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COMBINATORIAL ANALYSIS OF GENERIC MATRIX PENCILS ∗

SATORU IWATA† AND RYO SHIMIZU†

Abstract. This paper investigates the Kronecker canonical form of matrix pencils under the
genericity assumption that the set of nonzero entries is algebraically independent. We provide a
combinatorial characterization of the sums of the row/column indices supported by efficient bipartite
matching algorithms. We also give a simple alternative proof for a theorem of Poljak on the generic
ranks of matrix powers.

Key words. Kronecker canonical form, matrix pencil, combinatorial matrix theory, bipartite
matching, Dulmage-Mendelsohn decomposition

1. Introduction. A matrix pencil is a polynomial matrix whose nonzero entries
are of degree at most one. Based on the theory of elementary divisors, Weierstrass
established a criterion for strict equivalence, as well as a canonical form, of regular
matrix pencils. Somewhat later, Kronecker investigated singular pencils to obtain a
canonical form for matrix pencils in general under strict equivalence transformations,
which is now called the Kronecker canonical form.

The Kronecker canonical form finds a variety of applications in control theory of
linear dynamical systems [2, 22, 30, 31]. It is also in a close relation to the index of
differential algebraic equations [13, 14, 28]. The literature in these application areas
often refers to Gantmacher [12] for theoretical backgrounds on matrix pencils.

Numerically stable algorithms are already available for computing the Kronecker
canonical form [1, 3, 8, 19, 21, 34, 35]. Nevertheless, these algorithms are not very
accurate in the presence of round-off errors. The numerical difficulty is inherent in
the problem as the Kronecker canonical form is highly sensitive to perturbation. This
recently motivates extensive research on perturbation of matrix pencils [9, 10].

On the other side, matrix pencils arising in applications are often very sparse and
their entries that represent physical characteristics are not precise in value because
of noises. Hence one may assume that there is no algebraic dependency among the
nonzero entries. It is then desirable to predict the structure of the Kronecker canonical
form efficiently from the combinatorial information such as the zero/nonzero pattern
without numerical computation. Such a structural approach has been conducted for
regular matrix pencils by Duff and Gear [5] and Pantelides [28] in the context of
differential algebraic equations. Murota [25] described a complete characterization
of the Kronecker canonical form of regular matrix pencils in terms of the maximum
degree of minors, which is tantamount to the maximum weight of bipartite matchings
under the genericity assumption. An extension of this characterization to mixed
matrix pencils is also presented in [26, 27]. A recent paper of van der Woude [33]
provides another combinatorial characterization based on the Smith normal form [24].

In this paper, we extend the structural approach to the analysis of singular matrix
pencils. The possible existence of the minimal row/column indices (rectangular blocks
in the canonical form) makes this problem much more complicated than the regular
case. In fact, it remains open to design an efficient algorithm for determining the
row/column indices. The main result of this paper, however, provides a combinatorial
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characterization of the sums of the minimal row/column indices using the Dulmage-
Mendelsohn decomposition and weighted bipartite matchings. Thus our combinatorial
characterization is supported by efficient algorithms.

The structure of the Kronecker canonical form is closely related to the series of
larger constant matrices, called the expanded matrices. We investigate those expanded
matrices to show that their ranks are equal to the term-ranks in most cases. As a
byproduct, we give a simple alternative proof for a theorem of Poljak [29] on the
generic ranks of matrix powers.

The outline of this paper is as follows. Section 2 recapitulates the Kronecker
canonical form. In Section 3, we introduce generic matrix pencils. In Section 4, we
explain the Dulmage-Mendelsohn decomposition, which plays an essential rôle in our
result on the minimal row/column indices presented in Section 5. Sections 6 and 7
are devoted to the analysis of expanded matrices. The simple proof for the theorem
of Poljak is shown in Section 8. Sections 6 and 8 are independent of Sections 4 and 5.

2. The Kronecker canonical form of matrix pencils. Let D(s) = sA + B
be an m × n matrix pencil of rank r with the row set R and the column set C. We
denote by D(s)[X,Y ] the submatrix of D(s) determined by X ⊆ R and Y ⊆ C. A
matrix pencil D̄(s) is said to be strictly equivalent to D(s) if there exists a pair of
nonsingular constant matrices U and V such that D̄(s) = UD(s)V . A matrix pencil
D(s) = sA+B is said to be regular if det D(s) 6= 0 as a polynomial in s. It is strictly
regular if both A and B are nonsingular matrices.

For a positive integer µ, we consider µ× µ matrix pencils Nµ and Kµ defined by

Nµ =




1 s 0 · · · 0

0 1 s
. . .

...
...

. . . . . . . . . 0
...

. . . 1 s
0 · · · · · · 0 1




, Kµ =




s 1 0 · · · 0

0 s 1
. . .

...
...

. . . . . . . . . 0
...

. . . s 1
0 · · · · · · 0 s




.

For a positive integer ε, we further denote by Lε an ε× (ε + 1) matrix pencil

Lε =




s 1 0 · · · 0

0 s 1
. . .

...
...

. . . . . . . . . 0
0 · · · 0 s 1




.

We also denote by L>η the transpose matrix of Lη.
The following theorem establishes the Kronecker canonical form of matrix pencils

under strict equivalence transformations.
Theorem 2.1 (Kronecker, Weierstrass). For any matrix pencil D(s), there exists

a pair of nonsingular constant matrices U and V such that D̄(s) = UD(s)V is in a
block-diagonal form

D̄(s) = block-diag(Hν ,Kρ1 , · · · ,Kρc , Nµ1 , · · · , Nµd
, Lε1 , · · · , Lεp , L>η1

, · · · , L>ηq
, O),

where ρ1 ≥ · · · ≥ ρc > 0, µ1 ≥ · · · ≥ µd > 0, ε1 ≥ · · · ≥ εp > 0, η1 ≥ · · · ≥ ηq > 0,
and Hν is a strictly regular matrix pencil of size ν. The numbers c, d, p, q, ν,
ρ1, · · · , ρc, µ1, . . . , µd, ε1, · · · , εp, η1, · · · , ηq are uniquely determined.
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The block-diagonal matrix pencil D̄(s) in Theorem 2.1 is often referred to as the
Kronecker canonical form of D(s). The numbers µ1, . . . , µd are called the indices of
nilpotency. The numbers ε1, · · · , εp and η1, · · · , ηq are the minimal column and row
indices, respectively. These numbers together with ν, ρ1, · · · , ρc are collectively called
the structural indices of D(s). Note that the matrix pencil D(s) is regular if and only
if p = q = 0.

For a polynomial g(s) in s, let deg g(s) and ord g(s) denote the highest and lowest
degrees of nonvanishing terms of g(s), respectively. For each k = 1, . . . , r, we denote

δk(D) = max{deg det D(s)[X,Y ] | |X| = |Y | = k,X ⊆ R, Y ⊆ C},
ζk(D) = min{ord det D(s)[X,Y ] | |X| = |Y | = k,X ⊆ R, Y ⊆ C}.

Note that δk(D) is concave in k and ζk(D) is convex in k. The following well-known
lemma asserts that δk and ζk are invariant under strict equivalence transformations.

Lemma 2.2. If D̄(s) is strictly equivalent to D(s), then δk(D̄) = δk(D) and
ζk(D̄) = ζk(D) hold.

In the Kronecker canonical form of D(s), we have c = r − max{k | ζk(D) = 0}
and d = r −max{k | δk(D) = k}. Moreover, we have ρi = ζr−i+1(D) − ζr−i(D) for
i = 1, . . . , c and µi = δr−i(D)− δr−i+1(D)+1 for i = 1, . . . , d. These equalities imply

d∑

i=1

µi = r − δr(D),
c∑

i=1

ρi = ζr(D).(2.1)

Since the sum of the structural indices is equal to the rank of D(s), we have

ν +
p∑

i=1

εi +
q∑

i=1

ηi = δr(D)− ζr(D).(2.2)

For an m×n matrix pencil D(s) = sA + B, we construct a (k +1)m× kn matrix
Ψk(D) and a km× (k + 1)n matrix Φk(D) defined by

Ψk(D) =




A O · · · O

B A
. . .

...

O B
. . . O

...
. . . . . . A

O · · · O B




, Φk(D) =




A B O · · · O

O A B
. . .

...
...

. . . . . . . . . O
O · · · O A B




.

We denote ψk(D) = rank Ψk(D) and ϕk(D) = rank Φk(D). We also construct a pair
of km× kn matrices Θk(D) and Ωk(D) defined by

Θk(D) =




A B O · · · O

O A B
. . .

...
...

. . . . . . . . . O
...

. . . A B
O · · · · · · O A




, Ωk(D) =




B O · · · · · · O

A B
. . .

...

O A
. . . . . .

...
...

. . . . . . B O
O · · · O A B




.

We denote θk(D) = rankΘk(D) and ωk(D) = rankΩk(D). Then it is easy to see
that the ranks of these expanded matrices are expressed by the structural indices as
follows.
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Theorem 2.3. Let D(s) be a matrix pencil of rank r with structural indices
(ν, ρ1, · · · , ρc, µ1, . . . , µd, ε1, . . . , εp, η1, . . . , ηq). Then we have

ψk(D) = rk +
p∑

i=1

min{k, εi}, ϕk(D) = rk +
q∑

i=1

min{k, ηi},

θk(D) = rk −
d∑

i=1

min{k, µi}, ωk(D) = rk −
c∑

i=1

min{k, ρi}.

Corollary 2.4. If D(s) is of column-full rank, so is Ψk(D) for each k. If D(s)
is of row-full rank, so is Φk(D) for each k.

Proof. If D(s) is of column-full rank, the Kronecker canonical form has no minimal
column indices. Hence Theorem 2.3 implies ψk(D) = rk. Similarly, if D(s) is of row-
full rank, the Kronecker canonical form has no minimal row indices, which together
with Theorem 2.3 implies ϕk(D) = rk.

Theorem 2.3 together with (2.1) implies the following corollary.
Corollary 2.5. Let D(s) be a matrix pencil of rank r. For k ≥ r, we have

θk(D) = r(k − 1) + δr(D) and ωk(D) = rk − ζr(D).
Proof. For k ≥ r, we have θk(D) = rk − ∑d

i=1 µi and ωk(D) = rk − ∑c
i=1 ρi

by Theorem 2.3. Then it follows from (2.1) that θk(D) = r(k − 1) + δr(D) and
ωk(D) = rk − ζk(D) hold for k ≥ r.

3. Generic matrix pencils. Given a matrix A with the row set R and the
column set C, we construct a bipartite graph G(A) = (R,C; E) with the vertex sets
R and C and the edge set E that consists of nonzero entries of A. A subset M ⊆ E
is called a matching if no two edges in M share an end-vertex. The term-rank of A,
denoted by t-rank A, is the maximum size of a matching in G(A). The term-rank
provides an upper bound on the rank of A. Under the genericity assumption that
the set of nonzero entries are algebraically independent, this upper bound is tight.
That is, rank A = t-rank A holds for a generic matrix. A set function τ defined by
τ(X) = t-rankA[X,C] for X ⊆ R is submodular, i.e,

τ(X) + τ(Z) ≥ τ(X ∪ Z) + τ(X ∩ Z)

holds for any X, Z ⊆ R. This submodularity will be used later in Section 7.
A matrix pencil D(s) = sA + B is called a generic matrix pencil if the nonzero

entries in A and B are indeterminates (independent parameters). To be more precise,
suppose D(s) is a matrix pencil over a field F. That is, A and B are matrices over
the field F. Then D(s) is a generic matrix pencil if the set T of nonzero entries in A
and B is algebraically independent over the prime field K of F. A typical setting in
practice is F = R and K = Q.

For a matrix pencil D(s) = sA + B with the row set R and the column set C, let
E and F be the sets of nonzero entries in A and in B, respectively. Then we construct
a bipartite graph G(D) = (R,C; E ∪ F ) with the vertex sets R and C and the edge
set E∪F . Note that G(D) allows parallel edges. Each edge e has weight w(e) defined
by w(e) = 1 for e ∈ E and w(e) = 0 for e ∈ F . A subset M of E ∪ F is called a
matching if no two edges in M share an end-vertex. The maximum size of a matching
in G(D) is the term-rank, denoted by t-rank D(s). The weight w(M) =

∑
e∈M w(e)

of a matching M is equal to the number of edges in M ∩ E. We denote by δ̂k(D)
4



the maximum weight of a matching of size k. We also denote by ζ̂k(D) the minimum
weight of a matching of size k.

The following two lemmas demonstrate that some fundamental quantities of a
generic matrix pencil coincide with their combinatorial counterparts. It should be
emphasized here that these combinatorial counterparts are easy to compute with
efficient combinatorial algorithms for bipartite matchings [11, 15, 16, 20, 23, 32].

Lemma 3.1. For a generic matrix pencil D(s), we have rankD(s) = t-rank D(s).

Lemma 3.2. For a generic matrix pencil D(s), we have δk(D) = δ̂k(D) and
ζk(D) = ζ̂k(D).

4. Dulmage-Mendelsohn Decomposition. In this section, we recapitulate
the Dulmage-Mendelsohn decomposition of bipartite graphs [6, 7, 8] following the
exposition in [27, §2.2.3].

With a matrix pencil D(s), we associate a submodular function f defined as
follows. Let Γ(Y ) ⊆ R denote the set of vertices adjacent to Y ⊆ C in G(D). Then
the function f defined by

f(Y ) = |Γ(Y )| − |Y | (Y ⊆ C)

is submodular, i.e.,

f(Y ) + f(Z) ≥ f(Y ∪ Z) + f(Y ∩ Z)

holds for any Y, Z ⊆ C.
The term-rank of the matrix pencil D(s) is characterized by the minimum value

of this submodular function f , i.e.,

t-rankD(s) = min{f(Y ) | Y ⊆ C}+ |C|,
which follows from the Hall-Ore theorem for bipartite graphs. The set of minimizers
of a submodular function forms a distributive lattice.

Let Y0 denote the unique minimal minimizer of f and Y∞ denote the unique
maximal minimizer of f . We put

C0 = Y0, R0 = Γ(Y0),
C∗ = Y∞ \ Y0, R∗ = Γ(Y∞) \ Γ(Y0),
C∞ = C \ Y∞, R∞ = R \ Γ(Y∞).

Then D(s) is in a block-triangular form with respect to the partitions (R0; R∗;R∞)
and (C0;C∗; C∞). That is, D(s)[R∗, C0] = O, D(s)[R∗, C0] = O, D(s)[R∞, C∗] = O.

Furhtermore, if D(s) is a generic matrix, we have

rankD(s)[R0, C0] = |R0|,
rankD(s)[R∗, C∗] = |R∗| = |C∗|,

rankD(s)[R∞, C∞] = |C∞|.
We call D0(s) = D(s)[R0, C0] the horizontal tail and denote its rank by r0 = |R0|. We
also call D∞(s) = D(s)[R∞, C∞] the vertical tail and denote its rank by r∞ = |C∞|.

This block-triangularization is called the Dulmage-Mendelsohn decomposition
(DM-decomposition) of D(s). The DM-decomposition can be computed efficiently
with the aid of the bipartite matching algorithms.
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5. The Kronecker canonical form via DM-decomposition. In this section,
we investigate the Kronecker canonical form of a generic matrix pencil D(s) via the
DM-decomposition.

Lemma 5.1. For the horizontal tail D0 of a generic matrix pencil D(s), we have
ψk(D) = ψk(D0) + k(r − r0) and ψ̂k(D) = ψ̂k(D0) + k(r − r0).

Proof. Recall r = |R0|+|C \C0| and r0 = |R0|. Since D∗(s) = D(s)[R\R0, C \C0]
is of column-full rank, so is Ψk(D∗) by Corollary 2.4, namely, ψk(D∗) = k|C \ C0| =
k(r−r0). Since ψk(D∗) ≤ ψ̂k(D∗) ≤ k(r−r0), we also have ψ̂k(D∗) = k(r−r0). Then
it follows from D(s)[R \ R0, C0] = O that ψk(D) = ψk(D0) + ψk(D∗) = ψk(D0) +
k(r − r0) and ψ̂k(D) = ψ̂k(D0) + ψ̂k(D∗) = ψ̂k(D0) + k(r − r0).

Lemma 5.1 together with Theorem 2.3 implies that the minimal column indices
of D(s) coincide with those of D0(s). We now investigate the Kronecker canonical
form of the horizontal tail D0.

Let g0(s) be the monic determinantal divisor

g0(s) = gcd{det D(s)[R0, Y ] | |Y | = r0, Y ⊆ C0},

where gcd designates the greatest common divisor whose leading coefficient is equal
to one. The following lemma is a special case of a theorem of Murota [24] (see also
[27, Theorem 6.3.8]). We describe its proof here for completeness.

Lemma 5.2. The monic determinantal divisor g0(s) is a monomial in s.
Proof. We first claim that g0(s) belongs to K[s]. For any column j ∈ C0, there

exists a column subset Y ⊆ C0 \ {j} such that |Y | = r0 and detD(s)[R0, Y ] 6= 0.
Therefore, for any independent parameter t ∈ T , the monic determinantal divisor
g0(s) is free from t. Thus g0(s) is a polynomial over K.

We now suppose that g0(s) is not a monomial in s. Let K be the algebraic
closure of K. Then there exists a root ξ ∈ K \ {0} that satisfies g0(ξ) = 0. For a
regular submatrix D(s)[R0, Y ], we have det D(ξ)[R0, Y ] = 0, which contradicts the
assumption that T is algebraically independent over K.

The determinantal divisor is invariant under strict equivalence transformations.
Hence g0(s) is equal to the determinantal divisor of the Kronecker canonical form D̄0

of D0. Then Lemma 5.2 implies that D̄0 does not contain a strictly regular block.
Theorem 5.3. The sum of the minimal column indices is obtained by

p∑

i=1

εi = δ̂r0(D0)− ζ̂r0(D0).(5.1)

Proof. Since the Kronecker canonical form D̄0 of D0 does not contain a strictly
regular block or a rectangular block L>η , it follows from (2.2) and Lemma 3.2 that∑p

i=1 εi = δr0(D0)− ζr0(D0) = δ̂r0(D0)− ζ̂r0(D0).
A similar argument applied to the vertical tail D∞ leads to the following results.

Lemma 5.4 implies by Theorem 2.3 that the minimal row indices of D(s) coincide
with those of D∞(s). Lemma 5.5 shows that the Kronecker canonical form D̄∞(s) of
D∞(s) does not contain the strictly regular block.

Lemma 5.4. For the vertical tail D∞ of a generic matrix pencil D(s), we have
ϕk(D) = ϕk(D∞) + k(r − r∞) and ϕ̂k(D) = ϕ̂k(D∞) + k(r − r∞).

Lemma 5.5. The monic determinantal divisor

g∞(s) = gcd{detD(s)[X, C∞] | X ⊆ R∞, |X| = r∞}
6



is a monomial in s.
Theorem 5.6. The sum of the minimal row indices is obtained by

q∑

i=1

ηi = δ̂r∞(D∞)− ζ̂r∞(D∞).(5.2)

As an immediate consequence of Theorems 5.3 and 5.6, we have the following
theorem implied by (2.2).

Theorem 5.7. The size ν of the strictly regular block in the Kronecker canonical
form D̄(s) of D(s) is obtained by

ν = δ̂r(D)− ζ̂r(D)− δ̂r0(D0) + ζ̂r0(D0)− δ̂r∞(D∞) + ζ̂r∞(D∞).(5.3)

Note that all these right-hand sides of (5.1), (5.2), and (5.3) can be computed
efficiently by the DM-decomposition and weighted bipartite matching algorithms. We
have thus obtained a useful combinatorial characterization of the sums of the minimal
row/column indices as well as the size of the strictly regular block in the Kronecker
canonical form.

Among the structural indices of a generic matrix pencil, µ1, · · · , µd and ρ1, · · · , ρc

are known to be efficiently computable by weighted bipartite matching algorithms.
The results in this section enables us to compute ν,

∑p
i=1 εi and

∑q
i=1 ηi as well.

It still remains open to determine the values of the minimal row/column indices.
The obtained partial results, however, provide sufficient information to discern if the
Kronecker canonical form contains vertical/horizontal rectangular blocks.

6. Expanded matrices for indices of nilpotency. We now turn to the ranks
of the expanded matrices, which are in a close relation to the structural indices as
shown in Theorem 2.3, for a generic matrix pencil D(s) = sA + B. Even though the
set of nonzero entries in A and B is algebraically independent, the expanded matrices
are not generic matrices. It will be shown, however, that the ranks of the expanded
matrices are equal to their term-ranks in most cases. In this section, we deal with
the expanded matrices Θk(D) and Ωk(D), which are particularly related to µ1, · · · , µd

and ρ1, · · · , ρc. The other expanded matrices Ψk(D) and Φk(D) will be investigated
in Section 7.

In order to examine the ranks of Θk(D) and Ωk(D), we consider the bipartite
graphs G(Θk(D)) and G(Ωk(D)) associated with the expanded matrices. It will turn
out that these bipartite graphs allow maximum matchings with periodic structures.
As a consequence, the ranks of these expanded matrices are equal to their term-ranks
denoted by θ̂k(D) and ω̂k(D).

We first investigate Θk(D). Let R̄ and C̄ be the row set and the column set of
Θk(D). Then R̄ = R1 ∪ · · · ∪ Rk and C̄ = C1 ∪ · · · ∪ Ck, where Rh and Ch are the
copies of the row set R and the column set C of D for h = 1, . . . , k. For vertices
u ∈ R and v ∈ C, we denote by uh and vh the corresponding vertices in Rh and
Ch. The edge set of the bipartite graph G(Θk(D)) consists of Ē = E1 ∪ · · · ∪Ek and
F̄ = F 1 ∪ · · · ∪ F k−1, where Eh and Fh are the copies of E and F . The edges in Eh

connect Rh and Ch, whereas the edges in Fh connect Rh and Ch+1. In other words,
Eh = {(uh, vh) | (u, v) ∈ E} and Fh = {(uh, vh+1) | (u, v) ∈ F}.

For a matching M in G(D), let M◦ be the set of edges (uh, vh) with (u, v) ∈ E∩M
for h = 1, . . . , k and (uh, vh+1) with (u, v) ∈ F ∩M for h = 1, . . . , k − 1. Then M◦
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forms a matching in G(Θk(D)). A matching in G(Θk(D)) is called a periodic matching
if it can be represented as M◦ with a certain matching M in G(D).

We now introduce the weight wk on the edge set of G(D) by wk(e) = k for e ∈ E
and wk(e) = k − 1 for e ∈ F . For a matching M in G(D), we consider the weight of
M by wk(M) =

∑
e∈M wk(e).

Lemma 6.1. Let M be a matching that maximizes wk(M) in G(D). Then the
corresponding periodic matching M◦ is a maximum matching in G(Θk(D)).

Proof. Suppose to the contrary that M◦ is not a maximum matching in G(Θk(D)).
Then there exists an augmenting path with respect to M◦ in G(Θk(D)). Let P ◦ be
such an augmenting path with minimum number of arcs. The corresponding set of
edges in G(D) forms an augmenting path P with respect to M in G(D). Then we
analyze the weight of a matching M ′ = M4P , which is the symmetric difference of M
and P . Suppose that the end-vertices of P ◦ are uh ∈ Rh and vl ∈ Cl. If h < l, then
the weight of M ′ satisfies wk(M ′)−wk(M) = (l−h)(k−1)−k(l−h−1) = k−l+h. On
the other hand, if h ≥ l, then we have wk(M ′)−wk(M) = (h−l+1)k−(h−l)(k−1) =
k +h− l. Thus in either case, we have wk(M ′) = wk(M)+k +h−k > wk(M), which
contradicts the maximality of wk(M).

Let M◦ be a maximum periodic matching in G(Θk(D)) corresponding to the
maximum-weight matching M in G(D). We denote by ∂M◦ the set of end-vertices of
the edges in M◦. Consider the submatrix Θk(D)[X,Y ] determined by X = R̄ ∩ ∂M
and Y = C̄ ∩ ∂M . Then the expansion of det Θk(D)[X, Y ] contains a nonzero term

∏

(u,v)∈M∩E

Auv
k

∏

(u,v)∈M∩F

Buv
k−1,

where Auv and Buv denote the (u, v)-components of A and B. Each Auv appears
exactly k times in Θk(D) and Buv appears exactly k − 1 times in Θk(D). Hence no
other matching cancels this term in the expansion. Thus Θk(D)[X, Y ] is a nonsingular
submatrix of size |M◦|, which implies θk(D) = θ̂k(D) by Lemma 6.1.

A similar argument on G(Ωk(D)) leads to ωk(D) = ω̂k(D). Thus we obtain the
following theorem.

Theorem 6.2. For a generic matrix pencil D(s), we have θk(D) = θ̂k(D) and
ωk(D) = ω̂k(D).

7. Expanded matrices for column/row indices. This section is devoted to
a combinatorial analysis of the ranks of the expanded matrices Ψk(D) and Φk(D) for
a generic matrix pencil D(s). Let ψ̂k(D) and ϕ̂k(D) denote the term-ranks of these
matrices. Since these expanded matrices admit the same indeterminates to appear in
different places, it is not immediately clear that the ranks are equal to the term-ranks.
In fact, there is an example of such a expanded matrix whose rank is less than its
term-rank. Our analysis, however, makes it possible to assert that they are equal for
sufficiently large k as well as k = 1, 2.

Theorem 7.1. For a generic matrix pencil D(s) of rank r, let r0 be the rank of
the horizontal tail D0. If k ≥ r0, we have

ψk(D) = ψ̂k(D) = kr + δ̂r0(D0)− ζ̂r0(D0).

Proof. Due to the submodularity of the term-rank, we have

ψ̂k(D0) + ϕ̂k−1(D0) ≤ θ̂k(D0) + ω̂k(D0).
8



Since D0 is of row-full rank, Corollary 2.4 implies ϕ̂k−1(D0) = (k − 1)r0. It follows
from Corollary 2.5 and Theorem 6.2 that θ̂k(D0) = θk(D0) = r0(k− 1)− δr0(D0) and
ω̂k(D0) = ωk(D0) = r0k − ζr0(D0) hold for k ≥ r0 Thus, we obtain

ψ̂k(D0) ≤ kr0 + δr0(D0)− ζr0(D0).

Then by Lemma 5.1 we have

ψ̂k(D) ≤ kr + δ̂r0(D0)− ζ̂r0(D0).

On the other hand, Theorems 2.3 and 5.3 imply ψk(D) = rk + δ̂r0(D0)− ζr0(D0) for
k ≥ r0. Since ψk(D0) ≤ ψ̂k(D0), we have ψk(D) = ψ̂k(D) = kr + δ̂r0(D0) − ζ̂r0(D0)
for k ≥ r0.

A similar argument applied to the vertical tail D∞ leads to the following theorem.
Theorem 7.2. For a generic matrix pencil D(s) of rank r, let r∞ be the rank of

the vertical tail D∞. If k ≥ r∞, we have

ϕk(D) = ϕ̂k(D) = kr + δ̂r∞(D∞)− ζ̂r∞(D∞).

For k = 1, 2, the ranks of the expanded matrices coincide with their term-ranks.
This is immediate for k = 1 as Ψ1 and Φ1 are generic matrices. The following theorem
deals with the case of k = 2.

Theorem 7.3. For a generic matrix pencil D(s), we have ψ2(D) = ψ̂2(D) and
ϕ2(D) = ϕ̂2(D).

Proof. Let M∗ be a maximum matching in G(Ψ2(D)). The row set R̄ and the
column set C̄ are given by R̄ = R1 ∪R2 ∪R3 and C̄ = C1 ∪C2, where Rh and Ch are
the copies of R and C. For u ∈ R and v ∈ C, we denote their copies by uh ∈ Rh and
vh ∈ Ch. We also denote X = R̄ ∩ ∂M∗ and Y = C̄ ∩ ∂M∗. Then it suffices to show
that W = Ψ2(D)[X, Y ] is nonsingular.

Let M∗
1 and M∗

2 be the sets of edges in M∗ incident to C1 and C2, respectively.
We denote X1 = X ∩ ∂M∗

1 , X2 = X ∩ ∂M∗
2 , Y1 = C1 ∩ ∂M∗, and Y2 = C2 ∩ ∂M∗.

Let P denote the family of perfect matchings in G(W ). For each matching M ∈ P,
we denote π(M) =

∏
(u,v)∈M Wuv, where Wuv is the (u, v)-component of W . Recall

that

detW =
∑

M∈P
σMπ(M),

where σM takes 1 or −1. We also denote by P• the family of perfect matchings
M = M1 ∪M2 such that ∂M1 = ∂M∗

1 and ∂M2 = ∂M∗
2 .

We now claim that π(M•) 6= π(M ′) for any pair of M• ∈ P• and M ′ ∈ P \ P•.
Suppose to the contrary that π(M•) = π(M ′). The matching M ′ contains an edge
(u2, v2) with u2 ∈ X1. Then we have (u1, v1) ∈ M• \M ′, and hence (u1, z1) ∈ M ′ for
some z ∈ C \ {v}, which implies (u2, z2) ∈ M•. This is a contradiction to u2 ∈ X1.

Since both W [X1, Y1] and W [X2, Y2] are generic matrices, we have
∑

M∈P•
σMπ(M) = det W [X1, Y1] · det W [X2, Y2] 6= 0.

Then the claim above implies det W 6= 0, which means W is nonsingular.
9



For general k, however, the ranks of the expanded matrices may differ from their
term-ranks. For instance, consider a generic matrix pencil

D(s) = sA + B =




β1 sα1 0 0 0 0 0 0
0 β2 sα2 0 0 0 0 0
0 0 0 sα3 β3 0 0 0
0 0 β4 0 sα4 β5 0 0
0 0 0 0 0 sα5 + β6 sα6 β7

0 0 0 0 0 0 β8 sα7




.

The Kronecker canonical form of D(s) is D̄(s) = block-diag(L4, L2), which implies

ψk(D) =





8k (k ≤ 2)
7k + 2 (2 ≤ k ≤ 4)
6k + 6 (k ≥ 4),

whereas

ψ̂k(D) =
{

8k (k ≤ 3)
6k + 6 (k ≥ 3).

Thus ψk(D) = ψ̂k(D) holds for k 6= 3. For k = 3, however, we have ψ3(D) = 23 and
ψ̂3(D) = 24.

8. Generic matrix powers. As a byproduct of our combinatorial analysis in
Section 6, we give a simple alternative proof for a theorem of Poljak [29] on the ranks
of powers of generic square matrices.

Let A be an n× n generic matrix. We associate a directed graph ~G(A) = (R, ~E)
with vertex set R identical with the row/column set of A. The arc set ~E is the
set of nonzero entries of A, namely ~E = {(u, v) | Auv 6= 0}. A k-walk in ~G(A) is
an alternating sequence (v0, e1, v1, · · · , ek, vk) of vertices vh ∈ R and eh ∈ ~E such
that eh = (vh−1, vh) for h = 1, . . . , k. A pair of k-walks (v0, e1, v1, · · · , ek, vk) and
(v′0, e

′
1, v

′
1, · · · , e′k, v′k) is called independent if vh 6= v′h holds for h = 0, 1, . . . , k. The

following theorem characterizes the rank of Ak in terms of independent k-walks.
Theorem 8.1 (Poljak [29]). For a generic square matrix A, the rank of Ak is

equal to the maximum number of mutually independent k-walks in ~G(A).
Consider a regular matrix pencil D(s) = sA+I, where I denotes the unit matrix.

Then a k-walk naturally corresponds to a path P in G(Θk(D)) from C1 to Rk. To be
more specific, the path P is given by

P = {(vh−1
h, v̄h

h) | h = 1, . . . , k} ∪ {(vh
h, v̄h

h) | h = 1, . . . , k},
where v̄h denotes the column that is identical to the row vh ∈ R. Then a pair of
independent k-walks correspond to a pair of vertex-disjoint paths in G(Θk(D)). Let
P̄ = P1 ∪ · · · ∪P` denotes the edge set of ` such vertex-disjoint paths that come from
` independent k-walks. Then the symmetric difference P̄4F̄ forms a matching of
size ` + n(k− 1). Conversely, any periodic matching M◦ can be obtained in this way
from a set of independent k walks. Therefore, Lemma 6.1 implies that the maximum
number of independent k-walks is equal to θ̂k(D)− (k − 1)n.

On the other hand, we have

rankAk = θk(D)− (k − 1)n.
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Therefore, in order to prove Theorem 8.1, it suffices to show that θk(D) = θ̂k(D).
Since D(s) is not a generic matrix, we can not directly apply Theorem 6.2. However,
we can use essentially the same argument.

Let M◦ be a maximum periodic matching in G(Θk(D)) that corresponds to a
matching M in G(D). Consider the submatrix Θk(D)[X, Y ] with X = R̄ ∩ ∂M and
Y = C̄ ∩ ∂M . Then the expansion of det Θk(D)[X,Y ] contains a nonzero term

∏

(u,v)∈M∩E

Auv
k,

where Auv denotes the (u, v)-component of A. Since each Auv appears exactly k times
in Θk(D), no other matching cancels this term in the expansion. Thus Θk(D)[X, Y ]
is a nonsingular submatrix of size |M◦|, which implies θk(D) = θ̂k(D) by Lemma 6.1.

9. Conclusion. This paper has investigated the Kronecker canonical form of
generic matrix pencils. Even if the genericity assumption is not valid, we can efficiently
compute the combinatorial estimates of the sums of the minimal row/column indices
as well as the size of the strictly regular block. These estimates are correct in most
cases unless there is an unlucky numerical cancellation. Hence we can use them for
checking if the result of numerical computation is consistent with the combinatorial
information.

Another way to use the combinatorial estimates is to design a numerical algorithm
that exploits the combinatorial information. If one had an easier way to check the
correctness of the estimates, it would lead to a new algorithm particularly efficient for
sparse matrices. In fact, such algorithms of combinatorial relaxation type have been
developed for the maximum degree of subdeterminants [17, 18, 25, 27]. It would be
interesting to devise the same type of algorithms for minimal row/column indices.

Acknowledgements. The authors are grateful to Kazuo Murota for fruitful
discussions and helpful comments.
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