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Abstract

An information criterion for models with the local asymptotic mixed normality (LAMN)

is proposed. Since the widely known Akaike’s Information Criterion (AIC) is derived

based on the local asymptotic normality (LAN), it cannot be directly used to model se-

lection of LAMN models and a criterion for them is required. The proposed criterion

for LAMN models is an asymptotically unbiased estimator of the Kullback-Leibler

loss of Bayesian prediction. Simulation studies for a mixed normal model, a discretely

observed diffusion model and a partially explosive Gaussian AR(2) model are given.
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1 Introduction

Consider a model Pn = {pn(·|θ) | θ ∈ Θ ⊂ R
k} (n = 1, 2, · · · ) on a sequence of

measure spaces (Ωn,Pn, µn), where pn(·|θ) is a probability density with a parameter

θ. The LAMN property defined below is regarded as a key concept throughout this

paper.

Definition 1 (Jeganathan 1982) Let θ ∈ Θ. A model (Pn)∞n=1 is called locally

asymptotically mixed normal (LAMN) at θ if there exist a sequence of matrices γn =

γn,θ ∈ R
k×k, a random matrix J = Jθ and a random vector ξ with ξ|J ∼ N(0, J−1)

such that for any h ∈ R
k and any convergent sequence hn → h

log
pn(x|θ + γnhn)

pn(x|θ) = h′Jn,θξn,θ −
1

2
h′Jn,θh + opθ

(1),

(ξn,θ, Jn,θ)
Law→ (ξ, J).
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Here ′ denotes transpose of a vector. In particular, (Pn)∞n=1 is locally asymptotically

normal (LAN) if J is deterministic.

Example 1. We give a trivial example (LeCam & Yang 2000, p.121). Let x1, · · · , xν

be an independently and identically distributed (i.i.d.) sequence subject to the prob-

ability density p(x1|θ) and ν be a random variable independent of xi’s. If ν/n weakly

converges to a non-degenerate random variable c and p(x1|θ) satisfies some mild con-

ditions, the model has the LAMN property with γn = 1/
√
n and J = cJ0, where J0

is the Fisher information matrix of p(x1|θ).

Example 2 (Discretely observed diffusion models). Let X be the solution of the

following 1-dimensional diffusion process

dXt = a(Xt, θ)dWt + b(Xt, θ)dt, X0 = x0, t ∈ [0, 1],

where x0 is the fixed initial value of X, a and b are smooth bounded functions and

W is a standard Wiener process. When θ is estimated from the discretely observed

data Xti , where ti = i/n for i = 1, · · · , n, it is known that the model has the LAMN

property with γn = 1/
√
n (Dohnal 1987, Genon-Catalot & Jacod 1994). The random

Fisher information matrix is

J = 2

∫ 1

0

[

∂

∂θ
log a(Xt, θ)

] [

∂

∂θ′
log a(Xt, θ)

]

dt.

Example 3 (Partially explosive Gaussian AR models). Let us consider the Gaussian

AR(2) model with known variance

Xt = β1Xt−1 + β2Xt−2 + εt, εt
i.i.d.∼ N(0, 1), t ∈ {1, · · · , n},

X0 = X−1 = 0.

Let θ1 and θ2 be two roots of the characteristic equation θ2 − β1θ − β2 = 0. Assume

that θ1 > 1 > |θ2|. We use (θ1, θ2) as the parameter. Then the model is LAMN with

the normalization matrix γn,θ = diag(θ−n
1 , n−1/2). The random Fisher information

matrix is

J = diag

[

χ2
1

1 − θ−2
1

,
1

1 − θ2
2

]

,

where χ2
1 is a random variable subject to the chi-square distribution with one de-

gree of freedom. This result is generalized to any Gaussian AR(k) model for k ≥ 1

(Jeganathan 1988, Theorem 16).
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For examples other than described above, branching processes (See e.g. van der

Vaart 1998) and some class of semimartingale models (Luschgy 1992) are LAMN.

The LAMN property implies the convergence of the likelihood ratio to that of the

corresponding mixed normal model (van der Vaart 1998, Theorem 9.8). Therefore it

allows us to reduce statistical problems to those of the mixed normal model at least

formally. Several rigorous results including the convolution theorem and the local

asymptotic minimax theorem (Jeganathan 1982, 1983) were obtained from this point

of view.

The importance of statistical inference for LAMN models have been recognized in

recent years because the LAMN property of the discretely observed diffusion model

described in Example 2 will be extended to many models for time-series analysis and

spatial statistics. The LAMN property of the discretely and randomly observed mul-

tivariate diffusion models with the commutative diffusion coefficients is proved by

Genon-Catalot & Jacod (1994). Discretely observed models of multivariate diffusion

processes with noncommutative diffusion coefficients, non-Markov processes and mul-

tiparameter stochastic processes may have the LAMN property. For example, the

LAMN property of a model of multiparameter stochastic processes which is transfor-

mation of the Brownian sheet by a parametric function is proved by Sei (2004).

We propose an information criterion for LAMN models by studying the correspond-

ing mixed normal model. Since the Akaike’s Information Criterion (AIC) is derived

based on the LAN property (Akaike 1974), it cannot be directly used to model selec-

tion of LAMN models. The proposed criterion Bayes-LAMN-IC for LAMN models

is defined as an asymptotically unbiased estimator of the loss of Bayesian prediction.

The loss function we adopt is equivalent to the Kullback-Leibler divergence. Here

the Bayesian prediction is used since it dominates the plug-in predictive distribution

as given in Section 3. We also give several other criteria based on other predictive

distributions for comparison.

Some notations and assumptions are prepared in Section 2. For the mixed normal

model, the Bayesian and some other predictive distributions are compared in Sec-

tion 3. In Section 4, Bayes-LAMN-IC is defined for the mixed normal model. The

criterion for non-limit models is given in Section 5. Simulation studies for the (not

asymptotically) mixed normal model, the discretely observed diffusion model and the

partially explosive Gaussian AR model are given in Section 6.
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2 Notations and assumptions

We fix a full LAMN model {pn(x|θ) | θ ∈ Θ ⊂ R
k} and focus on its submodels. The

corresponding full limit model is {p(ξ, J |h) = p(ξ|h, J)p(J) | h ∈ R
k}, where h, ξ

and J are defined in Definition 1. The conditional density p(ξ|h, J) is φ(ξ|h, J−1),

where φ(x|µ,Σ) is the density of normal distribution with the mean vector µ and the

covariance matrix Σ. The marginal density p(J) of the random Fisher information

matrix J does not depend on h from the definition. We use symbols indicated in

Table 1.

Table 1: The symbols used in the paper.

full model submodel α ∈ A
non-limit model {pn(x|θ) | θ ∈ Θ ⊂ R

k} {pn(x|θ) | θ ∈ Θα}
limit model {p(ξ|h, J) | h ∈ R

k} {p(ξ|h, J) | h ∈ Hα}

In the table, A is the index set of submodels. For each α ∈ A, Θα is a kα-dimensional

subset in Θ, where 0 ≤ kα ≤ k. Let θα be a smooth embedding map from R
kα to Θα

and Bα ∈ R
k×kα is the derivative matrix of θα. The subspace corresponding to α in

the limit model is denoted by Hα = {h = Bαu | u ∈ R
kα}.

We denote E = Ek as the identity matrix of size k. We put J−
α = Bα(B′

αJBα)−1B′
α

and πα = J−
α J . The matrix πα is a (random) projection operator from R

k to Hα. A

relation παJ
−1π′

α = J−
α JJ

−
α = J−

α holds.

We assume that the true parameter h of the limit model is an arbitrary point in

R
k. This corresponds to a local alternate in hypothesis testing. For each submodel

α ∈ A, we put hα = παh and ξα = παξ for the true parameter h and an observation

ξ. The quantity ξα is the maximum likelihood estimator for the subspace Hα, whose

conditional mean and variance are E[ξα|J ] = hα and Var[ξα|J ] = J−
α , respectively. The

random variable hα is considered as “the true parameter in Hα” because it gives the

nearest distribution in Hα to the true one. The phenomenon that the true parameter

is random does not appear in the LAN situation.

We assume that the prior distribution Pα(dh) for α is the uniform distribution on

Hα. Use of the uniform prior for the limit model is natural in the sense that any smooth

prior density for the non-limit model is locally approximated by the uniform prior

density. The posterior distribution Pα(dh|ξ, J) is the degenerate normal distribution
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with mean ξα and variance J−
α , since its characteristic function is

ψh|ξ,J(λ) :=

∫

exp(iλ′h) p(ξ|h, J)Pα(dh)
∫

p(ξ|h, J)Pα(dh)

=

∫

Rkα
exp

[

iλ′Bαu− 1
2
(ξ − Bαu)

′J(ξ −Bαu)
]

du
∫

Rkα
exp

[

−1
2
(ξ −Bαu)′J(ξ − Bαu)

]

du

= exp

[

iλ′ξα − 1

2
λ′J−

α λ

]

.

3 Risk of prediction

In this section and the next section, we consider prediction problem for limit models.

The problem is prediction of (η, J̃) from an observation (ξ, J), where (η, J̃) and (ξ, J)

are independently and identically distributed with true parameter h ∈ R
k. Since the

distributions of the random information matrices J and J̃ are independent of h, they

are considered as ancillary statistics. Thus the prediction problem is reduced to that

of η from ξ conditionally on J and J̃ . When J and J̃ are conditioned, the arguments

are usually abbreviated, for example, q(η|ξ) = q(η|ξ, J, J̃). Expectations are taken

conditionally on J and J̃ unless otherwise stated.

The loss of a predictive distribution q(η|ξ) is defined by

l(q(·|ξ)) = −2

∫

p(η|h) log q(η|ξ) dη,

which is equivalent to the Kullback-Leibler divergence
∫

p(η|h) log(p(η|h)/q(η|ξ))dη.
The risk is denoted by r(q) =

∫

p(ξ|h)l(q(·|ξ)) dξ.

We construct four predictive distributions by classifying Bayesian or plug-in, and

LAMN or LAN.

Definition 2 The Bayes-LAMN, plugin-LAMN, Bayes-LAN and plugin-LAN distri-

butions are defined by

qB
α (η|ξ) =

∫

p(η|h, J̃)Pα(dh|ξ, J),

qp
α(η|ξ) = p(η|ξα, J̃),

qBN
α (η|ξ) =

∫

p(η|h, J)Pα(dh|ξ, J),

qpN
α (η|ξ) = p(η|ξα, J),

respectively.
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Lemma 1 The predictive distributions defined in Definition 2 are expressed explicitly

by

qB
α (η|ξ) = φ(η|ξα, J̃

−1+J−
α ),

qp
α(η|ξ) = φ(η|ξα, J̃

−1),

qBN
α (η|ξ) = φ(η|ξα, J

−1+J−
α ),

qpN
α (η|ξ) = φ(η|ξα, J

−1),

respectively.

Proof. The first expression is obtained by using the characteristic function

ψB
η|ξ(λ) :=

∫

exp(iλ′η) qB
α (η|ξ) dη

=

∫∫

exp(iλ′η) p(η|h, J̃)Pα(dh|ξ, J) dη

=

∫

exp

[

iλ′h− 1

2
λ′J̃−1λ

]

Pα(dh|ξ, J)

= exp

[

iλ′ξα − 1

2
λ′(J̃−1 + J−

α )λ

]

.

The other expressions are also easily obtained. 2

We introduce a class of predictive distributions including the four predictive distri-

butions considered above.

Definition 3 Let Σα = Σα(J, J̃) be a k × k positive definite matrix. Then the Σ-

predictive distribution is defined by

qΣ
α (η|ξ) = φ(η|ξα,Σα).

The Bayes-LAMN, plugin-LAMN, Bayes-LAN and plugin-LAN distributions are

Σ-predictive distributions with

ΣB
α = J̃−1 + J−

α ,

Σp
α = J̃−1,

ΣBN
α = J−1 + J−

α ,

ΣpN
α = J−1,

respectively.

The next two lemmas about the loss and risk of the Σ-predictive distributions are

obtained by an elementary calculation.
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Lemma 2 Let h ∈ R
k. The loss of the predictive distribution qΣ

α is

l(qΣ
α (·|ξ)) = (h−ξα)′Σ−1

α (h−ξα) + tr[Σ−1
α J̃−1] + log det Σα.

Lemma 3 Let h ∈ R
k. The risk of the predictive distribution qΣ

α is

r(qΣ
α ) = (h−hα)′Σ−1

α (h−hα) + tr[Σ−1
α (J̃−1 + J−

α )] + log det Σα.

The next theorem reveals superiority of the Bayes-LAMN prediction qB
α in a certain

sense. Therefore we use the Bayes-LAMN distribution for the prediction problem

throughout the paper.

Theorem 1 (i) Let h ∈ R
k. Then

r(qB
α ) < r(qp

α).

(ii) Let h ∈ Hα. Then

r(qB
α ) ≤ r(qΣ

α )

for any k × k positive definite matrix Σα. The equality holds if and only if qΣ
α = qB

α .

Proof. Let h ∈ R
k and let Σ = Σα be any k×k positive definite matrix. By Lemma

1 and Lemma 3,

r(qΣ
α ) − r(qB

α )

= (h−hα)′(Σ−1−(J̃−1+J−
α )−1)(h−hα)

+tr[Σ−1/2(J̃−1 + J−
α )Σ−1/2] − k − log det[Σ−1/2(J̃−1 + J−

α )Σ−1/2]

≥ (h−hα)′(Σ−1−(J̃−1+J−
α )−1)(h−hα)

because of an inequality

trC − k − log detC ≥ 0

for any non-negative definite matrix C, where the equality holds if and only if C = E.

If Σ = J̃−1, then (h−hα)′(Σ−1−(J̃−1+J−
α )−1)(h−hα) ≥ 0 for any h ∈ R

k. Thus (i)

holds. On the other hand, if h ∈ Hα, then h = hα. Thus (ii) holds. 2

Remark. The difference between r(qp
α) and r(qB

α ) is quite large if J is close to

zero relative to J̃ . Let h ∈ Hα for simplicity. If the maximum eigenvalue of Cα =

J̃1/2(J̃−1+J−
α )J̃1/2 is λ̄ > 1, then the difference is assessed as

r(qp
α) − r(qB

α ) = trCα − k − log detCα

≥ λ̄− 1 − log λ̄.
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On the other hand, the expectation of twice the Kullback-Leibler risk of qB
α is

r(qB
α ) − r(p) = 2

∫∫

p(η|h, J̃) log
p(η|h, J̃)

qB
α (η|ξ) dη dξ

= k + log det(J̃−1+J−
α ) − k − log det J̃−1

= log detCα

≤ k log λ̄.

Thus

r(qp
α) − r(qB

α )

r(qB
α ) − r(p)

≥ λ̄− 1 − log λ̄

k log λ̄
→ ∞

as λ̄ → ∞. Similarly, the difference between r(qΣ
α ) and r(qB

α ) is very large for any Σ

if J is close to zero relative to J̃ .

4 Proposed information criterion

We introduce an information criterion Bayes-LAMN-IC for limit models, which forms

−2 log qB
α (ξ|ξ)+cα with some correcting term cα. Expectations are taken conditionally

on J and J̃ unless otherwise stated.

We first define criteria based on Σ-predictive distributions. Bayes-LAMN-IC is a

special case of them.

Definition 4 Fix Σα. An information criterion Σ-IC is defined by

Σ-IC = Σ-IC(α) = Σ-IC(α, ξ, J, J̃)

:= (ξ−ξα)′Σ−1
α (ξ−ξα) + log det Σα + tr[Σ−1

α (J̃−1 − J−1 + 2J−
α )]. (1)

The selected model by the criterion is denoted by

α̂Σ = α̂Σ(ξ) = α̂Σ(ξ, J, J̃) := argmin
α∈A

Σ-IC(α).

In particular, for i ∈ {B, p,BN, pN}, Σi-IC is called Bayes-LAMN-IC, plugin-LAMN-

IC, Bayes-LAN-IC and plugin-LAN-IC, respectively.

Theorem 2 The information criterion Σ-IC(α) is the unique unbiased estimator of

the risk r(qΣ
α ).
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Proof. Put cα = tr[Σ−1
α (J̃−1−J−1+2J−

α )]. The expectation of Σ-IC(α) is

∫

p(ξ|h, J) Σ-IC(α) dξ

=

∫

p(ξ|h, J)
[

(ξ−ξα)′Σ−1
α (ξ−ξα)

]

dξ + log det Σα + cα

= (h−hα)′Σ−1
α (h−hα) + tr

[

Σ−1
α (J−1−J−

α )
]

+ log det Σα + cα

= (h−hα)′Σ−1
α (h−hα) + tr

[

Σ−1
α (J̃−1+J−

α )
]

+ log det Σα

= r(qΣ
α )

by Lemma 3. Uniqueness holds due to the completeness of the statistic ξ (Lehmann

& Casella 1998, p.42 and p.87). 2

Proposition 3 The information criterion plugin-LAN-IC is equivalent to AIC.

Proof. By putting Σα = J−1 in (1), it is shown that

plugin-LAN-IC(α) = −2 log qpN
α (ξ|ξ) + 2kα + tr[J(J̃−1−J−1)].

Since the last term is independent of α, plugin-LAN-IC is equivalent to AIC. 2

We adopt Bayes-LAMN-IC among Σ-IC’s because it is compatible with the Bayes-

LAMN prediction, which has the dominating property obtained in Theorem 1. It

should be noted that the criterion does not coincide with AIC even if a LAN model

is considered. For LAN models, both Bayes-LAMN-IC and Bayes-LAN-IC coincide

with

PIC2 = −2 log qBN
α (ξ|ξ) + kα, (2)

in Kitagawa (1997) when the uniform prior is used. It is also found in Akaike (1980,

eq. (3.8)). The performance of PIC2 and AIC does not seem very different since

J is deterministic. On the other hand, for LAMN models, the difference between

Bayes-LAMN-IC and AIC is quite serious as remarked after Theorem 1.

We compare Σ-IC’s for different Σ’s in Section 6. The risk R of the model selection

procedure based on Σ-IC is defined by the risk of the Bayesian prediction based on

the model selection procedure using Σ-IC, that is,

R = R(Σ, h) = E[r(qB
α̂Σ)], (3)

where E denotes the expectation with respect to J and J̃ . An information criterion

Σ-IC whose risk R is small is a good criterion.
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In practice, a model selection is implemented without use of J̃ . For this purpose,

we define an expectation version of Σ-IC by

∫

Σ-IC(α, ξ, J, J̃)p(J̃)dJ̃ .

We compare only Σ-IC for the numerical examples in Section 6 since the performance

of an information criterion is assessed by its performance of prediction.

5 Information criterion for non-limit models

In this section, the information criteria for limit models defined in the previous section

are restored to those for the non-limit models. Only a heuristic definition is given here.

The conditions for asymptotic properties such as contiguity of the selected predictive

distribution are not discussed.

Let θ̂ and θ̂α be the maximum likelihood estimators (or other asymptotically efficient

estimators) for the full model and the submodel α ∈ A, respectively. Our Σ-IC for

the non-limit models is, by using Σ-IC for the limit models,

Σ-IC(α)|J=J(n),J̃=J̃(n),(ξ−ξα)=(ξ−ξα)(n) , (4)

where a matrix J (n) is defined by

J (n) := − ∂2

∂u∂u′
log pn(x|θ̂ + γnu)

∣

∣

∣

∣

u=0

, (5)

J̃ (n) is given by replacing x in (5) with y and

(ξ − ξα)(n) := γ−1
n (θ̂ − θ̂α).

Under mild conditions, J (n), J̃ (n) and (ξ−ξα)(n) converge to J , J̃ and ξ−ξα as n→ ∞,

respectively.

In general, J (n) and J̃ (n) may not be positive definite. Therefore some modification

is needed. For the discretely observed diffusion models, we can use a non-negative

definite matrix J ](n) instead of J (n) defined by

J ](n) :=

n
∑

i=1

2

n

[

∂

∂θ
log a(Xti , θ̂)

∂

∂θ′
log a(Xti , θ̂)

]

. (6)

The matrix J ](n) is used at the numerical experiments in Subsection 6.2.
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6 Examples

Three examples are considered here. In Subsection 6.1, some theoretical and exper-

imental results for a special limit model are given. Subsection 6.2 is devoted to a

numerical study of the discretely observed diffusion models. Subsection 6.3 deals

with the partially explosive Gaussian AR model.

6.1 Scalar-randomness model

Let J = cJ0 with a 1-dimensional positive random variable c and a deterministic

matrix J0 as Example 1 in Section 1. We call it a scalar-randomness model. If

we consider nested submodels, the information criterion has a simple representation.

Let A = {0, 1, · · · , k}. Suppose that H0 = {0} ⊂ R
k and Hα is an α-dimensional

subspace of R
k including Hα−1 for 1 ≤ α ≤ k. Put J̃ = c̃J0 where c̃ is a random

variable independent of c and has the same distribution as c.

We assume that J0 = E and Hα = {(a1, · · · , aα, 0, · · · , 0) | a1, · · · , aα ∈ R} without

loss of generality. The loss l(qB
α (·|ξ)) of the Bayes prediction is, by Lemma 2,

l(qB
α (·|ξ)) =

α
∑

i=1

[

(c̃−1+c−1)−1{(hi−ξi)2+c̃−1} + log(c̃−1+c−1)
]

+

k
∑

i=α+1

[

c̃h2
i + 1 + log c̃−1

]

,

where ξi and hi is the i-th component of ξ and h, respectively.

We consider only Σ-IC satisfying the condition that Σα is a diagonal matrix whose

i-th diagonal component σi is s = s(c, c̃) if i ≤ α and t = t(c, c̃) otherwise, where s

and t are common in all α. The four criteria (Bayes-LAMN, plugin-LAMN, Bayes-

LAN and plugin-LAN) satisfy the condition as indicated in Table 2. The expression

of Σ-IC is

Σ-IC(α) =
α

∑

i=1

[

s−1(c̃−1+c−1) + log s
]

+
k

∑

i=α+1

[

t−1ξ2
i + t−1(c̃−1−c−1) + log t

]

=
k

∑

i=1

[

s−1(c̃−1+c−1) + log s
]

+ t−1
k

∑

i=α+1

(ξ2
i − ξ̄2),

where

ξ̄2 = t
[

s−1(c̃−1+c−1) + log s− t−1(c̃−1−c−1) − log t
]

.

For fixed α ∈ A, the set Ξα of ξ such that α̂Σ(ξ) = α is given by

Ξα = Lα ∩Gα,
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where

Lα = {ξ | ∀j ≤ α,
α

∑

i=j+1

(ξ2
i − ξ̄2) > 0}

and

Gα = {ξ | α < ∀j ≤ k,

j
∑

i=α+1

(ξ2
i − ξ̄2) < 0}.

The quantities s, t and ξ̄2 corresponding to the four criteria are summarized in

Table 2, where we put r = c̃/c.

Table 2: The quantities s, t and ξ̄2 corresponding to the four predictive distributions.
(r = c̃/c)

prediction s t ξ̄2

Bayes-LAMN c̃−1 + c−1 c̃−1 c−1(r−1 log(1 + r) + 1)
plugin-LAMN c̃−1 c̃−1 2c−1

Bayes-LAN 2c−1 c−1 c−1(log 2 + 3
2
− 1

2r
)

plugin-LAN c−1 c−1 2c−1

If s = t, then ξ̄2 = 2c−1, which is independent of s. Thus the next proposition

holds.

Proposition 4 Suppose that the model is a scalar-randomness model and Σα is com-

mon in all α ∈ A. Then Σ-IC is equivalent to AIC.

Consider the scalar-randomness model with dimension k = 10. Assume that c takes

only two values
√

10 and 1/
√

10 with the same probability. We numerically evaluate

the risk R of the model selection procedures (eq. (3)).

Figure 1 indicates R of FULL (which always selects the full model: ξ̄2 = 0), Bayes-

LAMN-IC, Bayes-LAN-IC, AIC and BOUND (which is a lower bound based on the

“best selection” α̂ = argmin l(qB
α ) using the true h), respectively. The true pa-

rameter h takes its value in Di = {diei | di ∈ [0, 10]} for i ∈ {1, · · · , 10}, where

ei = (0, · · · , 0, 1, 0, · · · , 0) is the i-th unit vector in R
10. The horizontal axis denotes

di such that h = diei.

The figure shows that Bayes-LAMN-IC is better than AIC especially for h ∈ Di

(i = 4, · · · , 10). The minimax criterion is FULL. However, the difference between risks

of Bayes-LAMN-IC and BOUND is stable throughout the parameter space compared

12



to that of FULL and BOUND. This kind of stability is considered important from the

view point of model selection. Thus Bayes-LAMN-IC has a good performance in the

example.

10

15

20

25

30

35

FULL
Bayes-LAMN

Bayes-LAN

AIC

BOUND

0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10

PSfrag replacements

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

R

Figure 1: The risk R of the model selection procedures for the scalar-randomness
model. The true parameter h takes its value in Di = {(0, · · · , 0, di, 0, · · · , 0) ∈
R

10 | di ∈ [0, 10]} for each i ∈ {1, · · · , 10}, where (0, · · · , 0, di, 0, · · · , 0) denotes
the vector whose i-th coordinate is di. The horizontal axis denotes di such that
h = (0, · · · , 0, di, 0, · · · , 0).

6.2 Discretely observed diffusion models

Let us consider the discretely observed diffusion model stated in Example 2 of Sec-

tion 1. The example used here is

dXt =
1 + θX2

t

1 +X2
t

dWt, X0 = 0, θ > 0, (7)

which satisfies the regularity condition in Genon-Catalot & Jacod (1994). Two sub-

models ΘI = {θ | θ = 1} and ΘII = {θ | θ > 0} are compared, where A = {I, II} is the

index set. If θ = 1, Xt = Wt.

Figure 2 gives a numerical result about the risk R of the model selection procedure

based on Bayes-LAMN-IC and AIC. The simulation algorithm for Σ-IC is as follows.

1. Fix integers L and L̃. For each l = 1, 2, · · · , L,

13



(a) Generate a path {Xt(l) | t ∈ { 1
n
, · · · , n

n
}} according to the true parameter

θ. Calculate the maximum likelihood estimator θ̂(l) for the full model and

the random Fisher information J ](n)(l) by the formula (6).

(b) For l̃ = 1, 2, · · · , L̃, generate L̃ paths {Yt(l, l̃) | t ∈ { 1
n
, · · · , n

n
}} according

to the estimated parameter θ̂(l). Calculate the random Fisher information

J̃ ](n)(l, l̃).

(c) Select one of the submodels according to Σ-IC determined by eq. (4) and

calculate the loss `(l, l̃) of selected predictive distribution, where the loss

is also calculated by LAMN approximation for simplicity.

2. Calculate R = (LL̃)−1
∑L

l=1

∑L̃
l̃=1 `(l, l̃).

The number of sampling points is n = 100. The number of loops is L = L̃ = 1000 for

each true θ ∈ {0.25, 0.50, · · · , 3.00}. In the example, Bayes-LAMN-IC is better than

AIC in the minimax sense.

 0

 1

 2

 3

 4

 5

 0  0.5  1  1.5  2  2.5  3

AICBayes-LAMN-IC

PSfrag replacements

R

θ

Figure 2: The risk R of the model selection procedures for the discretely observed
diffusion model (eq. (7)). The confidence interval is based on 3 times of the standard
deviation.

6.3 The partially explosive Gaussian AR model

Let us consider the partially explosive Gaussian AR(2) model stated in Example 3

of Section 1. Two submodels ΘI = {θ | θ1 > 1, θ2 = 0} and ΘII = {θ | θ1 >

14



1, |θ2| < 1} are compared, where A = {I, II} is the index set. Let J = diag(J11, J22),

J̃ = diag(J̃11, J̃22) and ξ = (ξ1, ξ2)
′.

Since J̃22 = J22, Bayes-LAMN-IC’s for the two submodels are

Bayes-LAMN-IC(I) = ξ2
2(2J

−1
22 )−1 + log(J̃−1

11 +J−1
11 ) + log(J−1

22 ) + 1,

Bayes-LAMN-IC(II) = log(J̃−1
11 +J−1

11 ) + log(2J−1
22 ) + 2.

Their difference is ξ2
2J22/2 − (log 2 + 1). On the other hand,

Bayes-LAN-IC(I) = ξ2
2(2J

−1
22 )−1 + log(2J−1

11 ) + log(J−1
22 ) + 1,

Bayes-LAN-IC(II) = log(2J−1
11 ) + log(2J−1

22 ) + 2.

Their difference is ξ2
2J22/2− (log 2 + 1). Therefore both Bayes-LAMN-IC and Bayes-

LAN-IC are equivalent to PIC2 (eq. (2)). In particular, J̃ is not needed in order to

calculate them. Similarly, both plugin-LAMN-IC and plugin-LAN-IC are equivalent

to AIC. These properties hold for any AR(k) model if we consider only submodels

where some of the stationary components of θ are restricted to zero.

We now compare Bayes-LAMN-IC and AIC by finite-sample experiments. Figure

3 gives a numerical result about the risk R of the model selection procedure based

on Bayes-LAMN-IC and AIC. The simulation algorithm for Bayes-LAMN-IC is as

follows. A similar algorithm is used for AIC.

1. Fix L and L̃. For each l = 1, · · · , L,

(a) Generate a path {Xt(l) | t ∈ {1, · · · , n}} according to the true parameter θ.

Calculate the maximum likelihood estimator θ̂α(l) and Bayes-LAMN-IC(α)

for each model α ∈ A.

(b) Calculate the loss `(l) by the Monte-Carlo method, that is, generate L̃ paths

{Yt(l, l̃) | t ∈ {1, · · · , n}} (l̃ = 1, · · · , L̃) according to the true parameter

θ and take the sample mean: `(l) = L̃−1
∑L̃

l̃=1 2 log{pn(Y |θ)/qB
n (Y |X)},

where qB
n (Y |X) is the selected predictive distribution by Bayes-LAMN-IC.

2. Calculate R = L−1
∑L

l=1 `(l).

The number of sampling points is n = 100. The number of loops is L = L̃ = 1000

for each θ = (θ1, θ2) ∈ {1.03} × {0.00, 0.05, 0.10, · · · , 1.00}. In the example, Bayes-

LAMN-IC is slightly better than AIC in the minimax sense.
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Figure 3: The risk R of the model selection procedures for the partially explosive
Gaussian AR(2) model. The horizontal axis denotes θ2. The value of θ1 is fixed to
1.03. The confidence interval is based on 3 times of the standard deviation.

7 Conclusion and future works

We proposed an information criterion Bayes-LAMN-IC for LAMN models. It is the

unique unbiased estimator of the risk of the Bayesian prediction. We numerically

compared it with other criteria including AIC. For the scalar-randomness model,

the risk of the model selection procedures based on Bayes-LAMN-IC was relatively

stable over the true parameter space. For the discretely observed diffusion model and

the partially explosive Gaussian AR model, the maximum risk of the model selection

procedure based on Bayes-LAMN-IC was less than the maximum risk of the procedure

based on the other criteria. These numerical results show that Bayes-LAMN-IC is

better than the other criteria.

The remaining tasks are to give many numerical experiments, real data analysis,

theoretical evaluation of the risk and characterization of Bayes-LAMN-IC. Another

future work is to construct a version of Bayes-LAMN-IC like Takeuchi’s information

criterion (Burnham & Anderson 2002, p. 65). It is naturally constructed for the i.i.d.

models with random number of samples. We believe that it is also available for the

discretely observed diffusion models.
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[7] Jeganathan, P. (1983). Some asymptotic properties of risk functions when the

limit of the experiment is mixed normal, Sankhyā, Series A, 45, 66-87.
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