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Abstract

In the unidimensional unfolding model, given m objects in general
position there arise 1 + m(m − 1)/2 rankings. The set of rankings is
called the ranking pattern of the m given objects. By changing these
m objects, we can generate various ranking patterns. It is natural
to ask how many ranking patterns can be generated and what is the
probability of each ranking pattern when the objects are randomly
chosen? These problems are studied by introducing a new type of
arrangement called mid-hyperplane arrangement and by counting cells
in its complement.
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1 Introduction

Various models have been developed for the analysis of ranking data. These
include Thurstonian models, distance-based models, paired and higher-order
comparison models, ANOVA-type loglinear models, multistage models and
unfolding models, to name only a few. These models give a description of
the ranking process and/or the population of rankers. For a comprehensive
treatment of the methods for analyzing and modelling ranking data, see the
excellent book by Marden [19].

The unfolding model was devised by Coombs [5, 6, 7] for the analysis of
ranking data based on preferential choice behavior. According to De Soete,
Feger and Klauer [11, p.1], “Historically, two of the most important contribu-
tions to psychological choice modelling are undoubtedly Thurstone’s [27] Law
of Comparative Judgment and Coombs’ [5, 7] unfolding theory.” This model
has been widely used in practice in many fields beyond psychology: sociology,
marketing science, voting theory, etc. In addition, the same mathematical
structure can be found in Voronoi diagrams (Okabe, Boots, Sugihara and
Chiu [21]), spatial competition models in urban economics (Hotelling [16],
Eaton and Lipsey [12, 13]) and multiple discriminant analysis (Kamiya and
Takemura [17]).

According to the unidimensional unfolding model, preferential choice is
made in the following manner: all individuals evaluate m objects based on
the objects’ single common attribute. Each object is represented by a real
number expressing the level of this attribute xi, i = 1, 2, . . . , m, or a point
on the real line R (the “unidimensional underlying continuum”). At the
same time, each individual is also represented by a point y ∈ R on the
same line. The point y is considered the individual’s favorite and is called
his/her ideal point. In this model, the real line R containing both individuals
and objects is thought of as the psychological space and is called the joint
scale or the J scale. Here we identify individuals and objects with their
corresponding points. The model assumes that individual y ranks the m
objects x1, x2, . . . , xm according to their distances from y, i.e., individual y
prefers xi to xj iff |y − xi| < |y − xj|. Rankings generated by individuals in
this way are sometimes called individual scales or I scales.

We say that the m points representing the objects are in general position if
they and their midpoints are all distinct. Further, we do not consider partial
rankings or ties in this paper, so we treat only those individuals whose ideal
points do not coincide with any midpoint of two objects.
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Let x1, . . . , xm be m objects which satisfy these assumptions. By varying
the location of the ideal point y throughout R except the midpoints, we can
account for

(
m
2

)
+ 1 kinds of rankings of x1, x2, . . . , xm. The significance of

using this model lies here: there are m! potential rankings, but the psycholog-
ical structure restricts the variety of rankings that can actually occur. These(

m
2

)
+ 1 rankings are called the admissible rankings of x = (x1, . . . , xm).
The unidimensional unfolding model was extended to the multidimen-

sional case by Bennett and Hays [1] and Hays and Bennett [15]. As the
dimension n of the psychological space gets large, the number of admissible
rankings accounted for by this model increases, hence more rankings can be
explained. This means that the psychological structure becomes looser as
n increases. In fact, when n ≥ m − 1, all m! rankings are admissible, and
the model in this case is not interesting at all. Thus finding an appropriate
dimension is important in the actual analysis of ranking data. In this paper,
we restrict our attention to the unidimensional unfolding model.

For a given set of m objects represented by x = (x1, . . . , xm) ∈ Rn,
we call the set of

(
m
2

)
+ 1 admissible rankings of x the ranking pattern of

x. By considering different attributes, we can get different sets of m real
numbers x1, x2, . . . , xm for the same m objects, and thus obtain different
ranking patterns. Examination of the collected sample of ranking data can
tell us what aspect of the m objects determines the present individuals’
preferential choice behavior towards these m objects, thereby enabling some
inference about the latent structure.

It is generally impossible to explain all ranking data by considering any
single attribute. Van Blokland-Vogelesang [28] introduces an error structure
into the unfolding model and makes it a probabilistic model. The error struc-
ture in her model is an extension of the Feigin and Cohen [14] model. Other
types of error structures have also been studied by other authors (Brady [4],
Böckenholt and Gaul [2], De Soete, Carroll and DeSarbo [10]). Moreover,
for a set of ranking data which is not completely compatible with any joint
scale, van Blokland-Vogelesang [28] proposes a method for finding the “best”
joint scale based on Kendall’s τ distance.

The arguments so far imply that it is important to know the variety of
ranking patterns generated by the unfolding model. The significance of this
problem can also be understood in the context of voting theory or social
choice theory. It is well known (Coombs [7], Luce and Raiffa [18]) that the
unfolding model avoids voting cycles by restricting the possible rankings.

Suppose three individuals A,B and C rank three objects labelled 1, 2 and
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3 as (123), (231) and (312), respectively, where objects 1, 2 and 3 are listed
in order from best to worst in the expression (i1i2i3). Here two individuals
A and C prefer 1 to 2, while B prefers 2 to 1, so by simple majority rule,
1 is preferred to 2 as a collective preference. In the same way, the simple
majority rule yields the collective preference that 2 is preferred to 3 and that
3 is preferred to 1, entailing intransitivity called a voting cycle.

But if the individuals’ preferences are limited to those determined by the
unfolding model, we can see that the collective preference by simple majority
rule coincides with the median individual’s preference and thus in particular
produces no voting cycles. Here the median individual means the individual
M ∈ {A,B, C} whose ideal point yM ∈ R is the median of the individuals’
ideal points yA, yB, yC ∈ R. The same holds true for any odd number of
individuals and any number m ≥ 3 of objects. Thus it is crucial to clarify
how much restriction the unfolding model imposes on individuals’ possible
preferences.

We show next that it suffices to study the case where the m objects
x1, . . . , xm are ordered as x1 < · · · < xm. Consider two sets of m objects
x = (x1, . . . , xm) and x′ = (x′1, . . . , x

′
m). If the rank orders of their midpoints

from left to right on R are the same or the reverse of each other, then x
and x′ produce the same ranking pattern. Conversely, if x and x′ induce the
same ranking pattern, their midpoint orders are the same or the reverse of
each other. These facts can be confirmed by using results of Kamiya and
Takemura [17]. Here we agree to say that two rank orders of midpoints (or
objects) are essentially different if one is different from the other as well
as from the reverse of the other. These arguments imply that there is a
one-to-one correspondence between the set of ranking patterns and the set
of essentially different rank orders of midpoints of the objects. Since the
rank order of objects is completely determined by the rank order of their
midpoints, two sets of m objects having essentially different rank orders give
rise to essentially different rank orders of their midpoints and thus different
ranking patterns.

On the other hand, it is obvious that for any permutation (i1 . . . im) of
{1, 2, . . . ,m}, the set of ranking patterns generated by all x = (x1, . . . , xm)
satisfying xi1 < · · · < xim can be obtained from the set of ranking patterns
generated by all x = (x1, . . . , xm) with x1 < · · · < xm just by relabelling the
objects (Lemma 2.2 in Section 2). These considerations tell us that it suffices
to consider the case x1 < · · · < xm.

Midpoint order depends on the distances between objects. The joint scale
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discussed so far is sometimes called the quantitative joint scale. Another
type of joint scale is sometimes considered where we disregard the metric
information of the quantitative joint scale and take into account only the
order of its objects. In this case we obtain the so-called qualitative joint
scale. The set of admissible rankings of the qualitative joint scale having
objects x1, . . . , xm with xi1 < · · · < xim is, by definition, the union of the
sets of admissible rankings of the quantitative joint scales whose objects are
given by changing only the distances among x1, . . . , xm while keeping their
rank order xi1 < · · · < xim . Obviously, the number of qualitative joint scales
is m!/2 and the number of admissible rankings of each qualitative joint scale
is 2m−1 (Davison [9]). In this paper, we consider quantitative joint scales
exclusively, hence a joint scale always means a quantitative joint scale.

Suppose the objects x1, . . . , xm are ordered as x1 < · · · < xm. We want
to know the number of possible rank orders of the midpoints xij = (xi +
xj)/2, 1 ≤ i < j ≤ m. Any possible rank order of the midpoints xij, 1 ≤
i < j ≤ m, must satisfy the condition that the rank d(i, j) of xij from left to
right on R be increasing in i for any fixed j as well as increasing in j for any
fixed i. Consider the number gm of functions d : {(i, j) | 1 ≤ i < j ≤ m} →
{1, 2, . . . ,m(m−1)/2} satisfying this condition. Clearly gm serves as an upper
bound for the number of possible rank orders of the midpoints xij, 1 ≤ i <
j ≤ m. Thrall [26] obtained this number by considering a problem similar to
that of counting the number of standard Young tableaux. However, gm is only
an upper bound, since the rank order of the midpoints meeting the above-
mentioned condition does not necessarily satisfy other restrictions induced
by the rank order of the objects. Van Blokland-Vogelesang [28] finds two
kinds of such “intransitive” midpoint orders by way of “comparing intervals”
and “merging intervals.”

In this paper, we find the number of possible rank orders of midpoints
and thereby obtain the number of ranking patterns generated by the unidi-
mensional unfolding model. This is achieved by introducing a new type of
arrangement called the mid-hyperplane arrangement. For the general theory
of hyperplane arrangements, see Orlik and Terao [22]. Although we give a
formula for the number of ranking patterns for all m in Theorem 2.5, we
calculate this number only for m ≤ 8 due to computational complexity. In
addition to determining the number of ranking patterns, we may ask a fur-
ther question of interest. Suppose the m objects are randomly determined.
What is the probability that a given ranking pattern occurs? As will be seen
in Section 6, this problem for m = 5 reduces to that of finding volumes of
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some spherical tetrahedra.
The organization of this paper is as follows. In Section 2, we define the

mid-hyperplane arrangement and show that the number of ranking patterns
can be obtained by counting the number of chambers of this arrangement.
In Section 3, we reduce the problem to that of counting the number of points
in certain finite sets. Based on these results, we actually obtain the number
of ranking patterns for m ≤ 7 in Section 4 and for m = 8 in Section 5. We
also show in those sections that the characteristic polynomial of the mid-
hyperplane arrangement is a product of linear factors in Z[t] if and only if
m ≤ 7. In Section 6, we consider the problem of the probabilities of ranking
patterns and give the answer for m ≤ 5 objects. In Section 7, we mention
some open problems.

2 Arrangements and ranking maps

Let m be an integer with m ≥ 3. Here we define two kinds of hyperplanes in
the m-dimensional Euclidean space Rm.

(I) Hij := {(x1, . . . , xm) ∈ Rm | xi = xj} (1 ≤ i < j ≤ m).

The hyperplane arrangement Bm := {Hij | 1 ≤ i < j ≤ m} is called the braid
arrangement [22, p.13]. It has |Bm| =

(
m
2

)
hyperplanes. Let

I4 := {(p, q, r, s) | 1 ≤ p < q ≤ m, p < r < s ≤ m, p, q, r, s are distinct}.

(II) Hpqrs := {(x1, . . . , xm) ∈ Rm | xp + xq = xr + xs} (p, q, r, s) ∈ I4.

Define the mid-hyperplane arrangement

Am := Bm ∪ {Hpqrs | (p, q, r, s) ∈ I4}.

Here |Am| =
(

m
2

)
+ 3

(
m
4

)
. For an arbitrary arrangement A in Rm, let

M(A) := Rm \
⋃

H∈A
H

be the complement of A. The connected components of M(A) are called
chambers of A. Let Ch(A) be the set of all chambers of A.
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Let Pm denote the set of all permutations of {1, 2, . . . , m}. For π =
(i1 . . . im) ∈ Pm, let π̂ denote the corresponding bijection from {1, . . . , m} to
itself: π̂(k) = ik (1 ≤ k ≤ m). In this way we have a one-to-one correspon-
dence between Pm and the symmetric group Sm, which is defined to be the
set of bijections from {1, . . . , m} to itself. The group Sm acts on the set Pm

by
σπ := (σ(i1) . . . σ(im)) ∈ Pm

for σ ∈ Sm and π = (i1 . . . im) ∈ Pm. The action of Sm on Rm is defined by

σ(x1, . . . , xm) = (xσ−1(1), . . . , xσ−1(m)).

Then Sm acts on M(Am) and M(Bm) and therefore on Ch(Am) and on
Ch(Bm).

It is well known (e.g., Bourbaki [3, Ch.5, §3, n◦2, Th.1]) that the sym-
metric group Sm acts on Ch(Bm) effectively and transitively. In other words,
for any C, C ′ ∈ Ch(Bm), there exists a unique σ ∈ Sm with C ′ = σC. In
particular, |Ch(Bm)| = m!. Let

C0 := {(x1, x2, . . . , xm) | x1 < x2 < · · · < xm}
be a chamber of the braid arrangement Bm. Then Ch(Bm) = {σC0 | σ ∈ Sm}.

Fix x = (x1, x2, . . . , xm) ∈ M(Am). Plot m points x1, x2, . . . , xm on the
real line R. Let R(x) := R \ {xij | 1 ≤ i < j ≤ m}, where xij := (xi + xj)/2
is the midpoint. Define a map

Rx : R(x) −→ Pm

as follows:

Rx(y) = (i1i2 . . . im) ⇐⇒ |y − xi1| < |y − xi2| < · · · < |y − xim |,
where y ∈ R(x) and (i1i2 . . . im) ∈ Pm. The map Rx is called the ranking
map. The image of the ranking mapRx is the ranking pattern of x ∈ M(Am).

Suppose x ∈ C0 ∩M(Am). Then x1 < x2 < · · · < xm. For y ∈ R(x) and
1 ≤ i < j ≤ m, we have

y < xij ⇐⇒ |y − xi| < |y − xj| ⇐⇒ i precedes j in Rx(y),

y > xij ⇐⇒ |y − xi| > |y − xj| ⇐⇒ j precedes i in Rx(y).

Imagine that the point y moves on the real line R from left to right. When y
is sufficiently small, Rx(y) = (12 . . . m). Every time y “passes” xij, the two
integers i and j, which are adjacent in Rx(y), switch their positions. When
y is sufficiently large, Rx(y) = (m. . . 21).
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Example 2.1. Let m = 3 and x1 < x2 < x3. Then

Rx(y) =





(123) if y < x12,

(213) if x12 < y < x13,

(231) if x13 < y < x23,

(321) if x23 < y.

Lemma 2.2. Let σ ∈ Sm, x ∈ M(Am) and y ∈ R(x). Then

Rσx(y) = σ(Rx(y)).

Proof. Suppose x = (x1, . . . , xm). Then

Rσx(y) = (i1 . . . im) ⇐⇒ |y − xσ−1(i1)| < · · · < |y − xσ−1(im)|
⇐⇒ Rx(y) = (σ−1(i1) . . . σ−1(im)) ⇐⇒ σ(Rx(y)) = (i1 . . . im).

Lemma 2.3. Let σ ∈ Sm and x,x′ ∈ σC0 ∩M(Am). Then x and x′ lie in
the same chamber of Am if and only if the following statement holds true:

xpq > xrs ⇐⇒ x′pq > x′rs

for each (p, q, r, s) ∈ I4.

Proof. Each chamber of Am inside σC0 is equal to the intersection of σC0

and half-spaces defined by either 2(xpq − xrs) = xp + xq − xr − xs > 0 or
2(xpq − xrs) = xp + xq − xr − xs < 0 for (p, q, r, s) ∈ I4.

Theorem 2.4. Let σ ∈ Sm and x,x′ ∈ σC0 ∩M(Am). Then x and x′ have
the same ranking pattern if and only if x and x′ lie in the same chamber of
Am.

Proof. Assume first that σ = 1, so x,x′ ∈ C0 ∩M(Am).
Suppose that x and x′ lie in the same chamber of Am. Write x′ =

(x′1, x
′
2, . . . , x

′
m) and x′ij := (x′i + x′j)/2 (1 ≤ i < j ≤ m). By Lemma 2.3, we

have
xi1j1 < xi2j2 < · · · < xitjt , x′i1j1

< x′i2j2
< · · · < x′itjt

,
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where t =
(

m
2

)
. This shows

imRx = {π0, π1, . . . , πt} = imRx′ ,

where π0, π1, . . . πt ∈ Pm are defined inductively by

π0 = (12 . . . m),

πs = [isjs]πs−1 (1 ≤ s ≤ t).

Here [ij] ∈ Sm (1 ≤ i < j ≤ m) denotes the transposition of i and j.
Conversely, assume imRx = imRx′ . For π = (i1i2 . . . im) ∈ Pm, let ι(π)

denote the number of inversions in π:

ι(π) := |{(k1, k2) | k1 < k2, ik1 > ik2}|.
As the point y moves on the real line from left to right, ι(Rx(y)) increases
one by one. So we may write

imRx = imRx′ = {π0, π1, . . . , πt}
such that ι(πs) = s, (0 ≤ s ≤ t). Also there exists a unique transposition
[isjs] such that πs = [isjs]πs−1 (1 ≤ s ≤ t). Thus xi1j1 < xi2j2 < · · · < xitjt

and x′i1j1
< x′i2j2

< · · · < x′itjt
. It follows from Lemma 2.3 that x and x′ lie

in the same chamber of Am.
For a general σ ∈ Sm, let y := σ−1x ∈ C0 ∩M(Am) and y′ := σ−1x′ ∈

C0 ∩M(Am). By Lemma 2.2,

imRx = imRx′ ⇔ σ−1(imRx) = σ−1(imRx′) ⇔ imRσ−1x = imRσ−1x′

⇔ imRy = imRy′ ⇔ y and y′ lie in the same chamber of Am

⇔ x and x′ lie in the same chamber of Am.

Let r(m) denote the number of ranking patterns when x runs over the
set C0 ∩M(Am):

r(m) := |{imRx | x ∈ C0 ∩M(Am)}|.
Note that for each σ ∈ Sm, |{imRx | x ∈ σC0 ∩M(Am)}| is equal to r(m)
by Lemma 2.2.

Theorem 2.5. r(m) = |Ch(Am)|/(m!).

Proof. By Theorem 2.4, r(m) is equal to the number of chambers of Am

which lie inside C0. Thus we have |Ch(Am)| = r(m)|Sm| = r(m)(m!).
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3 The number of chambers of Am

In this section, we study the number |Ch(Am)| of chambers of Am.
First let us review some general results about the number of chambers and

the characteristic polynomial. Let K be a field and V an `-dimensional vector
space over K. Assume that A is an arbitrary arrangement of hyperplanes
in V . Let L = L(A) be the set of nonempty intersections of elements of A.
An element X ∈ L is called an edge of A. Define a partial order on L by
X ≤ Y ⇐⇒ Y ⊆ X. Note that this is reverse inclusion. Thus V is the
unique minimal element of L.

Let µ : L → Z be the Möbius function of L defined by µ(V ) = 1, and for
X > V by the recursion ∑

Y≤X

µ(Y ) = 0.

The characteristic polynomial of A is

χ(A, t) =
∑
X∈L

µ(X)tdim X .

The next two theorems give geometric meaning to special values of the char-
acteristic polynomial.

Theorem 3.1 (Zaslavsky [29]). If K = R, then |χ(A,−1)| = |Ch(A)|.
An arrangement A is called essential if the dimension of a maximal ele-

ment of L(A) is zero. The mid-hyperplane arrangement Am is not essential
because the line l = span{1} = {λ1 | λ ∈ R} ⊂ Rm, where 1 ∈ Rm is the vec-
tor of 1’s is a maximal element. This implies that χ(Am, t) is divisible by t.
The fact that l is contained in every hyperplane of Am implies that χ(Am, t)
is also divisible by (t− 1). Thus χ(Am, t)/t(t− 1) is a monic polynomial of
degree m− 2.

Let H0 be the hyperplane defined by x1 = 0. Define A∗
m := Am ∪ {H0}.

Then A∗
m is essential and the lattice L(Am) is isomorphic to the sublattice

defined by L(A∗
m)≥H0 := {X ∈ L(A∗

m) | X ≥ H0}.
Theorem 3.2 (Crapo-Rota [8], Terao [24] (4.10)). Let Fq be a finite
field of q elements. If K = Fq, then χ(A, q) = |M(A)|.

When K = Fq and V is a finite set of q` elements, χ(A, q) can be evaluated
by counting the number of points not on any hyperplane H ∈ A in V . Let q
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be a prime number greater than m. Let A∗
m,q be the modulo q reduction of

A∗
m in (Zq)

m. In other words, the hyperplanes belonging to A∗
m,q are:

(0) H0 := {(x1, . . . , xm) ∈ (Zq)
m | x1 = 0},

(Iq) Hij := {(x1, . . . , xm) ∈ (Zq)
m | xi = xj} (1 ≤ i < j ≤ m), and

(IIq) Hpqrs := {(x1, . . . , xm) ∈ (Zq)
m | xp +xq = xr +xs} (p, q, r, s ∈ I4).

The arrangement A∗
m,q is essential. The modulo q reduction Am,q of Am

is composed of the hyperplanes of type (Iq) and (IIq) above. Note that the
lattice L(Am,q) is isomorphic to the sublattice defined by L(A∗

m,q)≥H0 :=
{X ∈ L(A∗

m,q) | X ≥ H0}. Therefore, the intersection lattices L(Am) and
L(Am,q) are isomorphic if L(A∗

m)≥H0 and L(A∗
m,q)≥H0 are isomorphic.

Let C be the coefficient matrix of A∗
m. For example when m = 4,

C =




1 1 1 1 0 0 0 1 1 1
0 −1 0 0 1 1 0 −1 −1 1
0 0 −1 0 −1 0 1 −1 1 −1
0 0 0 −1 0 −1 −1 1 −1 −1


 .

Consider the m-minors of C. Each m-minor is parametrized by the set
of m columns used for the minor. It is known that the intersection lattice of
an essential arrangement is completely determined by the information which
m-minors vanish and which do not [25, Proposition 3]. Thus we have

Theorem 3.3. Define f(m) := max{| det T | | T is an m-minor of C and
T contains the column (1, 0, . . . , 0)T as its first column}. Let q be a prime
number greater than f(m). Then L(Am) and L(Am,q) are isomorphic.

Next we will find an upper bound for f(m). Let m ≥ 3 as always.
Consider the following three conditions concerning a matrix:

(i) every entry of the matrix is either −1, 0 or 1,
(ii) in every column 1 appears at most twice,
(iii) in every column −1 appears at most twice.

Define

g(m) := max{| det A| | A is an (m− 1)× (m− 1)-matrix satisfying (i,ii,iii)}.
It is clear that f(m) ≤ g(m).

Lemma 3.4.

g(m) = 2m−2 for m ≤ 5, g(m) ≤ 8 · 3m−5 for m ≥ 6.
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Proof. We argue by induction on m. For m = 3, 4 direct computation shows
the result. The values are attained by

g(3) = 2 = det

(
1 −1
1 1

)
, g(4) = 4 = det



−1 1 −1
−1 −1 1
0 1 1


 .

Suppose m = 5. We show that g(5) = 8. Note that

det




1 1 1 1
1 −1 −1 1
0 −1 1 −1
0 1 −1 −1


 = 8.

Thus g(5) ≥ 8. We must show g(5) = det A ≤ 8. Let ai be the ith column
of A. Denote the number of nonzero elements in ai by val(ai). If A has
a column ai with val(ai) ≤ 2, then g(5) ≤ 2g(4) = 8. So we may assume
that 3 ≤ val(ai) ≤ 4 for every i. Define a∗i to be the uniquely determined
four-dimensional column vector with two 1’s and two −1’s which satisfies the
following property:

if val(ai) = 4, then a∗i = ai,

if val(ai) = 3, then a∗i is obtained from ai by replacing

the unique zero in ai by either 1 or −1.

For example,

if ai =




1
−1
0
−1


 then a∗i =




1
−1
1
−1


 .

Since
(
4
2

)
/2 = 3 < 4, among the four vectors a∗i (1 ≤ i ≤ 4) at least two are

either equal to or the negative of each other. Without loss of generality, we
may assume a∗1 = a∗2. Then a12 := a1 − a2 is composed only of 0,−1 and 1
with val(a12) = 2. We get

g(5) = det A = det(a1, a2, a3, a4) = det(a1 − a2, a2, a3, a4)

= det(a12, a2, a3, a4) ≤ val(a12)g(4) = 2g(4) = 8.
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For the induction step, assume m ≥ 6. Choose an (m − 1) × (m − 1)-
matrix A satisfying (i), (ii) and (iii) with det A = g(m). Use the Laplace
expansion formula along ai to get

g(m) ≤ val(ai)g(m− 1)

for each i. If val(ai) = 4 for every column ai of A, then all the rows sum
up to the zero vector and thus det A = 0. This is a contradiction. Therefore
we may assume that there exists a column ai with val(ai) ≤ 3; so we obtain
g(m) ≤ 3g(m− 1).

Theorem 3.3 and Lemma 3.4 imply

Theorem 3.5. If a prime number q satisfies

q >

{
2m−2 if m ≤ 5,

8 · 3m−5 if m ≥ 6,

then the intersection lattices L(Am) and L(Am,q) are isomorphic and

χ(Am, q) = |M(Am,q)|.

The following theorem shows that we can fix x1 = 0, x2 = 1 in counting
|M(Am,q)|.
Theorem 3.6. Define

M1(m, q) := {(0, 1, x3, . . . , xm) ∈ M(Am,q)}.

Under the assumption of Theorem 3.5, we have

χ(Am, q)

q(q − 1)
= |M1(m, q)|.

Proof. Consider the action of the additive group Fq on M(Am,q) by

(x1, x2, . . . , xm) 7→ (x1 + α, x2 + α, . . . , xm + α) (α ∈ Fq).

The set of orbits under this action is represented by the set

M0 := {(0, x2, x3, . . . , xm) ∈ M(Am,q)}.
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Thus |M0| = χ(Am, q)/q. Next consider the action of the multiplicative
group F×q := F \ {0} on M0 by

(0, x2, . . . , xm) 7→ (0, x2β, . . . , xmβ) (β ∈ F×q ).

The set of orbits under this action is represented by the set M1(m, q). Thus
|M1(m, q)| = |M0|/(q − 1) = χ(Am, q)/q(q − 1).

Our method to count the number of chambers of Am is as follows: let qi

(i = 1, . . . , m−2) be primes satisfying the conditions of Theorem 3.5. Count
the number of points in the set M1(m, qi) for each i. By Theorem 3.6, we
have χ(Am, qi)/qi(qi − 1) = |M1(m, qi)|. Since χ(Am, t)/t(t − 1) is a monic
polynomial of degree m−2, the data |M1(m, qi)| (i = 1, . . . , m−2) determine
the characteristic polynomial χ(Am, t) of Am. Theorem 3.1 asserts

|Ch(Am)| = |χ(Am,−1)|.
The number r(m) of the ranking patterns when x runs over the set C0 ∩
M(Am) is obtained by r(m) = |χ(Am,−1)|/(m!) by Theorem 2.5.

4 The number of ranking patterns for m ≤ 7

In this section we determine χ(Am, t), |Ch(Am)| and r(m) for m ≤ 7. The
case m = 3 is known because A3 = B3. Let m = 4. If q > 4 is a prime, then
Theorem 3.6 gives

χ(A4, q)

q(q − 1)
= |M1(4, q)|.

Let

p(t) :=
χ(A4, t)

t(t− 1)
.

Then p(t) is a monic quadratic polynomial. We find

p(5) = |M1(4, 5)| = 0 and p(7) = |M1(4, 7)| = 8.

Theorems 3.1 and 2.5 give

p(t) = t2 − 8t + 15 = (t− 3)(t− 5), χ(A4, t) = t(t− 1)(t− 3)(t− 5),

|Ch(A4)| = 48, and r(4) = 2.

Using the same method, computer calculations provide the following table:
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Theorem 4.1.

m χ(Am, t) |Ch(Am)| r(m)
3 t(t− 1)(t− 2) 6 1
4 t(t− 1)(t− 3)(t− 5) 48 2
5 t(t− 1)(t− 7)(t− 8)(t− 9) 1440 12
6 t(t− 1)(t− 13)(t− 14)(t− 15)(t− 17) 120960 168
7 t(t− 1)(t− 23)(t− 24)(t− 25)(t− 26)(t− 27) 23587200 4680

Corollary 4.2. If m ≤ 7, then the characteristic polynomial χ(Am, t) is a
product of linear factors in Z[t].

Remark. Define an = n(nn−1−1)((n−2)!)/(n−1). We note that r(m) = am−2

for m = 3, 4, 5, 6, 7 but we do not have any reasonable interpretation for the
coincidence at this writing.

5 The number of ranking patterns for m ≥ 8

We determine r(8) first. Evaluating r(m) for m ≥ 9 is not feasible at present
with our brute force counting method. Next we prove a theorem about the
characteristic polynomial χ(Am, t) for m ≥ 8.

For m = 8 we used a computer to count |M1(8, q)| with the primes q =
223, 227, 229, 233, 239, 241, all greater than 8 · 38−5 = 216. Theorem 3.6
implies:

Theorem 5.1.

χ(A8, t) = t(t− 1)(t− 35)(t− 37)(t− 39)(t− 41)(t2 − 85t + 1926),

|Ch(A8)| = 9248117760,

r(8) = 229386.

Remark. The coincidence of r(m) and am−2 does not hold for m = 8. Here
r(8) = 229386 > a6 = 223920.

Write

χ(Am, t) =
m∑

k=0

µkt
m−k.
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It is known that

µ0 = 1, µ1 = −|Am| = −
(

m

2

)
− 3

(
m

4

)
, µm = 0.

Although we do not have a general formula for µk, routine calculations yield
a formula for µ2:

Theorem 5.2.

µ2 = 2

(
m

3

)
+ 15

(
m

4

)
+ 120

(
m

5

)
+ 375

(
m

6

)
+ 630

(
m

7

)
+ 315

(
m

8

)
.

Theorem 5.3. The characteristic polynomial χ(Am, t) is a product of linear
factors in Z[t] if and only if m ≤ 7.

Proof. This follows from Corollary 4.2 when m ≤ 7. Let m ≥ 8. Suppose
that the characteristic polynomial is a product of linear factors in Z[t]:

χ(Am, t) =
m∑

k=0

µkt
m−k = t(t− 1)(t− b2) . . . (t− bm−1)

for b2, . . . , bm−1 ∈ Z.
Applying Theorem 5.2, we have

m−1∑
i=2

bi = −µ1 − 1 = |Am| − 1 = −1 +

(
m

2

)
+ 3

(
m

4

)
,

∑
2≤i<j≤m−1

bibj = µ2 −
m−1∑
i=2

bi

= 1−
(

m

2

)
+ 2

(
m

3

)
+ 12

(
m

4

)

+ 120

(
m

5

)
+ 375

(
m

6

)
+ 630

(
m

7

)
+ 315

(
m

8

)
.
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Therefore

m−1∑
i=2

(
bi −

∑m−1
i=2 bi

m− 2

)2

=
m−1∑
i=2

b2
i −

(∑m−1
i=2 bi

)2

m− 2

=

(
m−1∑
i=2

bi

)2

− 2
∑

2≤i<j≤m−1

bibj −
(∑m−1

i=2 bi

)2

m− 2

=
(m− 3)

(∑m−1
i=2 bi

)2

m− 2
− 2

∑
2≤i<j≤m−1

bibj.

Compute

h(m) := (m− 2)
m−1∑
i=2

(
bi −

∑m−1
i=2 bi

m− 2

)2

= (m− 3)

{
−1 +

(
m

2

)
+ 3

(
m

4

)}2

− 2(m− 2)

{
1−

(
m

2

)
+ 2

(
m

3

)

+12

(
m

4

)
+ 120

(
m

5

)
+ 375

(
m

6

)
+ 630

(
m

7

)
+ 315

(
m

8

)}

= 1 +
98m

3
− 1573m2

16
+

5423m3

48
− 12787m4

192
+

527m5

24
− 391m6

96

+
19m7

48
− m8

64
.

Thus h(m) ≥ 0 for m > 2. On the other hand, we may check by standard
calculus techniques that h(m) < 0 whenever m ≥ 8. This is a contradiction.

6 Probabilities of ranking patterns

We counted the number of possible ranking patterns in the preceding sections.
Here we investigate the probabilities of ranking patterns when the objects
x1, . . . , xm are randomly determined. For m = 4, the problem is trivial by
symmetry considerations as long as the four objects are independently and
identically distributed.

We consider the case m = 5 and assume that x = (x1, . . . , x5) ∈ R5

is distributed according to an arbitrary spherical distribution. Note that
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x ∈ M(A5) with probability one. For m = 5, there are 1440 possible ranking
patterns in all. By relabelling the indices it suffices to consider the case

(1) x1 < · · · < x5.

Furthermore, by replacing xi by −xi, it suffices to consider the case

(2) x1 < · · · < x5, x24 < x15.

Under restriction (2), we have 1440/(5! ·2) = r(5)/2 = 6 possible ranking
patterns, which are characterized by the following midpoint orders (Lemma
2.3, Theorem 2.4):

(I) x14 < x23 < x24 < x15 < x25 < x34,

(II) x14 < x23 < x24 < x15 < x34 < x25,

(III) x14 < x23 < x24 < x34 < x15 < x25,

(IV) x23 < x14 < x24 < x15 < x25 < x34,

(V) x23 < x14 < x24 < x15 < x34 < x25,

(VI) x23 < x14 < x24 < x34 < x15 < x25.

We are interested in the conditional probabilities of the six midpoint or-
ders above assuming (2). Recall that these midpoint orders represent cham-
bers of A5 (Lemma 2.3). We argue next that our problem reduces to com-
puting the spherical volumes of the restrictions of some chambers of A5 to
the three-dimensional unit sphere.

We begin by recalling that all hyperplanes in A5 contain the line l =
span{1} = {λ1 | λ ∈ R} ⊂ R5, where 1 ∈ R5 is the vector of 1’s. The or-
thogonal projection of x = (x1, . . . , x5) ∈ R5 onto H ′

0 = l⊥ = {(x1, . . . , x5) ∈
R5 | x1 + · · · + x5 = 0} will be denoted by z := (x1 − x̄, . . . , x5 − x̄),
where x̄ = (x1 + · · · + x5)/5. Since x is assumed to be distributed as a
spherical distribution, the marginal distribution of the orthogonal projection
z is a spherical distribution of one less dimension (Muirhead [20, p.34]).
Now, any x ∈ M(A5) and its orthogonal projection z are on the same
side of each hyperplane in A5, so for any chamber C ∈ Ch(A5), we have
Prob(x ∈ C) = Prob(z ∈ CH′

0
) with CH′

0
:= C ∩ H ′

0. This CH′
0

can be
regarded as a chamber of the arrangement A′

5 := {H ∩H ′
0 | H ∈ A5} in H ′

0.
Each hyperplane in A′

5 contains the origin. Thus its chambers are the
interiors of polyhedral cones in H ′

0. As a result, for each CH′
0
∈ Ch(A′

5),
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we have that z ∈ CH′
0

is equivalent to z/‖z‖ ∈ CS3 := CH′
0
∩ S3, where

S3 := {(x1, . . . , x5) ∈ H ′
0 | x2

1 + · · · + x2
5 = 1} is the unit sphere in H ′

0.
Together with the uniformity of the distribution of z/‖z‖ on S3, this yields
Prob(z ∈ CH′

0
) = Prob(z/‖z‖ ∈ CS3) = Vol(CS3)/Vol(S3).

We conclude that for any chamber C of A5,

Prob (x ∈ C) =
Vol(CS3)
Vol(S3)

with CS3 = C∩S3. Thus the probability of x being in chamber C ∈ Ch(A5) is
proportional to the volume of CS3 = C∩S3. Therefore, the desired conditional
probabilities under (2) are given by the ratios of the volumes of the chambers
CS3 corresponding to the six midpoint orders to the volume of the union
T := {(x1, . . . , x5) | x1 ≤ · · · ≤ x5, x24 ≤ x15} ∩ S3 of their closures.

The binding inequalities of the spherical chambers associated with the six
midpoint orders are

(I) x14 < x23, x25 < x34, x3 < x4, x24 < x15,

(II) x15 < x34, x14 < x23, x24 < x15, x3 < x4, x34 < x25,

(III) x14 < x23, x2 < x3, x3 < x4, x34 < x15,

(IV) x1 < x2, x25 < x34, x23 < x14, x24 < x15,

(V) x15 < x34, x23 < x14, x24 < x15, x34 < x25,

(VI) x1 < x2, x2 < x3, x23 < x14, x34 < x15.

With the exception of (II), the closures of these chambers are spherical tetra-
hedra

(I) FBGH,

(III) AFED,

(IV) FBGC,

(V) CGFE,

(VI) AFCE

where

A = (−1,−1,−1,−1, 4)/
√

20, B = (−3,−3, 2, 2, 2)/
√

30,

C = (−2,−2,−2, 3, 3)/
√

30, D = (−1, 0, 0, 0, 1)/
√

2,

E = (−7,−2,−2, 3, 8)/
√

130, F = (−4,−4, 1, 1, 6)/
√

70,

G = (−2,−1, 0, 1, 2)/
√

10, H = (−8,−3, 2, 2, 7)/
√

130;
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Chamber (II) is a quadrilateral pyramid FEDHG, which can be divided into
two tetrahedra, say, FEDG and FDGH. Note that this observation implies
that the closures of the chambers of the mid-hyperplane arrangement Am are
not necessarily simplices. See Figures 1 and 2.

The volumes of the seven spherical tetrahedra mentioned above can be
computed as

(I) Vol(FBGH) = 0.00628091,

(II) Vol(FEDG) = 0.00486715, Vol(FDGH) = 0.00481365,

(III) Vol(AFED) = 0.0189182,

(IV) Vol(FBGC) = 0.0146084,

(V) Vol(CGFE) = 0.00650684,

(VI) Vol(AFCE) = 0.0262516.

As an illustration, the calculation of the volume of FBGH is given in the
Appendix. Note that these values add up to the volume of the spherical
tetrahedron T = ABCD = {(x1, . . . , x5) ∈ S3 | x1 ≤ · · · ≤ x5, x24 ≤ x15} :

Vol(T ) =
Vol(S3)

5! · 2 =
2π2

5! · 2 = 0.0822467.

Let S = {(x1, . . . , x5) ∈ S3 | x1 ≤ · · · ≤ x5} : Vol(S) = 2Vol(T ). We use
the values above to arrive at

Prob((I) | S) := Prob(x14 < x23 < x24 < x15 < x25 < x34 |
x1 < · · · < x5)

=
Vol(FBGH)

Vol(S)

=
0.00628091

2× 0.0822467
= 0.0381834.

By replacing xi by −xi, we also consider the following cases:

(I′) x23 < x14 < x15 < x24 < x34 < x25,

(II′) x14 < x23 < x15 < x24 < x34 < x25,

(III′) x14 < x15 < x23 < x24 < x34 < x25,

(IV′) x23 < x14 < x15 < x24 < x25 < x34,

(V′) x14 < x23 < x15 < x24 < x25 < x34,

(VI′) x14 < x15 < x23 < x24 < x25 < x34.
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Using the symmetry we get

Prob((I) | S) = Prob((I′) | S) = 0.0381834,

Prob((II) | S) = Prob((II′) | S) = 0.0588522,

Prob((III) | S) = Prob((III′) | S) = 0.1150086,

Prob((IV) | S) = Prob((IV′) | S) = 0.0888085,

Prob((V) | S) = Prob((V′) | S) = 0.0395569,

Prob((VI) | S) = Prob((VI′) | S) = 0.1595905.

We have confirmed that these values coincide with the result of our simulation
study with x ∼ N5(0, I5), where I5 denotes the 5× 5-identity matrix.

7 Concluding remarks

In this paper, we have solved the problem of counting the number of ranking
patterns in the unidimensional unfolding model although, due to computa-
tional complexity, at present we cannot determine the explicit number of
ranking patterns for m ≥ 9. Improving the bound in Lemma 3.4 might re-
duce the computational time. From some computer experiments, it seems
that L(Am) and L(Am,q) are isomorphic for much smaller q than the value
guaranteed by Lemma 3.4.

The problem of counting the number of ranking patterns can be consid-
ered for the multidimensional unfolding model. Unlike the unidimensional
case, the problem does not reduce to counting chambers of a hyperplane
arrangement and the problem seems to be quite difficult at this stage.

8 Appendix

In this Appendix we illustrate the derivation of the volumes of the spherical
tetrahedra in Section 6 by actually calculating the volume of FBGH. Take
the following orthonormal basis of H ′

0 = {(x1, . . . , x5) ∈ R5 | x1 + · · ·+ x5 =
0} : 




e1 = 1√
2
(1,−1, 0, 0, 0),

e2 = 1√
6
(1, 1,−2, 0, 0),

e3 = 1√
12

(1, 1, 1,−3, 0),

e4 = 1√
20

(1, 1, 1, 1,−4).
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Let z1, . . . , z4 be the coordinates of x = (x1, . . . , x5) ∈ H ′
0 in terms of this

basis:

x = z1e1 + · · ·+ z4e4 =




z1√
2

+ z2√
6

+ z3√
12

+ z4√
20

− z1√
2

+ z2√
6

+ z3√
12

+ z4√
20

−2z2√
6

+ z3√
12

+ z4√
20

− 3z3√
12

+ z4√
20

− 4z4√
20




.

The conditions x14 ≤ x23, x25 ≤ x34, x3 ≤ x4, x24 ≤ x15 are the binding
inequalities of FBGH. They can be written as





−√3z1 − z2 +
√

2z3 ≥ 0,√
2z1 −

√
6z2 −

√
3z3 +

√
5z4 ≥ 0,

z2 −
√

2z3 ≥ 0,

2
√

2z1 +
√

3z3 −
√

5z4 ≥ 0

in terms of z1, . . . , z4.
Now consider the family of spherical tetrahedra T (a), 0 ≤ a ≤ 1, in

S3 = {(z1, . . . , z4) ∈ R4 | z2
1 + · · ·+ z2

4 = 1} determined by

(3)





HS1 : −a
√

3z1 − z2 +
√

2z3 ≥ 0,

HS2 :
√

2z1 −
√

6z2 −
√

3z3 +
√

5z4 ≥ 0,

HS3 : z2 −
√

2z3 ≥ 0,

HS4 : 2
√

2z1 +
√

3z3 −
√

5z4 ≥ 0.

We want to find Vol(T (1)).
For each a, 0 ≤ a ≤ 1, let eij = eij(a) be the edge of T (a) determined

by HSi and HSj, 1 ≤ i < j ≤ 4, and vijk = vijk(a) the vertex of T (a)
determined by HSi, HSj and HSk, 1 ≤ i < j < k ≤ 4. Furthermore,
denote the length of eij and the dihedral angle along eij by θij = θij(a)
and λij = λij(a), 1 ≤ i < j ≤ 4, respectively.

The volume Vol(T (a)) of T (a) can be regarded as a function of its six dihe-
dral angles λij, 1 ≤ i < j ≤ 4. The partial derivatives ∂Vol(T (a))/∂λij, 1 ≤
i < j ≤ 4, are given by the following lemma:

Lemma 8.1 (Schläfli [23]). The partial derivatives of Vol(T (a)) with re-
spect to λij, 1 ≤ i < j ≤ 4, are given as

∂Vol(T (a))

∂λij

=
θij

2
, 1 ≤ i < j ≤ 4.
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Making use of the above lemma, we will calculate Vol(T (1)) in the fol-
lowing way:

Vol(T (1)) = Vol(T (0)) +

∫ 1

0

dVol(T (a))

da
da

= Vol(T (0)) +

∫ 1

0

∑
1≤i<j≤4

∂Vol(T (a))

∂λij

dλij

da
da(4)

= Vol(T (0)) +
1

2

∑
1≤i<j≤4

∫ 1

0

θij(a)
dλij

da
da.

First we calculate λij = λij(a), 1 ≤ i < j ≤ 4. By (3) we have

λ12 = arccos

(
−(−√6a))√
3a2 + 3

√
16

)
= arccos

( √
2a

4
√

a2 + 1

)
,

λ13 = arccos

( −(−3)√
3a2 + 3

√
3

)
= arccos

(
1√

a2 + 1

)
,

λ14 = arccos

(
−(−2

√
6a +

√
6)√

3a2 + 3
√

16

)
= arccos

(√
2(2a− 1)

4
√

a2 + 1

)

and that the other dihedral angles are constants.
Next we compute the lengths θij = θij(a) of the edges eij = eij(a), 1 ≤

i < j ≤ 4. These lengths are obtained by θij = arccos(vijk · vijl), 1 ≤ i <
j ≤ 4, k 6= l, k, l /∈ {i, j}, where vijk is regarded as vi′j′k′ with {i′, j′, k′} =
{i, j, k}, 1 ≤ i′ < j′ < k′ ≤ 4. So we begin by finding the vertices vijk =
vijk(a), 1 ≤ i < j < k ≤ 4 for 0 < a < 1.

Vertex v123 is obtained by solving




−√3az1 − z2 +
√

2z3 = 0,√
2z1 −

√
6z2 −

√
3z3 +

√
5z4 = 0,

z2 −
√

2z3 = 0,

2
√

2z1 +
√

3z3 −
√

5z4 ≥ 0,

and the other vertices can be found in a similar manner. In this way, we
obtain

v123 = (0,−
√

10,−
√

5,−3
√

3)/
√

42,

v124 = (−
√

10,−
√

30,−
√

15(a + 1),−3a− 7)/
√

8(3a2 + 9a + 13),

v134 = (0,−
√

10,−
√

5,−
√

3)/
√

18.
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Vertex v234 is not needed below.
Using these values of v123, v124 and v134, we get

θ12 = arccos(v123 · v124) = arccos

(
7a + 18√

28(3a2 + 9a + 13)

)
,

θ13 = arccos(v123 · v134) = arccos

(
4√
21

)
,

θ14 = arccos(v124 · v134) = arccos

( √
3(4a + 11)

6
√

3a2 + 9a + 13

)
.

Finally, we have Vol(T (0)) = 0, since HS1 with a = 0 and HS3 in (3)
imply z2 −

√
2z3 = 0. Consequently, by (4) and by numerical integration we

can evaluate Vol(T (1)) as

Vol(T (1))

=
1

2

∫ 1

0

θ12(a)
dλ12

da
da +

1

2

∫ 1

0

θ13(a)
dλ13

da
da +

1

2

∫ 1

0

θ14(a)
dλ14

da
da

=
1

2

∫ 1

0

arccos

(
7a + 18√

28(3a2 + 9a + 13)

)
· −√2

(a2 + 1)
√

14a2 + 16
da

+
1

2
arccos

(
4√
21

)
· {λ13(1)− λ13(0)}

+
1

2

∫ 1

0

arccos

( √
3(4a + 11)

6
√

3a2 + 9a + 13

)
· −a− 2

(a2 + 1)
√

4a2 + 4a + 7
da

=
−0.0810845

2
+

arccos
(

4√
21

)
· (π

4
− 0

)

2
+
−0.306702

2
= 0.00628091.
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