannot be used for general 3D
polygonal meshes. Therefore, the generalized SSA can be a powerful new
tool for the analysis of polygonal meshes.

Since the spectral decomposition of a mesh using the Laplacian matrix
in [13] requires the eigenvalue decomposition of a matrix where rank is the
number of the vertices, the calculation cost is large and the method cannot
be applied to huge meshes. On the other hand, since our generalized SSA
requires the eigenvalue decomposition of a small the matrix whose rank is
determined by the linear operator (e.g., 21 for the bunny model and 18
for the dragon model), the calculation cost is small, and consequently our
generalized SSA method can be applied to huge meshes.

There is large freedoms in the choice of the linear operator A. Therefore,
one of our future work is to search for other choices of A that are sitable to
watermarking. Moreover, the generalized SSA may have many applications
other than the watermarking. It is also our future work to develop new
application area of the generalized SSA.

Acknowledgement

This work is partly supported by the 21st Century COE Program on Infor-
mation Science and Technology Strategic Core, and Grant-in-Aid for Scien-
tific Research (S) of the Japanese Ministry of Education, Culture, Sports,
Science and Technology.

19

References

[1] Benedens, O., Geometry-Based Watermarking of 3D Models, IEEE
CG&A, pp. 46-55, January/February 1999.

[2] Cox, I., J., Killian, J., Leighton, T. and Shamoon, T., Secure spread
spectrum watermarking for multimedia. IEEE Transactions on Image
Processing 12, 6 pp. 1673-1687, 1997.

[3] Galka, A., Topics in Nonlinear Time Series Analysis, World Scientific,
pp. 49-71, 2001.

[4] Golyandina, N., Nekrutkin, V. and Zhigljavsky, A., Analysis of Time
Series Structure–SSA and Related Techniques, Chapman & Hall/CRC,
2001.

[5] Guskov, I., Sweldens, W. and Shroder, P., Multiresolution signal pro-
cessing for meshes, Proceedings SIGGRAPH99, pp. 49-56, 1999.

[6] Hoppe, H., Progressive meshes. ACM SIGGRAPH 96 Conference Pro-
ceedings, pp. 99-108, August 1996.

[7] Kanai, S., Date, H. and Kishinami,T., Digital Watermarking for 3D
Polygons Using Multiresolution Wavelet Decomposition, Proceedings of
the Sixth IFIP WG 5.2 International Workshop on Geometric Modeling:
Fundamentals and Applications (GEO-6), pp. 296-307, Tokyo, Japan,
December 1998.

[8] Murotani, K. and Sugihara, K., Watermarking 3D Polygonal Meshes
Using the Singular Spectrum Analysis, Proceedings of the 10th IMA
International Conference on The Mathematics of Surfaces, pp. 85-98,
Leeds, UK, September, 2003.

[9] Ohbuchi, R., Masuda, H. and Aono, M., Watermarking Three-
Dimensional Polygonal Models, Proceedings of the ACM International
Conference on Multimedia ’97, pp. 261-272, Seattle, USA., November,
1997.

[10] Ohbuchi, R., Masuda, H. and Aono, M., Watermarking Three-
Dimensional Polygonal Models Through Geometric and Topological
Modifications, IEEE Journal on Selected Areas in Communication, Vol.
16, No. 4, pp. 551-560, May, 1998.

[11] Ohbuchi, R., Masuda, H. and Aono, M., Targeting Geometrical
and Non-Geometrical Components for Data Embedding in Three-
Dimensional Polygonal Models, Computer Communications, Vol. 21,
pp. 1344-1354, October, 1998.

20

[12] Ohbuchi, R., Masuda, H. and Aono, M., A Shape-Preserving Data Em-
bedding Algorithm for NURBS Curves and Surfaces, Proceedings of the
Computer Graphics International’99, pp. 180-177, Canmore, Canada,
June 7-11, 1999.

[13] Ohbuchi, O., Takahashi, S., Miyazawa, T. and Mukaiyama, A., Water-
marking 3D Polygonal Meshes in the Mesh Spectral Domain, Proceed-
ings of the Graphics Interface 2001, pp. 9-17, Ontario, Canada, June
2001.

[14] Praun, E., Hoppe, H. and Finkelstein, A., Robust Mesh Watermarking,
ACM SIGGRAPH 1999, pp. 69-76, 1999.

[15] Taubin, G., A Signal Processing Approach to Fair Surface Design, ACM
SIGGRAPH 1995, pp. 351-358, 1995.

[16] Wagner, M. G., Robust Watermarking of Polygonal Meshes, Proceed-
ings of Geometric Modeling & Processing 2000, pp. 201-208, Hong
Kong, April 10-12, 2000.

[17] Yeo, B-L. and Yeung, M. M., Watermarking 3D Objects for Verification,
IEEE CG&A, pp. 36-45, January/February 1999.

[18] Matsui, K., Basic of watermarks (in Japanese), Morikita Shuppan Pub-
lishers, Tokyo, 1998.

[19] Yin, K., Pan, Z., Shi, J. and Zhang, D., Robust mesh watermarking
based on multiresolution processing, Computers & Graphics, Vol. 25,
pp. 409-420, 2001.

21

(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j) (k)

(l) (m) (n)

Figure 7: The original meshes and the watermarked meshes. (a) and (h) are
the original 3D polygonal meshes. (b) and (i) are the watermarked meshes
with β = 0.1 using “Euclidean norm”. (e) and (l) are the watermarked
meshes with β = 1 using “Euclidean norm”. (c) and (j) are the water-
marked meshes with β = 0.1 using “Random order”. (f) and (m) are the
watermarked meshes with β = 1 using “Random order”. (d) and (k) are the
watermarked meshes with β = 0.1 using “Generalized SSA.” (g) and (n) are
the watermarked meshes with β = 1 using “Generalized SSA”.

22

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: The bunny and dragon models to which uniform random noises
with amplitude α × γ (β = 0.1) are added. (a) and (e) are the original 3D
polygonal meshes of the models, (b) and (f) are the models with uniform
random noises with γ = 0.01, (c) and (g) are the models with uniform
random noises with γ = 0.1, and (d) and (h) are the models with uniform
random noises with γ = 1.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9: The meshes resulted from once, twice and thrice applications of
Taubin’s smoothing filter [15] to the watermarked mesh. (a) and (e) are the
original meshes. (b) and (f) are the appearances of the mesh resulted from
once applications of Taubin’s smoothing filter. (c) and (g) are the appear-
ances of the mesh resulted from twice applications of Taubin’s smoothing
filter. (d) and (h) are the appearances of the mesh resulted from thrice
applications of Taubin’s smoothing filter.

23

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 836.220]
>> setpagedevice

